Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 516
Filter
1.
PLoS Pathog ; 16(10): e1008942, 2020 10.
Article in English | MEDLINE | ID: covidwho-2021974

ABSTRACT

Human metapneumovirus (hMPV) is a leading cause of viral respiratory infection in children, and can cause severe lower respiratory tract infection in infants, the elderly, and immunocompromised patients. However, there remain no licensed vaccines or specific treatments for hMPV infection. Although the hMPV fusion (F) protein is the sole target of neutralizing antibodies, the immunological properties of hMPV F remain poorly understood. To further define the humoral immune response to the hMPV F protein, we isolated two new human monoclonal antibodies (mAbs), MPV458 and MPV465. Both mAbs are neutralizing in vitro and were determined to target a unique antigenic site using competitive biolayer interferometry. We determined both MPV458 and MPV465 have higher affinity for monomeric hMPV F than trimeric hMPV F. MPV458 was co-crystallized with hMPV F, and the mAb primarily interacts with an alpha helix on the F2 region of the hMPV F protein. Surprisingly, the major epitope for MPV458 lies within the trimeric interface of the hMPV F protein, suggesting significant breathing of the hMPV F protein must occur for host immune recognition of the novel epitope. In addition, significant glycan interactions were observed with a somatically mutated light chain framework residue. The data presented identifies a novel epitope on the hMPV F protein for epitope-based vaccine design, and illustrates a new mechanism for human antibody neutralization of viral glycoproteins.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Pneumovirus/immunology , Antibodies, Neutralizing/pharmacology , Epitopes/immunology , Humans , Metapneumovirus/immunology , Paramyxoviridae Infections/virology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology
2.
PLoS One ; 16(4): e0250780, 2021.
Article in English | MEDLINE | ID: covidwho-1833531

ABSTRACT

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is the molecular target for many vaccines and antibody-based prophylactics aimed at bringing COVID-19 under control. Such a narrow molecular focus raises the specter of viral immune evasion as a potential failure mode for these biomedical interventions. With the emergence of new strains of SARS-CoV-2 with altered transmissibility and immune evasion potential, a critical question is this: how easily can the virus escape neutralizing antibodies (nAbs) targeting the spike RBD? To answer this question, we combined an analysis of the RBD structure-function with an evolutionary modeling framework. Our structure-function analysis revealed that epitopes for RBD-targeting nAbs overlap one another substantially and can be evaded by escape mutants with ACE2 affinities comparable to the wild type, that are observed in sequence surveillance data and infect cells in vitro. This suggests that the fitness cost of nAb-evading mutations is low. We then used evolutionary modeling to predict the frequency of immune escape before and after the widespread presence of nAbs due to vaccines, passive immunization or natural immunity. Our modeling suggests that SARS-CoV-2 mutants with one or two mildly deleterious mutations are expected to exist in high numbers due to neutral genetic variation, and consequently resistance to vaccines or other prophylactics that rely on one or two antibodies for protection can develop quickly -and repeatedly- under positive selection. Predicted resistance timelines are comparable to those of the decay kinetics of nAbs raised against vaccinal or natural antigens, raising a second potential mechanism for loss of immunity in the population. Strategies for viral elimination should therefore be diversified across molecular targets and therapeutic modalities.


Subject(s)
COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/genetics , COVID-19/metabolism , Epitopes/immunology , Evolution, Molecular , Humans , Immune Evasion/immunology , Models, Molecular , Neutralization Tests/methods , Peptidyl-Dipeptidase A/metabolism , Protein Binding/genetics , Protein Domains/genetics , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
3.
PLoS One ; 16(4): e0250319, 2021.
Article in English | MEDLINE | ID: covidwho-1833525

