Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
PLoS One ; 16(4): e0250853, 2021.
Article in English | MEDLINE | ID: covidwho-1833535

ABSTRACT

BACKGROUND: Infection by SARS-CoV-2 in domestic animals has been related to close contact with humans diagnosed with COVID-19. Objectives: To assess the exposure, infection, and persistence by SARS-CoV-2 of dogs and cats living in the same households of humans that tested positive for SARS-CoV-2, and to investigate clinical and laboratory alterations associated with animal infection. METHODS: Animals living with COVID-19 patients were longitudinally followed and had nasopharyngeal/oropharyngeal and rectal swabs collected and tested for SARS-CoV-2. Additionally, blood samples were collected for laboratory analysis, and plaque reduction neutralization test (PRNT90) to investigate specific SARS-CoV-2 antibodies. RESULTS: Between May and October 2020, 39 pets (29 dogs and 10 cats) of 21 patients were investigated. Nine dogs (31%) and four cats (40%) from 10 (47.6%) households were infected with or seropositive for SARS-CoV-2. Animals tested positive from 11 to 51 days after the human index COVID-19 case onset of symptoms. Three dogs tested positive twice within 14, 30, and 31 days apart. SARS-CoV-2 neutralizing antibodies were detected in one dog (3.4%) and two cats (20%). In this study, six out of thirteen animals either infected with or seropositive for SARS-CoV-2 have developed mild but reversible signs of the disease. Using logistic regression analysis, neutering, and sharing bed with the ill owner were associated with pet infection. CONCLUSIONS: The presence and persistence of SARS-CoV-2 infection have been identified in dogs and cats from households with human COVID-19 cases in Rio de Janeiro, Brazil. People with COVID-19 should avoid close contact with their pets during the time of their illness.


Subject(s)
COVID-19/epidemiology , COVID-19/veterinary , Pets/virology , Animals , Animals, Domestic/virology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Brazil/epidemiology , Cat Diseases , Cats , Dog Diseases , Dogs , Longitudinal Studies , Prevalence , SARS-CoV-2/pathogenicity
2.
Clin Infect Dis ; 74(4): 622-629, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1713621

ABSTRACT

BACKGROUND: Serological assays detecting anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies are being widely deployed in studies and clinical practice. However, the duration and effectiveness of the protection conferred by the immune response remains to be assessed in population-based samples. To estimate the incidence of newly acquired SARS-CoV-2 infections in seropositive individuals as compared to seronegative controls, we conducted a retrospective longitudinal matched study. METHODS: A seroprevalence survey including a representative sample of the population was conducted in Geneva, Switzerland, between April and June 2020, immediately after the first pandemic wave. Seropositive participants were matched one-to-two to seronegative controls, using a propensity-score including age, gender, immunodeficiency, body mass index (BMI), smoking status, and education level. Each individual was linked to a state-registry of SARS-CoV-2 infections. Our primary outcome was confirmed infections occurring from serological status assessment to the end of the second pandemic wave (January 2021). RESULTS: Among 8344 serosurvey participants, 498 seropositive individuals were selected and matched with 996 seronegative controls. After a mean follow-up of 35.6 (standard deviation [SD] 3.2) weeks, 7 out of 498 (1.4%) seropositive subjects had a positive SARS-CoV-2 test, of whom 5 (1.0%) were classified as reinfections. In contrast, the infection rate was higher in seronegative individuals (15.5%, 154/996) during a similar follow-up period (mean 34.7 [SD 3.2] weeks), corresponding to a 94% (95% confidence interval [CI]: 86%- 98%, P < .001) reduction in the hazard of having a positive SARS-CoV-2 test for seropositives. CONCLUSIONS: Seroconversion after SARS-CoV-2 infection confers protection against reinfection lasting at least 8 months. These findings could help global health authorities establishing priority for vaccine allocation.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Cohort Studies , Humans , Reinfection , Retrospective Studies , Seroconversion , Seroepidemiologic Studies
3.
Clin Infect Dis ; 74(4): 584-590, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1709326

ABSTRACT

BACKGROUND: With limited severe acute respiratory syndrome coronavirus (SARS-CoV-2) testing capacity in the United States at the start of the epidemic (January-March 2020), testing was focused on symptomatic patients with a travel history throughout February, obscuring the picture of SARS-CoV-2 seeding and community transmission. We sought to identify individuals with SARS-CoV-2 antibodies in the early weeks of the US epidemic. METHODS: All of Us study participants in all 50 US states provided blood specimens during study visits from 2 January to 18 March 2020. Participants were considered seropositive if they tested positive for SARS-CoV-2 immunoglobulin G (IgG) antibodies with the Abbott Architect SARS-CoV-2 IgG enzyme-linked immunosorbent assay (ELISA) and the EUROIMMUN SARS-CoV-2 ELISA in a sequential testing algorithm. The sensitivity and specificity of these ELISAs and the net sensitivity and specificity of the sequential testing algorithm were estimated, along with 95% confidence intervals (CIs). RESULTS: The estimated sensitivities of the Abbott and EUROIMMUN assays were 100% (107 of 107 [95% CI: 96.6%-100%]) and 90.7% (97 of 107 [83.5%-95.4%]), respectively, and the estimated specificities were 99.5% (995 of 1000 [98.8%-99.8%]) and 99.7% (997 of 1000 [99.1%-99.9%]), respectively. The net sensitivity and specificity of our sequential testing algorithm were 90.7% (97 of 107 [95% CI: 83.5%-95.4%]) and 100.0% (1000 of 1000 [99.6%-100%]), respectively. Of the 24 079 study participants with blood specimens from 2 January to 18 March 2020, 9 were seropositive, 7 before the first confirmed case in the states of Illinois, Massachusetts, Wisconsin, Pennsylvania, and Mississippi. CONCLUSIONS: Our findings identified SARS-CoV-2 infections weeks before the first recognized cases in 5 US states.


Subject(s)
COVID-19 , Population Health , Antibodies, Viral , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G , SARS-CoV-2 , Sensitivity and Specificity
4.
Clin Infect Dis ; 73(12): 2155-2162, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1592795

ABSTRACT

BACKGROUND: Assessing the duration of immunity following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a first priority to gauge the degree of protection following infection. Such knowledge is lacking, especially in the general population. Here, we studied changes in immunoglobulin isotype seropositivity and immunoglobulin G (IgG) binding strength of SARS-CoV-2-specific serum antibodies up to 7 months following onset of symptoms in a nationwide sample. METHODS: Participants from a prospective representative serological study in the Netherlands were included based on IgG seroconversion to the spike S1 protein of SARS-CoV-2 (N = 353), with up to 3 consecutive serum samples per seroconverted participant (N = 738). Immunoglobulin M (IgM), immunoglobulin A (IgA), and IgG antibody concentrations to S1, and increase in IgG avidity in relation to time since onset of disease symptoms, were determined. RESULTS: While SARS-CoV-2-specific IgM and IgA antibodies declined rapidly after the first month after disease onset, specific IgG was still present in 92% (95% confidence interval [CI], 89%-95%) of the participants after 7 months. The estimated 2-fold decrease of IgG antibodies was 158 days (95% CI, 136-189 days). Concentrations were sustained better in persons reporting significant symptoms compared to asymptomatic persons or those with mild upper respiratory complaints only. Similarly, avidity of IgG antibodies for symptomatic persons showed a steeper increase over time compared with persons with mild or no symptoms (P = .022). CONCLUSIONS: SARS-CoV-2-specific IgG antibodies persist and show increasing avidity over time, indicative of underlying immune maturation. These data support development of immune memory against SARS-CoV-2, providing insight into protection of the general unvaccinated part of the population. CLINICAL TRIALS REGISTRATION: NL8473 (the Dutch trial registry).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Netherlands/epidemiology , Prospective Studies
5.
Clin Infect Dis ; 73(11): e4082-e4089, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559187

ABSTRACT

BACKGROUND: Leronlimab, a monoclonal antibody blocker of C-C chemokine receptor type 5 originally developed to treat human immunodeficiency virus infection, was administered as an open-label compassionate-use therapeutic for coronavirus disease 2019 (COVID-19). METHODS: Twenty-three hospitalized severe/critical COVID-19 patients received 700 mg leronlimab subcutaneously, repeated after 7 days in 17 of 23 patients still hospitalized. Eighteen of 23 received other experimental treatments, including convalescent plasma, hydroxychloroquine, steroids, and/or tocilizumab. Five of 23 received leronlimab after blinded, placebo-controlled trials of remdesivir, sarilumab, selinexor, or tocilizumab. Outcomes and results were extracted from medical records. RESULTS: Mean age was 69.5 ±â€…14.9 years; 20 had significant comorbidities. At baseline, 22 were receiving supplemental oxygen (3 high flow, 7 mechanical ventilation). Blood showed markedly elevated inflammatory markers (ferritin, D-dimer, C-reactive protein) and an elevated neutrophil-to-lymphocyte ratio. By day 30 after initial dosing, 17 were recovered, 2 were still hospitalized, and 4 had died. Of the 7 intubated at baseline, 4 were fully recovered off oxygen, 2 were still hospitalized, and 1 had died. CONCLUSIONS: Leronlimab appeared safe and well tolerated. The high recovery rate suggested benefit, and those with lower inflammatory markers had better outcomes. Some, but not all, patients appeared to have dramatic clinical responses, indicating that unknown factors may determine responsiveness to leronlimab. Routine inflammatory and cell prognostic markers did not markedly change immediately after treatment, although interleukin-6 tended to fall. In some persons, C-reactive protein clearly dropped only after the second leronlimab dose, suggesting that a higher loading dose might be more effective. Future controlled trials will be informative.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized , COVID-19/therapy , HIV Antibodies , Humans , Immunization, Passive , Middle Aged , SARS-CoV-2 , Treatment Outcome
6.
Clin Infect Dis ; 73(9): e3066-e3073, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501031