ABSTRACT

Projections of the stage of the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pandemic and local, regional and national public health policies to limit coronavirus spread as well as "reopen" cities and states, are best informed by serum neutralizing antibody titers measured by reproducible, high throughput, and statically credible antibody (Ab) assays. To date, a myriad of Ab tests, both available and FDA authorized for emergency, has led to confusion rather than insight per se. The present study reports the results of a rapid, point-in-time 1,000-person cohort study using serial blood donors in the New York City metropolitan area (NYC) using multiple serological tests, including enzyme-linked immunosorbent assays (ELISAs) and high throughput serological assays (HTSAs). These were then tested and associated with assays for neutralizing Ab (NAb). Of the 1,000 NYC blood donor samples in late June and early July 2020, 12.1% and 10.9% were seropositive using the Ortho Total Ig and the Abbott IgG HTSA assays, respectively. These serological assays correlated with neutralization activity specific to SARS-CoV-2. The data reported herein suggest that seroconversion in this population occurred in approximately 1 in 8 blood donors from the beginning of the pandemic in NYC (considered March 1, 2020). These findings deviate with an earlier seroprevalence study in NYC showing 13.7% positivity. Collectively however, these data demonstrate that a low number of individuals have serologic evidence of infection during this "first wave" and suggest that the notion of "herd immunity" at rates of ~60% or higher are not near. Furthermore, the data presented herein show that the nature of the Ab-based immunity is not invariably associated with the development of NAb. While the blood donor population may not mimic precisely the NYC population as a whole, rapid assessment of seroprevalence in this cohort and serial reassessment could aid public health decision making.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Blood Donors , COVID-19/immunology , Cohort Studies , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , New York City/epidemiology , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Seroconversion/physiology , Seroepidemiologic Studies , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology
4.
J Am Soc Nephrol ; 32(9): 2147-2152, 2021 09.
Article in English | MEDLINE | ID: covidwho-1708655

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with a high rate of mortality in patients with ESKD, and vaccination is hoped to prevent infection. METHODS: Between January 18 and February 24, 2021, 225 kidney transplant recipients (KTRs) and 45 patients on hemodialysis (HDPs) received two injections of mRNA BNT162b2 vaccine. The postvaccinal humoral and cellular response was explored in the first 45 KTRs and ten HDPs. RESULTS: After the second dose, eight HDPs (88.9%) and eight KTRs (17.8%) developed antispike SARS-CoV-2 antibodies (P<0.001). Median titers of antibodies in responders were 1052 AU/ml (IQR, 515-2689) in HDPs and 671 AU/ml (IQR, 172-1523) in KTRs (P=0.40). Nine HDPs (100%) and 26 KTRs (57.8%) showed a specific T cell response (P=0.06) after the second injection. In responders, median numbers of spike-reactive T cells were 305 SFCs per 106 CD3+ T cells (IQR, 95-947) in HDPs and 212 SFCs per 106 CD3+ T cells (IQR, 61-330) in KTRs (P=0.40). In KTRs, the immune response to BNT162b2 seemed influenced by the immunosuppressive regimen, particularly tacrolimus or belatacept. CONCLUSION: Immunization with BNT162b2 seems more efficient in HDPs, indicating that vaccination should be highly recommended in these patients awaiting a transplant. However, the current vaccinal strategy for KTRs may not provide effective protection against COVID-19 and will likely need to be improved.


Subject(s)
Antibodies, Viral/biosynthesis , COVID-19 Vaccines/pharmacology , COVID-19/immunology , Kidney Transplantation , Renal Dialysis , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Aged , COVID-19/complications , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Cohort Studies , Female , Humans , Immunocompromised Host , Immunosuppressive Agents/adverse effects , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/therapy , Kidney Transplantation/adverse effects , Male , Middle Aged , Pandemics , RNA, Messenger/genetics , Retrospective Studies , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Transplant Recipients
5.
J Infect Dis ; 2021 Mar 16.
Article in English | MEDLINE | ID: covidwho-1706826

ABSTRACT

Immunoglobulin (IG) lots (N=176) released since March 2020 were tested for SARS-CoV-2 neutralizing antibodies, with first positive results for September 2020 lots, mean = 1.7 IU/ml, 46% of lots positive. From there, values steadily increased, in correlation with the cumulative COVID-19 incidence, to reach a mean of 31.2 IU/ml and 93% of lots positive by January 2021. Extrapolating the correlation, IGs could reach an anti-SARS-CoV-2 potency of ~345 IU/ml by July 2021. At that stage, prophylactic IG treatment for primary/secondary immunodeficiency could contain similar doses of anti-SARS-CoV-2 as convalescent plasma which is used for treatment of COVID-19.