ABSTRACT

BACKGROUND: Reports suggest that some persons previously infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lack detectable immunoglobulin G (IgG) antibodies. We aimed to determine the proportion IgG seronegative and predictors for seronegativity among persons previously infected with SARS-CoV-2. METHODS: We analyzed serologic data collected from healthcare workers and first responders in New York City and the Detroit metropolitan area with a history of a positive SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR) test result and who were tested for IgG antibodies to SARS-CoV-2 spike protein at least 2 weeks after symptom onset. RESULTS: Of 2547 persons with previously confirmed SARS-CoV-2 infection, 160 (6.3%) were seronegative. Of 2112 previously symptomatic persons, the proportion seronegative slightly increased from 14 to 90 days post symptom onset (P = .06). The proportion seronegative ranged from 0% among 79 persons previously hospitalized to 11.0% among 308 persons with asymptomatic infections. In a multivariable model, persons who took immunosuppressive medications were more likely to be seronegative (31.9%; 95% confidence interval [CI], 10.7%-64.7%), while participants of non-Hispanic Black race/ethnicity (vs non-Hispanic White; 2.7%; 95% CI, 1.5%-4.8%), with severe obesity (vs under/normal weight; 3.9%; 95% CI, 1.7%-8.6%), or with more symptoms were less likely to be seronegative. CONCLUSIONS: In our population with previous RT-PCR-confirmed infection, approximately 1 in 16 persons lacked IgG antibodies. Absence of antibodies varied independently by illness severity, race/ethnicity, obesity, and immunosuppressive drug therapy. The proportion seronegative remained relatively stable among persons tested up to 90 days post symptom onset.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Cohort Studies , Humans , Spike Glycoprotein, Coronavirus
7.
Clin Infect Dis ; 73(7): 1805-1813, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455252

ABSTRACT

BACKGROUND: The evidence base for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is nascent. We sought to characterize SARS-CoV-2 transmission within US households and estimate the household secondary infection rate (SIR) to inform strategies to reduce transmission. METHODS: We recruited patients with laboratory-confirmed SARS-CoV-2 infection and their household contacts in Utah and Wisconsin during 22 March 2020-25 April 2020. We interviewed patients and all household contacts to obtain demographics and medical histories. At the initial household visit, 14 days later, and when a household contact became newly symptomatic, we collected respiratory swabs from patients and household contacts for testing by SARS-CoV-2 real-time reverse-transcription polymerase chain reaction (rRT-PCR) and sera for SARS-CoV-2 antibodies testing by enzyme-linked immunosorbent assay (ELISA). We estimated SIR and odds ratios (ORs) to assess risk factors for secondary infection, defined by a positive rRT-PCR or ELISA test. RESULTS: Thirty-two (55%) of 58 households secondary infection among household contacts. The SIR was 29% (n = 55/188; 95% confidence interval [CI], 23%-36%) overall, 42% among children (aged <18 years) of the COVID-19 patient and 33% among spouses/partners. Household contacts to COVID-19 patients with immunocompromised conditions and household contacts who themselves had diabetes mellitus had increased odds of infection with ORs 15.9 (95% CI, 2.4-106.9) and 7.1 (95% CI: 1.2-42.5), respectively. CONCLUSIONS: We found substantial evidence of secondary infections among household contacts. People with COVID-19, particularly those with immunocompromising conditions or those with household contacts with diabetes, should take care to promptly self-isolate to prevent household transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Contact Tracing , Family Characteristics , Humans , United States/epidemiology , Wisconsin
8.
Clin Infect Dis ; 74(4): 622-629, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1387824