6.
Lancet ; 397(10289): 2049-2059, 2021 May 29.
Article in English | MEDLINE | ID: covidwho-1671320

ABSTRACT

BACKGROUND: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. METHODS: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. FINDINGS: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93-1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94-1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93-1·05; p=0·79). INTERPRETATION: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. FUNDING: UK Research and Innovation (Medical Research Council) and National Institute of Health Research.


Subject(s)
COVID-19/therapy , Hospital Mortality , Length of Stay/statistics & numerical data , Aged , Aged, 80 and over , Antibodies, Viral , COVID-19/mortality , Female , Humans , Immunization, Passive/methods , Immunization, Passive/mortality , Male , Middle Aged , Pandemics , Respiration, Artificial/statistics & numerical data , SARS-CoV-2 , Treatment Outcome , United Kingdom/epidemiology
7.
Clin Infect Dis ; 74(2): 327-334, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1662105

ABSTRACT

Convalescent plasma (CP) have been used for treatment of coronavirus disease 2019 (COVID-19), but their effectiveness varies significantly. Moreover, the impact of CP treatment on the composition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in COVID-19 patients and antibody markers that differentiate between those who survive and those who succumb to the COVID-19 disease are not well understood. Herein, we performed longitudinal analysis of antibody profile on 115 sequential plasma samples from 16 hospitalized COVID-19 patients treated with either CP or standard of care, only half of them survived. Differential antibody kinetics was observed for antibody binding, immunoglobulin M/immunoglobulin G/immunoglobulin A (IgM/IgG/IgA) distribution, and affinity maturation in "survived" versus "fatal" COVID-19 patients. Surprisingly, CP treatment did not predict survival. Strikingly, marked decline in neutralization titers was observed in the fatal patients prior to death, and convalescent plasma treatment did not reverse this trend. Furthermore, irrespective of CP treatment, higher antibody affinity to the SARS-CoV-2 prefusion spike was associated with survival outcome. Additionally, sustained elevated IgA response was associated with fatal outcome in these COVID-19 patients. These findings propose that treatment of COVID-19 patients with convalescent plasma should be carefully targeted, and effectiveness of treatment may depend on the clinical and immunological status of COVID-19 patients, as well as the quality of the antibodies in the convalescent plasma.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive
8.
Clin Infect Dis ; 73(12): 2155-2162, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1592795

ABSTRACT

BACKGROUND: Assessing the duration of immunity following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a first priority to gauge the degree of protection following infection. Such knowledge is lacking, especially in the general population. Here, we studied changes in immunoglobulin isotype seropositivity and immunoglobulin G (IgG) binding strength of SARS-CoV-2-specific serum antibodies up to 7 months following onset of symptoms in a nationwide sample. METHODS: Participants from a prospective representative serological study in the Netherlands were included based on IgG seroconversion to the spike S1 protein of SARS-CoV-2 (N = 353), with up to 3 consecutive serum samples per seroconverted participant (N = 738). Immunoglobulin M (IgM), immunoglobulin A (IgA), and IgG antibody concentrations to S1, and increase in IgG avidity in relation to time since onset of disease symptoms, were determined. RESULTS: While SARS-CoV-2-specific IgM and IgA antibodies declined rapidly after the first month after disease onset, specific IgG was still present in 92% (95% confidence interval [CI], 89%-95%) of the participants after 7 months. The estimated 2-fold decrease of IgG antibodies was 158 days (95% CI, 136-189 days). Concentrations were sustained better in persons reporting significant symptoms compared to asymptomatic persons or those with mild upper respiratory complaints only. Similarly, avidity of IgG antibodies for symptomatic persons showed a steeper increase over time compared with persons with mild or no symptoms (P = .022). CONCLUSIONS: SARS-CoV-2-specific IgG antibodies persist and show increasing avidity over time, indicative of underlying immune maturation. These data support development of immune memory against SARS-CoV-2, providing insight into protection of the general unvaccinated part of the population. CLINICAL TRIALS REGISTRATION: NL8473 (the Dutch trial registry).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Netherlands/epidemiology , Prospective Studies
9.
Int Immunol ; 33(10): 515-519, 2021 09 25.
Article in English | MEDLINE | ID: covidwho-1574756