ABSTRACT

BACKGROUND: Serological assays detecting anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies are being widely deployed in studies and clinical practice. However, the duration and effectiveness of the protection conferred by the immune response remains to be assessed in population-based samples. To estimate the incidence of newly acquired SARS-CoV-2 infections in seropositive individuals as compared to seronegative controls, we conducted a retrospective longitudinal matched study. METHODS: A seroprevalence survey including a representative sample of the population was conducted in Geneva, Switzerland, between April and June 2020, immediately after the first pandemic wave. Seropositive participants were matched one-to-two to seronegative controls, using a propensity-score including age, gender, immunodeficiency, body mass index (BMI), smoking status, and education level. Each individual was linked to a state-registry of SARS-CoV-2 infections. Our primary outcome was confirmed infections occurring from serological status assessment to the end of the second pandemic wave (January 2021). RESULTS: Among 8344 serosurvey participants, 498 seropositive individuals were selected and matched with 996 seronegative controls. After a mean follow-up of 35.6 (standard deviation [SD] 3.2) weeks, 7 out of 498 (1.4%) seropositive subjects had a positive SARS-CoV-2 test, of whom 5 (1.0%) were classified as reinfections. In contrast, the infection rate was higher in seronegative individuals (15.5%, 154/996) during a similar follow-up period (mean 34.7 [SD 3.2] weeks), corresponding to a 94% (95% confidence interval [CI]: 86%- 98%, P < .001) reduction in the hazard of having a positive SARS-CoV-2 test for seropositives. CONCLUSIONS: Seroconversion after SARS-CoV-2 infection confers protection against reinfection lasting at least 8 months. These findings could help global health authorities establishing priority for vaccine allocation.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Cohort Studies , Humans , Reinfection , Retrospective Studies , Seroconversion , Seroepidemiologic Studies
9.
Sci Rep ; 11(1): 3081, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-1387463

ABSTRACT

Clinic-based estimates of SARS-CoV-2 may considerably underestimate the total number of infections. Access to testing in the US has been heterogeneous and symptoms vary widely in infected persons. Public health surveillance efforts and metrics are therefore hampered by underreporting. We set out to provide a minimally biased estimate of SARS-CoV-2 seroprevalence among adults for a large and diverse county (Orange County, CA, population 3.2 million). We implemented a surveillance study that minimizes response bias by recruiting adults to answer a survey without knowledge of later being offered SARS-CoV-2 test. Several methodologies were used to retrieve a population-representative sample. Participants (n = 2979) visited one of 11 drive-thru test sites from July 10th to August 16th, 2020 (or received an in-home visit) to provide a finger pin-prick sample. We applied a robust SARS-CoV-2 Antigen Microarray technology, which has superior measurement validity relative to FDA-approved tests. Participants include a broad age, gender, racial/ethnic, and income representation. Adjusted seroprevalence of SARS-CoV-2 infection was 11.5% (95% CI: 10.5-12.4%). Formal bias analyses produced similar results. Prevalence was elevated among Hispanics (vs. other non-Hispanic: prevalence ratio [PR] = 1.47, 95% CI 1.22-1.78) and household income < $50,000 (vs. > $100,000: PR = 1.42, 95% CI: 1.14 to 1.79). Results from a diverse population using a highly specific and sensitive microarray indicate a SARS-CoV-2 seroprevalence of ~ 12 percent. This population-based seroprevalence is seven-fold greater than that using official County statistics. In this region, SARS-CoV-2 also disproportionately affects Hispanic and low-income adults.


Subject(s)
Antibodies, Viral/analysis , COVID-19 , /statistics & numerical data , Adolescent , Adult , Bias , COVID-19/diagnosis , COVID-19/epidemiology , California/epidemiology , Female , Humans , Immunoglobulin G/analysis , Immunoglobulin M/analysis , Male , Middle Aged , Prevalence , Public Health Surveillance , Seroepidemiologic Studies , Young Adult
10.
Nat Commun ; 12(1): 250, 2021 01 11.
Article in English | MEDLINE | ID: covidwho-1387324

ABSTRACT

Understanding the mechanism for antibody neutralization of SARS-CoV-2 is critical for the development of effective therapeutics and vaccines. We recently isolated a large number of monoclonal antibodies from SARS-CoV-2 infected individuals. Here we select the top three most potent yet variable neutralizing antibodies for in-depth structural and functional analyses. Crystal structural comparisons reveal differences in the angles of approach to the receptor binding domain (RBD), the size of the buried surface areas, and the key binding residues on the RBD of the viral spike glycoprotein. One antibody, P2C-1F11, most closely mimics binding of receptor ACE2, displays the most potent neutralizing activity in vitro and conferred strong protection against SARS-CoV-2 infection in Ad5-hACE2-sensitized mice. It also occupies the largest binding surface and demonstrates the highest binding affinity to RBD. More interestingly, P2C-1F11 triggers rapid and extensive shedding of S1 from the cell-surface expressed spike glycoprotein, with only minimal such effect by the remaining two antibodies. These results offer a structural and functional basis for potent neutralization via disruption of the very first and critical steps for SARS-CoV-2 cell entry.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Binding Sites , COVID-19/drug therapy , COVID-19/virology , Disease Models, Animal , Epitopes , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Protein Binding , Protein Conformation , Receptors, Virus/immunology , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
11.
MMWR Morb Mortal Wkly Rep ; 69(47): 1762-1766, 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-1389859