ABSTRACT

Blockade of IL-6 function by an anti-IL-6 receptor (IL-6R) antibody (tocilizumab, trade name Actemra) has been shown to be effective for the treatment of chronic autoimmune inflammatory diseases including rheumatoid arthritis. Interestingly, treatment with tocilizumab has also been found to alleviate the cytokine storm induced by chimeric antigen receptor (CAR)-T-cell therapy. Patients with serious cases of coronavirus disease 2019 (COVID-19) exhibit cytokine release syndrome (CRS), which suggested that tocilizumab might be an effective therapeutic for serious cases of COVID-19. In the first part of this short review, the therapeutic effect of tocilizumab for the disease induced by IL-6 overproduction is described. CRS induced by CAR-T-cell therapy and COVID-19 is then discussed.


Subject(s)
Arthritis/immunology , COVID-19/immunology , Interleukin-6/immunology , Receptors, Chimeric Antigen/immunology , SARS-CoV-2/immunology , Cell- and Tissue-Based Therapy/methods , Cytokine Release Syndrome/immunology , Humans
11.
Clin Infect Dis ; 73(11): e4082-e4089, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559187

ABSTRACT

BACKGROUND: Leronlimab, a monoclonal antibody blocker of C-C chemokine receptor type 5 originally developed to treat human immunodeficiency virus infection, was administered as an open-label compassionate-use therapeutic for coronavirus disease 2019 (COVID-19). METHODS: Twenty-three hospitalized severe/critical COVID-19 patients received 700 mg leronlimab subcutaneously, repeated after 7 days in 17 of 23 patients still hospitalized. Eighteen of 23 received other experimental treatments, including convalescent plasma, hydroxychloroquine, steroids, and/or tocilizumab. Five of 23 received leronlimab after blinded, placebo-controlled trials of remdesivir, sarilumab, selinexor, or tocilizumab. Outcomes and results were extracted from medical records. RESULTS: Mean age was 69.5 ±â€…14.9 years; 20 had significant comorbidities. At baseline, 22 were receiving supplemental oxygen (3 high flow, 7 mechanical ventilation). Blood showed markedly elevated inflammatory markers (ferritin, D-dimer, C-reactive protein) and an elevated neutrophil-to-lymphocyte ratio. By day 30 after initial dosing, 17 were recovered, 2 were still hospitalized, and 4 had died. Of the 7 intubated at baseline, 4 were fully recovered off oxygen, 2 were still hospitalized, and 1 had died. CONCLUSIONS: Leronlimab appeared safe and well tolerated. The high recovery rate suggested benefit, and those with lower inflammatory markers had better outcomes. Some, but not all, patients appeared to have dramatic clinical responses, indicating that unknown factors may determine responsiveness to leronlimab. Routine inflammatory and cell prognostic markers did not markedly change immediately after treatment, although interleukin-6 tended to fall. In some persons, C-reactive protein clearly dropped only after the second leronlimab dose, suggesting that a higher loading dose might be more effective. Future controlled trials will be informative.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized , COVID-19/therapy , HIV Antibodies , Humans , Immunization, Passive , Middle Aged , SARS-CoV-2 , Treatment Outcome
12.
J Nippon Med Sch ; 88(4): 380-383, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1551292

ABSTRACT

We assessed the association of severity of coronavirus disease 2019 (COVID-19) with acute respiratory syndrome coronavirus 2 (SARS-CoV-2) load, IgG antibody level, and prognostic indicators.Twenty-one patients hospitalized with COVID-19 were classified as having severe or mild disease on the basis of average respiratory rate during hospitalization (severe: ≥22 breaths/min; mild: <22 breaths/min). Viral load in nasopharyngeal samples, blood levels of C-reactive protein (CRP), lymphocytes, and D-dimer on admission and plasma immunoglobulin G (IgG) index on Day 7±2 after symptom onset were compared in relation to disease severity. Seven patients had severe disease and 14 had mild disease. Those with severe disease had a significantly higher IgG index (median: 3.75 vs 0.56, p=0.01) and CRP (median: 8.6 vs 1.0 mg/dL, p<0.001) and D-dimer levels (median: 1.65 vs 0.75 µg/mL; p=0.002) and a significantly lower lymphocyte count (median: 1,176 vs 666 cells/µL, p=0.005) and viral load (median: 8.7×106 vs 2.3×104 copies/mL, p=0.005). Furthermore, time from symptom onset to virus disappearance was significantly longer in severe patients (median: 24 vs 17 days, p=0.03). A high IgG index in the early phase of the disease was associated with severe disease and might serve as a prognostic indicator.


Subject(s)
Antibodies, Viral/blood , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , COVID-19/diagnosis , Immunoglobulin G/blood , SARS-CoV-2/pathogenicity , Viral Load , Adult , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/drug therapy , COVID-19/therapy , COVID-19/virology , Female , Hospitalization , Host-Pathogen Interactions , Humans , Japan , Male , Middle Aged , Oxygen Inhalation Therapy , Predictive Value of Tests , Prognosis , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Severity of Illness Index , Time Factors
13.
J Clin Med ; 10(8)2021 Apr 09.
Article in English | MEDLINE | ID: covidwho-1526828

ABSTRACT

A novel coronavirus-Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2)-outbreak correlated with the global coronavirus disease 2019 (COVID-19) pandemic was declared by the WHO in March 2020, resulting in numerous counted cases attributed to SARS-CoV-2 worldwide. Herein, we discuss current knowledge on the available therapy options for patients diagnosed with COVID-19. Based on available scientific data, we present an overview of solutions in COVID-19 management by use of drugs, vaccines and antibodies. Many questions with non-conclusive answers on the measures for the management of the COVID-19 pandemic and its impact on health still exist-i.e., the actual infection percentage of the population, updated precise mortality data, variability in response to infection by the population, the nature of immunity and its duration, vaccine development issues, a fear that science might end up with excessive promises in response to COVID-19-and were raised among scientists. Indeed, science may or may not deliver results in real time. In the presented paper we discuss some consequences of disease, its detection and serological tests, some solutions to disease prevention and management, pitfalls and obstacles, including vaccination. The presented ideas and data herein are meant to contribute to the ongoing debate on COVID-19 without pre-selection of available information.