ABSTRACT

Most persons infected with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), develop virus-specific antibodies within several weeks, but antibody titers might decline over time. Understanding the timeline of antibody decline is important for interpreting SARS-CoV-2 serology results. Serum specimens were collected from a convenience sample of frontline health care personnel at 13 hospitals and tested for antibodies to SARS-CoV-2 during April 3-June 19, 2020, and again approximately 60 days later to assess this timeline. The percentage of participants who experienced seroreversion, defined as an antibody signal-to-threshold ratio >1.0 at baseline and <1.0 at the follow-up visit, was assessed. Overall, 194 (6.0%) of 3,248 participants had detectable antibodies to SARS-CoV-2 at baseline (1). Upon repeat testing approximately 60 days later (range = 50-91 days), 146 (93.6%) of 156 participants experienced a decline in antibody response indicated by a lower signal-to-threshold ratio at the follow-up visit, compared with the baseline visit, and 44 (28.2%) experienced seroreversion. Participants with higher initial antibody responses were more likely to have antibodies detected at the follow-up test than were those who had a lower initial antibody response. Whether decay in these antibodies increases risk for reinfection and disease remains unanswered. However, these results suggest that serology testing at a single time point is likely to underestimate the number of persons with previous SARS-CoV-2 infection, and a negative serologic test result might not reliably exclude prior infection.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/immunology , Personnel, Hospital/statistics & numerical data , Pneumonia, Viral/immunology , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , United States/epidemiology
12.
Viruses ; 12(11)2020 10 26.
Article in English | MEDLINE | ID: covidwho-1389519

ABSTRACT

Convalescent plasma from SARS-CoV-2 infected individuals and monoclonal antibodies were shown to potently neutralize viral and pseudoviral particles carrying the S glycoprotein. However, a non-negligent proportion of plasma samples from infected individuals, as well as S-specific monoclonal antibodies, were reported to be non-neutralizing despite efficient interaction with the S glycoprotein in different biochemical assays using soluble recombinant forms of S or when expressed at the cell surface. How neutralization relates to the binding of S glycoprotein in the context of viral particles remains to be established. Here, we developed a pseudovirus capture assay (VCA) to measure the capacity of plasma samples or antibodies immobilized on ELISA plates to bind to membrane-bound S glycoproteins from SARS-CoV-2 expressed at the surface of lentiviral particles. By performing VCA, ELISA, and neutralization assays, we observed a strong correlation between these parameters. However, while we found that plasma samples unable to capture viral particles did not neutralize, capture did not guarantee neutralization, indicating that the capacity of antibodies to bind to the S glycoprotein at the surface of pseudoviral particles is required but not sufficient to mediate neutralization. Altogether, our results highlight the importance of better understanding the inactivation of S by plasma and neutralizing antibodies.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19 , Cell Line , Convalescence , HEK293 Cells , Humans , Neutralization Tests , Pandemics , SARS-CoV-2 , Time Factors
13.
Front Microbiol ; 11: 2020, 2020.
Article in English | MEDLINE | ID: covidwho-1389203

ABSTRACT

Emerging highly pathogenic human coronaviruses (CoVs) represent a serious ongoing threat to the public health worldwide. The spike (S) proteins of CoVs are surface glycoproteins that facilitate viral entry into host cells via attachment to their respective cellular receptors. The S protein is believed to be a major immunogenic component of CoVs and a target for neutralizing antibodies (nAbs) and most candidate vaccines. Development of a safe and convenient assay is thus urgently needed to determine the prevalence of CoVs nAbs in the population, to study immune response in infected individuals, and to aid in vaccines and viral entry inhibitor evaluation. While live virus-based neutralization assays are used as gold standard serological methods to detect and measure nAbs, handling of highly pathogenic live CoVs requires strict bio-containment conditions in biosafety level-3 (BSL-3) laboratories. On the other hand, use of replication-incompetent pseudoviruses bearing CoVs S proteins could represent a safe and useful method to detect nAbs in serum samples under biosafety level-2 (BSL-2) conditions. Here, we describe a detailed protocol of a safe and convenient assay to generate vesicular stomatitis virus (VSV)-based pseudoviruses to evaluate and measure nAbs against highly pathogenic CoVs. The protocol covers methods to produce VSV pseudovirus bearing the S protein of the Middle East respiratory syndrome-CoV (MERS-CoV) and the severe acute respiratory syndrome-CoV-2 (SARS-CoV-2), pseudovirus titration, and pseudovirus neutralization assay. Such assay could be adapted by different laboratories and researchers working on highly pathogenic CoVs without the need to handle live viruses in the BSL-3 environment.