14.
Clin Infect Dis ; 73(10): 1768-1775, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1522134

ABSTRACT

BACKGROUND: We performed a population-based study to describe the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on pregnancy outcomes. METHODS: This prospective, population-based study included pregnant women who consecutively presented at first/second trimester visits or at delivery at 3 hospitals in Barcelona, Spain. SARS-CoV-2 antibodies (immunoglobulin [Ig] G and IgM/IgA) were measured in all participants, and nasopharyngeal real-time polymerase chain reaction (RT-PCR) was performed at delivery. The primary outcome was a composite of pregnancy complications in SARS-CoV-2-positive vs negative women that included miscarriage, preeclampsia, preterm delivery, perinatal death, small-for-gestational-age newborn, or neonatal admission. Secondary outcomes were components of the primary outcome plus abnormal fetal growth, malformation, or intrapartum fetal distress. Outcomes were also compared between positive symptomatic and positive asymptomatic SARS-CoV-2 women. RESULTS: Of 2225 pregnant women, 317 (14.2%) were positive for SARS-CoV-2 antibodies (n = 314, 99.1%) and/or RT-PCR (n = 36, 11.4%). Among positive women, 217 (68.5%) were asymptomatic, 93 (29.3%) had mild coronavirus disease 2019 (COVID-19), and 7 (2.2%) had pneumonia, of whom 3 required intensive care unit admission. In women with and without SARS-CoV-2 infection, the primary outcome occurred in 43 (13.6%) and 268 (14%), respectively (risk difference, -0.4%; 95% confidence interval, -4.1% to 4.1). Compared with noninfected women, those with symptomatic COVID-19 had increased rates of preterm delivery (7.2% vs 16.9%, P = .003) and intrapartum fetal distress (9.1% vs 19.2%, P = .004), while asymptomatic women had rates that were similar to those of noninfected cases. Among 143 fetuses from infected mothers, none had anti-SARS-CoV-2 IgM/IgA in cord blood. CONCLUSIONS: The overall rate of pregnancy complications in women with SARS-CoV-2 infection was similar to that of noninfected women. However, symptomatic COVID-19 was associated with modest increases in preterm delivery and intrapartum fetal distress.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Female , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Outcome/epidemiology , Prospective Studies , SARS-CoV-2
15.
ACS Infect Dis ; 7(6): 1369-1388, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1493010

ABSTRACT

The SARS-CoV-2 outbreak that emerged at the end of 2019 has affected more than 58 million people with more than 1.38 million deaths and has had an incalculable impact on the world . Extensive prevention and treatment measures have been implemented since the pandemic. In this Review, we summarize current understanding on the source, transmission characteristics, and pathogenic mechanism of SARS-CoV-2. We also detail the recent development of diagnostic methods and potential treatment strategies of COVID-19 with focus on the ongoing clinical trials of antibodies, vaccines, and inhibitors for combating the emerging coronavirus.


Subject(s)
COVID-19 , Vaccines , Humans , Pandemics , SARS-CoV-2
16.
Engineering (Beijing) ; 7(7): 958-965, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1482579

ABSTRACT

The longitudinal immunologic status of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients and its association with the clinical outcome are barely known. Thus, we sought to analyze the temporal profiles of specific antibodies, as well as the associations between the antibodies, proinflammatory cytokines, and survival of patients with coronavirus disease 2019 (COVID-19). A total of 1830 laboratory-confirmed COVID-19 cases were recruited. The temporal profiles of the virus, antibodies, and cytokines of the patients until 12 weeks since illness onset were fitted by the locally weighted scatter plot smoothing method. The mediation effect of cytokines on the associations between antibody responses and survival were explored by mediation analysis. Of the 1830 patients, 1435 were detectable for SARS-CoV-2, while 395 were positive in specific antibodies only. Of the 1435 patients, 2.4% presented seroconversion for neither immunoglobulin G (IgG) nor immunoglobulin M (IgM) during hospitalization. The seropositive rates of IgG and IgM were 29.6% and 48.1%, respectively, in the first week, and plateaued within five weeks. For the patients discharged from the hospital, the IgM decreased slowly, while high levels of IgG were maintained at around 188 AU·mL-1 for the 12 weeks since illness onset. In contrast, in the patients who subsequently died, IgM declined rapidly and IgG dropped to 87 AU·mL-1 at the twelfth week. Elevated interleukin-6, interleukin-8, interleukin-10, interleukin-1ß, interleukin-2R, and tumor necrosis factor-α levels were observed in the deceased patients in comparison with the discharged patients, and 12.5% of the association between IgG level and mortality risk was mediated by these cytokines. Our study deciphers the temporal profiles of SARS-CoV-2-specific antibodies within the 12 weeks since illness onset and indicates the protective effect of antibody response on survival, which may help to guide prognosis estimation.

17.
Ann Intern Med ; 174(6): 811-821, 2021 06.
Article in English | MEDLINE | ID: covidwho-1456489

ABSTRACT

BACKGROUND: The clinical significance of the antibody response after SARS-CoV-2 infection remains unclear. PURPOSE: To synthesize evidence on the prevalence, levels, and durability of detectable antibodies after SARS-CoV-2 infection and whether antibodies to SARS-CoV-2 confer natural immunity. DATA SOURCES: MEDLINE (Ovid), Embase, CINAHL, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, World Health Organization global literature database, and Covid19reviews.org from 1 January through 15 December 2020, limited to peer-reviewed publications available in English. STUDY SELECTION: Primary studies characterizing the prevalence, levels, and duration of antibodies in adults with SARS-CoV-2 infection confirmed by reverse transcriptase polymerase chain reaction (RT-PCR); reinfection incidence; and unintended consequences of antibody testing. DATA EXTRACTION: Two investigators sequentially extracted study data and rated quality. DATA SYNTHESIS: Moderate-strength evidence suggests that most adults develop detectable levels of IgM and IgG antibodies after infection with SARS-CoV-2 and that IgG levels peak approximately 25 days after symptom onset and may remain detectable for at least 120 days. Moderate-strength evidence suggests that IgM levels peak at approximately 20 days and then decline. Low-strength evidence suggests that most adults generate neutralizing antibodies, which may persist for several months like IgG. Low-strength evidence also suggests that older age, greater disease severity, and presence of symptoms may be associated with higher antibody levels. Some adults do not develop antibodies after SARS-CoV-2 infection for reasons that are unclear. LIMITATIONS: Most studies were small and had methodological limitations; studies used immunoassays of variable accuracy. CONCLUSION: Most adults with SARS-CoV-2 infection confirmed by RT-PCR develop antibodies. Levels of IgM peak early in the disease course and then decline, whereas IgG peaks later and may remain detectable for at least 120 days. PRIMARY FUNDING SOURCE: Agency for Healthcare Research and Quality. (PROSPERO: CRD42020207098).


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19/immunology , Pneumonia, Viral/immunology , SARS-CoV-2/immunology , Antibody Specificity/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
18.
Biochem Biophys Res Commun ; 2020 Feb 17.
Article in English | MEDLINE | ID: covidwho-1454030

ABSTRACT

2019-nCoV is a newly identified coronavirus with high similarity to SARS-CoV. We performed a structural analysis of the receptor binding domain (RBD) of spike glycoprotein responsible for entry of coronaviruses into host cells. The RBDs from the two viruses share 72% identity in amino acid sequences, and molecular simulation reveals highly similar ternary structures. However, 2019-nCoV has a distinct loop with flexible glycyl residues replacing rigid prolyl residues in SARS-CoV. Molecular modeling revealed that 2019-nCoV RBD has a stronger interaction with angiotensin converting enzyme 2 (ACE2). A unique phenylalanine F486 in the flexible loop likely plays a major role because its penetration into a deep hydrophobic pocket in ACE2. ACE2 is widely expressed with conserved primary structures throughout the animal kingdom from fish, amphibians, reptiles, birds, to mammals. Structural analysis suggests that ACE2 from these animals can potentially bind RBD of 2019-nCoV, making them all possible natural hosts for the virus. 2019-nCoV is thought to be transmitted through respiratory droplets. However, since ACE2 is predominantly expressed in intestines, testis, and kidney, fecal-oral and other routes of transmission are also possible. Finally, antibodies and small molecular inhibitors that can block the interaction of ACE2 with RBD should be developed to combat the virus.

20.
Res Sq ; 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-1417405

ABSTRACT

Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.

SELECTION OF CITATIONS
SEARCH DETAIL