14.
Clin Microbiol Infect ; 27(9): 1351.e5-1351.e7, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1379061

ABSTRACT

OBJECTIVES: Data on the immune response after two doses of BNT162b2 are so far limited. Previously infected individuals were excluded from pivotal clinical trials and the optimum dose regimen in this population has not been clearly studied. The CRO-VAX HCP study aims to investigate the early antibody response in a population of health-care professionals having received two doses of the BNT162b2 mRNA coronavirus disease 2019 (COVID-19) vaccine. METHODS: The CRO-VAX HCP study is a multicentre, prospective, interventional study conducted in several sites in Belgium. The study included 231 health-care professional volunteers who received the two-dose regimen of the BNT162b2 mRNA COVID-19 vaccine. Of these, 73 were previously infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and 158 were uninfected and seronegative. In the first group, blood samples were collected at baseline and after 2, 4, 7, 10, 14, 21 and 28 days. In the second group, samples were obtained at baseline and after 14 and 28 days. Antibodies against the SARS-CoV-2 nucleocapsid and the receptor binding domain of the S1 subunit of the spike protein were measured in all individuals at different time-points. RESULTS: In uninfected individuals, 95.5% (95% CI 91.0%-98.2%) developed anti-spike antibodies after 14 days and a 24.9-fold rise (95% CI 21.4%-28.9%) in antibody titre was observed after the second dose. In previously infected individuals, peak antibody response was reached after 7 days (i.e. 6347 U/mL) and the second dose did not lead to significantly higher antibody titres (i.e. 8856-11 911 U/mL). Antibody titres were higher in previously infected individuals. CONCLUSIONS: This study supports the concept that a single dose of BNT162b2 would be sufficient in previously infected individuals.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Belgium , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Case-Control Studies , Drug Administration Schedule , Female , Health Personnel , Humans , Immunity, Humoral , Male , Middle Aged , Prospective Studies , Time Factors , Young Adult
15.
Sci Immunol ; 6(58)2021 04 15.
Article in English | MEDLINE | ID: covidwho-1349998

ABSTRACT

Novel mRNA vaccines for SARS-CoV-2 have been authorized for emergency use. Despite their efficacy in clinical trials, data on mRNA vaccine-induced immune responses are mostly limited to serological analyses. Here, we interrogated antibody and antigen-specific memory B cells over time in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects. SARS-CoV-2 naïve individuals required both vaccine doses for optimal increases in antibodies, particularly for neutralizing titers against the B.1.351 variant. Memory B cells specific for full-length spike protein and the spike receptor binding domain (RBD) were also efficiently primed by mRNA vaccination and detectable in all SARS-CoV-2 naive subjects after the second vaccine dose, though the memory B cell response declined slightly with age. In SARS-CoV-2 recovered individuals, antibody and memory B cell responses were significantly boosted after the first vaccine dose; however, there was no increase in circulating antibodies, neutralizing titers, or antigen-specific memory B cells after the second dose. This robust boosting after the first vaccine dose strongly correlated with levels of pre-existing memory B cells in recovered individuals, identifying a key role for memory B cells in mounting recall responses to SARS-CoV-2 antigens. Together, our data demonstrated robust serological and cellular priming by mRNA vaccines and revealed distinct responses based on prior SARS-CoV-2 exposure, whereby COVID-19 recovered subjects may only require a single vaccine dose to achieve peak antibody and memory B cell responses. These findings also highlight the utility of defining cellular responses in addition to serologies and may inform SARS-CoV-2 vaccine distribution in a resource-limited setting.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines , COVID-19/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Female , Humans , Male , Middle Aged , RNA, Messenger , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
16.
Lancet Infect Dis ; 21(8): 1089-1096, 2021 08.
Article in English | MEDLINE | ID: covidwho-1328820

ABSTRACT

BACKGROUND: Real-time PCR is recommended to detect SARS-CoV-2 infection. However, PCR availability is restricted in most countries. Rapid diagnostic tests are considered acceptable alternatives, but data are lacking on their performance. We assessed the performance of four antibody-based rapid diagnostic tests and one antigen-based rapid diagnostic test for detecting SARS-CoV-2 infection in the community in Cameroon. METHODS: In this clinical, prospective, diagnostic accuracy study, we enrolled individuals aged at least 21 years who were either symptomatic and suspected of having COVID-19 or asymptomatic and presented for screening. We tested peripheral blood for SARS-CoV-2 antibodies using the Innovita (Biological Technology; Beijing, China), Wondfo (Guangzhou Wondfo Biotech; Guangzhou, China), SD Biosensor (SD Biosensor; Gyeonggi-do, South Korea), and Runkun tests (Runkun Pharmaceutical; Hunan, China), and nasopharyngeal swabs for SARS-CoV-2 antigen using the SD Biosensor test. Antigen rapid diagnostic tests were compared with Abbott PCR testing (Abbott; Abbott Park, IL, USA), and antibody rapid diagnostic tests were compared with Biomerieux immunoassays (Biomerieux; Marcy l'Etoile, France). We retrospectively tested two diagnostic algorithms that incorporated rapid diagnostic tests for symptomatic and asymptomatic patients using simulation modelling. FINDINGS: 1195 participants were enrolled in the study. 347 (29%) tested SARS-CoV-2 PCR-positive, 223 (19%) rapid diagnostic test antigen-positive, and 478 (40%) rapid diagnostic test antibody-positive. Antigen-based rapid diagnostic test sensitivity was 80·0% (95% CI 71·0-88·0) in the first 7 days after symptom onset, but antibody-based rapid diagnostic tests had only 26·8% sensitivity (18·3-36·8). Antibody rapid diagnostic test sensitivity increased to 76·4% (70·1-82·0) 14 days after symptom onset. Among asymptomatic participants, the sensitivity of antigen-based and antibody-based rapid diagnostic tests were 37·0% (27·0-48·0) and 50·7% (42·2-59·1), respectively. Cohen's κ showed substantial agreement between Wondfo antibody rapid diagnostic test and gold-standard ELISA (κ=0·76; sensitivity 0·98) and between Biosensor and ELISA (κ=0·60; sensitivity 0·94). Innovita (κ=0·47; sensitivity 0·93) and Runkun (κ=0·43; sensitivity 0·76) showed moderate agreement. An antigen-based retrospective algorithm applied to symptomatic patients showed 94·0% sensitivity and 91·0% specificity in the first 7 days after symptom onset. For asymptomatic participants, the algorithm showed a sensitivity of 34% (95% CI 23·0-44·0) and a specificity of 92·0% (88·0-96·0). INTERPRETATION: Rapid diagnostic tests had good overall sensitivity for diagnosing SARS-CoV-2 infection. Rapid diagnostic tests could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and onward viral transmission. FUNDING: Médecins Sans Frontières WACA and Médecins Sans Frontières OCG. TRANSLATIONS: For the French and Spanish translations of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/analysis , Asymptomatic Infections , COVID-19 Serological Testing , COVID-19/diagnosis , SARS-CoV-2/immunology , Feasibility Studies , Humans , Prospective Studies , Sensitivity and Specificity
17.
Aging Dis ; 12(3): 710-717, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1315005

ABSTRACT

In December 2019, the People's Republic of China and the World Health Organization first reported on a cluster of pneumonia with an unknown cause. Nine months later more than 1.4 million people have died from COVID 19. In this work, the effects of the COVID 19 pandemic on five nursing homes in Austria, which cared for 889 residents in the first half of 2020, were examined. The research question was whether the measures taken were appropriate to prevent an outbreak within the individual facilities. To detect previously unrecognized infections, the present study evaluated the prevalence of neutralizing antibodies against the SARS-CoV-2 virus in residents and employees of the nursing homes. Following the analysis of blood samples, the prospectively collected data was connected to data from screening examinations and data from contact tracing. The present study demonstrated an overall prevalence of neutralizing antibodies against the SARS-CoV-2 virus in nursing homes of 3.7%. Whereas the prevalence in those facilities that have never been hit by an outbreak is 0%, the prevalence in those facilities with an outbreak is up to 4.9%. Neutralizing antibodies against SARS-CoV-2 were detected in 35 persons. A retrospective analysis of all 5 included nursing homes demonstrated that upon regular clinical screening in combination with PCRs an infection with SARS-COV-2 was detected in 66 residents and 24 employees from different professional groups. In only 25 of the 35 persons with neutralizing antibodies against SARS-CoV-2 an infection was proven in advance. This study suggests that specific measures can prevent transmission within a health care facility. Nevertheless, the results also show that a risk reduction to 0% cannot be achieved. In preparation for further pandemic waves there is still the need to reduce the probability of a transmission in nursing homes with specific test strategies.

18.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200274, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309692

ABSTRACT

The dynamics of immunity are crucial to understanding the long-term patterns of the SARS-CoV-2 pandemic. Several cases of reinfection with SARS-CoV-2 have been documented 48-142 days after the initial infection and immunity to seasonal circulating coronaviruses is estimated to be shorter than 1 year. Using an age-structured, deterministic model, we explore potential immunity dynamics using contact data from the UK population. In the scenario where immunity to SARS-CoV-2 lasts an average of three months for non-hospitalized individuals, a year for hospitalized individuals, and the effective reproduction number after lockdown ends is 1.2 (our worst-case scenario), we find that the secondary peak occurs in winter 2020 with a daily maximum of 387 000 infectious individuals and 125 000 daily new cases; threefold greater than in a scenario with permanent immunity. Our models suggest that longitudinal serological surveys to determine if immunity in the population is waning will be most informative when sampling takes place from the end of the lockdown in June until autumn 2020. After this period, the proportion of the population with antibodies to SARS-CoV-2 is expected to increase due to the secondary wave. Overall, our analysis presents considerations for policy makers on the longer-term dynamics of SARS-CoV-2 in the UK and suggests that strategies designed to achieve herd immunity may lead to repeated waves of infection as immunity to reinfection is not permanent. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control/trends , Pandemics , SARS-CoV-2/pathogenicity , Basic Reproduction Number/statistics & numerical data , COVID-19/virology , Humans , United Kingdom/epidemiology
19.
J Occup Environ Med ; 63(3): 191-198, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1307590

ABSTRACT

OBJECTIVES: Define the seroprevalence and risk factors for SARS-CoV-2 antibodies in Arapahoe County, Colorado first responders (eg, law enforcement, human services, fire departments). METHODS: Two hundred sixty four first responders were enrolled June to July 2020. SARS-CoV-2 seropositivity was defined as detection of immunoglobulin G (IgG) antibodies to both spike receptor binding domain and nucleocapsid in venous blood by validated enzyme-linked immunosorbent assay. We compared risk factors for being seropositive versus seronegative. RESULTS: 4% (11/264) were SARS-CoV-2 seropositive. Seropositive participants were significantly more likely to have lung disease (% seropositive, % seronegative; P-value) (36%, 8%; P = 0.01), prior SARS-CoV-2/COVID-19 testing (36%, 8%; P ≤ 0.01), a prior positive result (18%, less than 1%), and to believe they previously had COVID-19 (64%, 15%; P < 0.01). Only 15% of those believing they had COVID-19 had anti-SARS-CoV-2 antibodies. CONCLUSIONS: Human services employees and individuals with lung disease are at SARS-CoV-2 exposure risk. Few individuals believed they had COVID-19 had prior exposure.


Subject(s)
COVID-19/epidemiology , Emergency Responders/statistics & numerical data , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/pathology , COVID-19/transmission , COVID-19 Serological Testing , Colorado/epidemiology , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Risk Factors , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies
20.
Lancet Glob Health ; 9(7): e925-e931, 2021 07.
Article in English | MEDLINE | ID: covidwho-1303720

ABSTRACT

BACKGROUND: Detection of anti-SARS-CoV-2 antibodies among people at risk of infection is crucial for understanding both the past transmission of COVID-19 and vulnerability of the population to continuing transmission and, when done serially, the intensity of ongoing transmission over an interval in a community. We aimed to estimate the seroprevalence of COVID-19 in a representative population-based cohort in Iquitos, one of the regions with the highest mortality rates from COVID-19 in Peru, where a devastating number of cases occurred in March, 2020. METHODS: We did a population-based study of SARS-CoV-2 transmission in Iquitos at two timepoints: July 13-18, 2020 (baseline), and Aug 13-18, 2020 (1-month follow-up). We obtained a geographically stratified representative sample of the city population using the 2017 census data, which was updated on Jan 20, 2020. We included people who were inhabitants of Iquitos since COVID-19 was identified in Peru (March 6, 2020) or earlier. We excluded people living in institutions, people receiving any pharmacological treatment for COVID-19, people with any contraindication for phlebotomy, and health workers or individuals living with an active health worker. We tested each participant for IgG and IgM anti-SARS-CoV-2 antibodies using the COVID-19 IgG/IgM Rapid Test (Zhejiang Orient Gene Biotech, China). We used survey analysis methods to estimate seroprevalence accounting for the sampling design effect and test performance characteristics. FINDINGS: We identified 726 eligible individuals and enrolled a total of 716 participants (99%), distributed across 40 strata (four districts, two sexes, and five age groups). We excluded ten individuals who: did not have consent from a parent or legal representative (n=3), had moved to Iquitos after March 6, 2020 (n=3), were in transit (n=2), or had respiratory symptoms (n=1). After adjusting for the study sampling effects and sensitivity and specificity of the test, we estimated a seroprevalence of 70% (95% CI 67-73) at baseline and 66% (95% CI 62-70) at 1 month of follow-up, with a test-retest positivity of 65% (95% CI 61-68), and an incidence of new exposures of 2% (95% CI 1-3). We observed significant differences in the seroprevalence between age groups, with participants aged 18-29 years having lower seroprevalence than those aged younger than 12 years (prevalence ratio 0·85 [95% CI 0·73-0·98]; p=0·029). INTERPRETATION: After the first epidemic peak, Iquitos had one of the highest rates of seroprevalence of anti-SARS-CoV-2 antibodies worldwide. Nevertheless, the city experienced a second wave starting in January, 2021, probably due to the emergence of the SARS-CoV-2 P1 variant, which has shown higher transmissibility and reinfection rates. FUNDING: Dirección Regional de Salud de Loreto (DIRESA), Loreto, Peru. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/immunology , Adolescent , Adult , Child , Cohort Studies , Female , Humans , Male , Middle Aged , Peru/epidemiology , Seroepidemiologic Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL