Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 442
Filter
1.
J Pharm Drug Res ; 3(2): 341-361, 2020.
Article in English | MEDLINE | ID: covidwho-1989782

ABSTRACT

A novel coronavirus designated as SARS-CoV-2 in February 2020 by World Health organization (WHO) was identified as main cause of SARS like pneumonia cases in Wuhan city in Hubei Province of China at the end of 2019. This been recently declared as Global Pandemic by WHO. There is a global emergency to identify potential drugs to treat the SARS-CoV-2. Currently, there is no specific treatment against the new virus. There is a urgency to identifying potential antiviral agents to combat the disease is urgently needed. An effective and quick approach is to test existing antiviral drugs against. Whole genome analysis and alignment carried out using BLASTn, SMART BLAST and WebDSV 2.0 had shown more than 238 ORF's coding for proteins mostly origin from Bat SARS coronavirus and root genomic origin from Archaea. Molecular docking results against protein targets Furin, papain like proteases, RdRp and Spike glycoprotein had shown paritaprevir, ritonavir, entecavir and chloroquine derivatives are the best drugs to inhibit multi targets of coronavirus infection including natural compounds corosolic acid, baicalin and glycyrrhizic acid with minimal inhibitory concentrations. Thus we propose use of paritaprevir, entecavir, ritonavir and chloroquine derivatives as best drug combination along with niacinamide, folic acid and zinc supplements to treat novel coronavirus infection. We also propose use of plant protease inhibitors (PI's) and Anti-IL8, IL-6, IL-2 as future drug models against coronavirus.

2.
J Ayurveda Integr Med ; 13(1): 100413, 2022.
Article in English | MEDLINE | ID: covidwho-1838953

ABSTRACT

BACKGROUND: Outbreak of Corona Virus Disease in late 2019 (COVID-19) has become a pandemic global Public health emergency. Since there is no approved anti-viral drug or vaccine declared for the disease and investigating existing drugs against the COVID-19. OBJECTIVE: AYUSH-64 is an Ayurvedic formulation, developed and patented by Central Council of Research in Ayurvedic Sciences, India, has been in clinical use as anti-malarial, anti-inflammatory, anti-pyretic drug for few decades. Thus, the present study was undertaken to evaluate AYUSH-64 compounds available in this drug against Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) Main Protease (Mpro; PDB ID: 6LU7) via in silico techniques. MATERIALS AND METHODS: Different molecular docking software's of Discovery studio and Auto Dock Vina were used for drugs from selected AYUSH-64 compounds against SARS-CoV-2. We also conducted 100 ns period of molecular dynamics simulations with Desmond and further MM/GBSA for the best complex of AYUSH-64 with Mpro of SARS-CoV-2. RESULTS: Among 36 compounds of four ingredients of AYUSH-64 screened, 35 observed to exhibits good binding energies than the published positive co-crystal compound of N3 pepetide. The best affinity and interactions of Akuammicine N-Oxide (from Alstonia scholaris) towards the Mpro with binding energy (AutoDock Vina) of -8.4 kcal/mol and Discovery studio of Libdock score of 147.92 kcal/mol. Further, molecular dynamics simulations with MM-GBSA were also performed for Mpro- Akuammicine N-Oxide docked complex to identify the stability, specific interaction between the enzyme and the ligand. Akuammicine N-Oxide is strongly formed h-bonds with crucial Mpro residues, Cys145, and His164. CONCLUSION: The results provide lead that, the presence of Mpro- Akuammicine N-Oxide with highest Mpro binding energy along with other 34 chemical compounds having similar activity as part of AYUSH-64 make it a suitable candidate for repurposing to management of COVID-19 by further validating through experimental, clinical studies.

3.
Viruses ; 12(5)2020 05 24.
Article in English | MEDLINE | ID: covidwho-1726014

ABSTRACT

Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine (HCQ) is a drug approved by several countries to treat malaria and immune-mediated diseases in humans, and its antiviral effects on other viral infections (e.g., SARS-CoV-2, dengue virus) have been confirmed. We investigated whether HCQ in association with interferon-ω (IFN-ω) is effective for FIPV in vitro. A total of 100 µM of HCQ significantly inhibited the replication of types I and II FIPV. Interestingly, the combination of 100 µM of HCQ and 104 U/mL of recombinant feline IFN-ω (rfIFN-ω, veterinary registered drug) increased its antiviral activity against type I FIPV infection. Our study suggested that HCQ and rfIFN-ω are applicable for treatment of FIP. Further clinical studies are needed to verify the combination of HCQ and rIFN-ω will be effective and safe treatment for cats with FIP.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus, Feline/drug effects , Hydroxychloroquine/pharmacology , Interferon Type I/pharmacology , Analysis of Variance , Animals , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , Cats , Cell Line/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coronavirus, Feline/pathogenicity , Drug Combinations , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Fluorescent Antibody Technique/veterinary , Hydroxychloroquine/therapeutic use , Hydroxychloroquine/toxicity , Interferon Type I/therapeutic use , Interferon Type I/toxicity , Virulence
4.
Viruses ; 12(5)2020 04 26.
Article in English | MEDLINE | ID: covidwho-1726007

ABSTRACT

In January 2020, Chinese health agencies reported an outbreak of a novel coronavirus-2 (CoV-2) which can lead to severe acute respiratory syndrome (SARS). The virus, which belongs to the coronavirus family (SARS-CoV-2), was named coronavirus disease 2019 (COVID-19) and declared a pandemic by the World Health Organization (WHO). Full-length genome sequences of SARS-CoV-2 showed 79.6% sequence identity to SARS-CoV, with 96% identity to a bat coronavirus at the whole-genome level. COVID-19 has caused over 133,000 deaths and there are over 2 million total confirmed cases as of April 15th, 2020. Current treatment plans are still under investigation due to a lack of understanding of COVID-19. One potential mechanism to slow disease progression is the use of antiviral drugs to either block the entry of the virus or interfere with viral replication and maturation. Currently, antiviral drugs, including chloroquine/hydroxychloroquine, remdesivir, and lopinavir/ritonavir, have shown effective inhibition of SARS-CoV-2 in vitro. Due to the high dose needed and narrow therapeutic window, many patients are experiencing severe side effects with the above drugs. Hence, repurposing these drugs with a proper formulation is needed to improve the safety and efficacy for COVID-19 treatment. Extracellular vesicles (EVs) are a family of natural carriers in the human body. They play a critical role in cell-to-cell communications. EVs can be used as unique drug carriers to deliver protease inhibitors to treat COVID-19. EVs may provide targeted delivery of protease inhibitors, with fewer systemic side effects. More importantly, EVs are eligible for major aseptic processing and can be upscaled for mass production. Currently, the FDA is facilitating applications to treat COVID-19, which provides a very good chance to use EVs to contribute in this combat.


Subject(s)
Coronavirus Infections/drug therapy , Drug Repositioning , Extracellular Vesicles/chemistry , HIV Protease Inhibitors/administration & dosage , Pneumonia, Viral/drug therapy , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Drug Approval , Drug Delivery Systems , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2
5.
Pharmaceuticals (Basel) ; 13(3)2020 Mar 21.
Article in English | MEDLINE | ID: covidwho-1725914

ABSTRACT

The COVID-19 coronavirus is currently spreading around the globe with limited treatment options available. This article presents the rationale for potentially using old drugs (emetine, other ipecac alkaloids or analogues) that have been used to treat amoebiasis in the treatment of COVID-19. Emetine had amongst the lowest reported half-maximal effective concentration (EC50) from over 290 agents screened for the Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) coronaviruses. While EC50 concentrations of emetine are achievable in the blood, studies show that concentrations of emetine can be almost 300 times higher in the lungs. Furthermore, based on the relative EC50s of emetine towards the coronaviruses compared with Entamoeba histolytica, emetine could be much more effective as an anti-coronavirus agent than it is against amoebiasis. This paper also discusses the known side effects of emetine and related compounds, how those side effects can be managed, and the optimal method of administration for the potential treatment of COVID-19. Given the serious and immediate threat that the COVID-19 coronavirus poses, our long history with emetine and the likely ability of emetine to reach therapeutic concentrations within the lungs, ipecac, emetine, and other analogues should be considered as potential treatment options, especially if in vitro studies confirm viral sensitivity.

6.
J Incl Phenom Macrocycl Chem ; 101(1-2): 77-89, 2021.
Article in English | MEDLINE | ID: covidwho-1681296

ABSTRACT

While the world is in search of a vaccine that can cure COVID-19 disease, favipiravir is the most commonly used antiviral drug in the treatment of patients during the pandemic process. In this study, we investigated the host-guest interaction between the popular supramolecule calix[4]arene derivatives and the favipiravir drug by using the DFT (Density Functional Theory) method. The B3LYP hybrid method and 6-31G (d,p) basis set were utilized to determine the optimized structures of the host and guest molecules and their complexes. The negative adsorption energy (∆E) and adsorption enthalpy (∆H) calculated for the complexes formed between calix[4]arene compounds and favipiravir drug molecule mentioned that adsorption of favipiravir molecule was an exothermic process on calix[4]arene structures. On the other hand, among the calixarene derivatives in the study, Gibbs free energy change (∆G) value for the adsorption was only negative on calix[4]arene4 molecule. The infrared spectroscopy (IR) calculations were performed by examining the C=O, O-H and NH2 vibrational frequencies to see the adsorption behavior in the favipiravir-calix[4]arene complex. After adsorption of the favipiravir molecule, HOMO-LUMO gap values decreased significantly for the structures and therefore electrical conductivity increased proportionally. In addition, sensor response factors, Fermi energy levels and workfunction changes of calix[4]arene derivatives were calculated and examined. Charge transfer between the four calix[4]arene compounds and the favipiravir molecule has occurred after adsorption. This attributes that calix[4]arene derivatives can be used as a well-suited favipiravir sensor (electronic and workfunction) and adsorbent at room temperature. Based on the calculations made to see the solvent effect on the adsorption of favipiravir it was determined that it did not affect the interaction between the drug molecule and the calix[4]arene compound too much and the adsorption energy turned into a slightly less negative value.

7.
J Biomol Struct Dyn ; 40(1): 348-360, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1597295

ABSTRACT

The novel SARS-CoV-2 is the etiological agent causing the Coronavirus disease 2019 (COVID-19), which continues to become an inevitable pandemic outbreak. Over a short span of time, the structures of therapeutic target proteins for SARS-CoV-2 were identified based on the homology modelled structure of similar virus, SARS-CoV that transmitted rapidly in 2003. Since the outset of the disease, the research community has been looking for a potential drug lead. Out of all the known resolved structures related to SARS-CoV-2; 3-chymotrypsin (3 C) like protease (3CLpro) is considered as an attractive anti-viral drug compound on the grounds of its role in viral replication and probable non-interactive competency to bind to any viral host protein. To the best of our knowledge, till date only one compound has been identified and tested in-vitro as a potent inhibitor of 3CLpro protein, addressed as N3 (PubChem Compound CID: 6323191) and is known to bind irreversibly to 3CLpro suppressing its activity. Using computational approach, we intend to identify a probable natural fungal metabolite to interact and inhibit 3CLpro. Here after performing docking and molecular dynamics of various small molecules derived as a secondary metabolite from fungi, we propose Flaviolin as potent inhibitor of 3CLpro of novel Coronavirus SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Fungi , Humans , Molecular Docking Simulation , Naphthoquinones , Protease Inhibitors , SARS-CoV-2
8.
Mini Rev Med Chem ; 21(17): 2530-2543, 2021.
Article in English | MEDLINE | ID: covidwho-1504184

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus strain and the causative agent of COVID-19 was emerged in Wuhan, China, in December 2019 [1]. This pandemic situation and magnitude of suffering have led to global effort to find out effective measures for discovery of new specific drugs and vaccines to combat this deadly disease. In addition to many initiatives to develop vaccines for protective immunity against SARS-CoV-2, some of which are at various stages of clinical trials, researchers worldwide are currently using available conventional therapeutic drugs with the potential to combat the disease effectively in other viral infections and it is believed that these antiviral drugs could act as a promising immediate alternative. Remdesivir (RDV), a broad-spectrum anti-viral agent, initially developed for the treatment of Ebola virus (EBOV) and known to showed promising efficiency in in vitro and in vivo studies against SARS and MERS coronaviruses, is now being investigated against SARS-CoV-2. On May 1, 2020, The U.S. Food and Drug Administration (FDA) granted Emergency Use Authorization (EUA) for RDV to treat COVID- 19 patients [2]. A number of multicentre clinical trials are on-going to check the safety and efficacy of RDV for the treatment of COVID-19. Results of published double blind, and placebo-controlled trial on RDV against SARS-CoV-2, showed that RDV administration led to faster clinical improvement in severe COVID-19 patients compared to placebo. This review highlights the available knowledge about RDV as a therapeutic drug for coronaviruses and its preclinical and clinical trials against COVID-19.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/drug therapy , SARS-CoV-2/drug effects , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/adverse effects , Alanine/pharmacology , Alanine/therapeutic use , Animals , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Humans , Randomized Controlled Trials as Topic
9.
Biomol NMR Assign ; 15(2): 335-340, 2021 10.
Article in English | MEDLINE | ID: covidwho-1442184

ABSTRACT

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.


Subject(s)
5' Untranslated Regions , Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2/genetics , Inverted Repeat Sequences/genetics
10.
Acta Pharm Sin B ; 11(9): 2850-2858, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1415197

ABSTRACT

COVID-19 pandemic caused by SARS-CoV-2 infection severely threatens global health and economic development. No effective antiviral drug is currently available to treat COVID-19 and any other human coronavirus infections. We report herein that a macrolide antibiotic, carrimycin, potently inhibited the cytopathic effects (CPE) and reduced the levels of viral protein and RNA in multiple cell types infected by human coronavirus 229E, OC43, and SARS-CoV-2. Time-of-addition and pseudotype virus infection studies indicated that carrimycin inhibited one or multiple post-entry replication events of human coronavirus infection. In support of this notion, metabolic labelling studies showed that carrimycin significantly inhibited the synthesis of viral RNA. Our studies thus strongly suggest that carrimycin is an antiviral agent against a broad-spectrum of human coronaviruses and its therapeutic efficacy to COVID-19 is currently under clinical investigation.

11.
Clin Infect Dis ; 73(6): e1397-e1401, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1412539

ABSTRACT

Recent case studies have highlighted the fact that certain immunocompromised individuals are at risk for prolonged SARS-CoV-2 replication, intrahost viral evolution of multiply-mutated variants, and poor clinical outcomes. The immunologic determinants of this risk, the duration of infectiousness, and optimal treatment and prevention strategies in immunocompromised hosts are ill defined. Of additional concern is the widespread use of immunosuppressive medications to treat COVID-19, which may enhance and prolong viral replication in the context of immunodeficiency. We outline the rationale for 4 interrelated approaches to usher in an era of evidence-based medicine for optimal management of immunocompromised patients with COVID-19: multicenter pathogenesis and outcomes studies to relate the risk of severe disease to the type and degree of immunodeficiency, studies to evaluate immunologic responses to SARS-CoV-2 vaccines, studies to evaluate the efficacy of monoclonal antibodies for primary prophylaxis, and clinical trials of novel antiviral agents for the treatment of COVID-19.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , COVID-19 Vaccines , Humans , Immunocompromised Host , SARS-CoV-2
12.
Cell ; 184(6): 1604-1620, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1392179

ABSTRACT

Historically, emerging viruses appear constantly and have cost millions of human lives. Currently, climate change and intense globalization have created favorable conditions for viral transmission. Therefore, effective antivirals, especially those targeting the conserved protein in multiple unrelated viruses, such as the compounds targeting RNA-dependent RNA polymerase, are urgently needed to combat more emerging and re-emerging viruses in the future. Here we reviewed the development of antivirals with common targets, including those against the same protein across viruses, or the same viral function, to provide clues for development of antivirals for future epidemics.


Subject(s)
Antiviral Agents/therapeutic use , Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/epidemiology , Molecular Targeted Therapy/methods , Pandemics , Virus Diseases/drug therapy , Virus Diseases/epidemiology , Viruses/enzymology , Animals , Antiviral Agents/pharmacology , Communicable Diseases, Emerging/virology , Humans , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Envelope Proteins/antagonists & inhibitors , Virus Diseases/virology , Virus Internalization/drug effects
13.
Int J Biol Macromol ; 172: 524-541, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-1385677

ABSTRACT

The infectious microscopic viruses invade living cells to reproduce themselves, and causes chronic infections such as HIV/AIDS, hepatitis B and C, flu, etc. in humans which may lead to death if not treated. Different strategies have been utilized to develop new and superior antiviral drugs to counter the viral infections. The FDA approval of HIV nucleoside reverse transcriptase inhibitor, zidovudine in 1987 boosted the development of antiviral agents against different viruses. Currently, there are a number of combination drugs developed against various viral infections to arrest the activity of same or different viral macromolecules at multiple stages of its life cycle; among which majority are targeted to interfere with the replication of viral genome. Besides these, other type of antiviral molecules includes entry inhibitors, integrase inhibitors, protease inhibitors, interferons, immunomodulators, etc. The antiviral drugs can be toxic to human cells, particularly in case of administration of combination drugs, and on the other hand viruses can grow resistant to the antiviral drugs. Furthermore, emergence of new viruses like Ebola, coronaviruses (SARS-CoV, SARS-CoV-2) emphasizes the need for more innovative strategies to develop better antiviral drugs to fight the existing and the emerging viral infections. Hence, we reviewed the strategic enhancements in developing antiviral drugs for the treatment of different viral infections over the years.


Subject(s)
Antiviral Agents/therapeutic use , Drug Approval , United States Food and Drug Administration , Virus Diseases/drug therapy , Humans , Pandemics , United States , Virus Diseases/epidemiology
14.
Clin Rev Allergy Immunol ; 60(2): 259-270, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1384600

ABSTRACT

Ultraviolet blood irradiation (UBI) was used with success in the 1930s and 1940s for a variety of diseases. Despite the success, the lack of understanding of the detailed mechanisms of actions, and the achievements of antibiotics, phased off the use of UBI from the 1950s. The emergence of novel viral infections, from HIV/AIDS to Ebola, from SARS and MERS, and SARS-CoV-2, bring back the attention to this therapeutical opportunity. UBI has a complex virucidal activity, mostly acting on the immune system response. It has effects on lymphocytes (T-cells and B-cells), macrophages, monocytes, dendritic cells, low-density lipoprotein (LDL), and lipids. The Knott technique was applied for bacterial infections such as tuberculosis to viral infections such as hepatitis or influenza. The more complex extracorporeal photopheresis (ECP) is also being applied to hematological cancers such as T-cell lymphomas. Further studies of UBI may help to create a useful device that may find applications for novel viruses that are resistant to known antivirals or vaccines, or also bacteria that are resistant to known antibiotics.


Subject(s)
COVID-19/therapy , Photopheresis/methods , SARS-CoV-2/radiation effects , Ultraviolet Rays , Bacteria/radiation effects , Bacterial Infections/microbiology , Bacterial Infections/therapy , COVID-19/virology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/radiation effects , Humans , Lymphocytes/immunology , Lymphocytes/radiation effects , Macrophages/immunology , Macrophages/radiation effects , Monocytes/immunology , Monocytes/radiation effects , Signal Transduction/immunology , Signal Transduction/radiation effects , Treatment Outcome
15.
Nat Commun ; 12(1): 668, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1387328

ABSTRACT

Except remdesivir, no specific antivirals for SARS-CoV-2 infection are currently available. Here, we characterize two small-molecule-compounds, named GRL-1720 and 5h, containing an indoline and indole moiety, respectively, which target the SARS-CoV-2 main protease (Mpro). We use VeroE6 cell-based assays with RNA-qPCR, cytopathic assays, and immunocytochemistry and show both compounds to block the infectivity of SARS-CoV-2 with EC50 values of 15 ± 4 and 4.2 ± 0.7 µM for GRL-1720 and 5h, respectively. Remdesivir permitted viral breakthrough at high concentrations; however, compound 5h completely blocks SARS-CoV-2 infection in vitro without viral breakthrough or detectable cytotoxicity. Combination of 5h and remdesivir exhibits synergism against SARS-CoV-2. Additional X-ray structural analysis show that 5h forms a covalent bond with Mpro and makes polar interactions with multiple active site amino acid residues. The present data suggest that 5h might serve as a lead Mpro inhibitor for the development of therapeutics for SARS-CoV-2 infection.


Subject(s)
COVID-19/drug therapy , Coronavirus Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Viral Proteases/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Humans , Indoles/pharmacology , Pyridines/pharmacology , Vero Cells , Viral Proteases/metabolism
16.
3 Biotech ; 10(11): 483, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1384661

ABSTRACT

SARS-CoV-2, which causes severe pneumonia epidemics, probably originated from Chinese horseshoe bats, but the intermediate and host range is still unknown. ACE2 is the entry receptor for SARS-CoV-2. The binding capacity of SARS-CoV-2 spike protein to ACE2 is the critical determinant of viral host range and cross-species infection. Here, we used an in silico approach to predict the potential animals range with high susceptibility to SARS-CoV-2 by modelling and studying the Spike-ACE2 interaction of 22 domestic and wild animals. Our results showed that all studied animals are potentially susceptible to SARS-CoV-2 infection with a slight difference in the binding affinity and stability of their ACE2-RBD complexes. Furthermore, we identified a specific substitution of tyrosine to histidine at position 41 in ACE2 that likely reduces the affinity to SARS-CoV-2 in horses and greater horseshoe bats. These results may help to provide important insights into SARS-CoV-2 host range which will make it possible to control the spread of the virus and identify animal models that could be used for screening antiviral drugs or vaccine candidates against SARS-CoV-2.

17.
J Incl Phenom Macrocycl Chem ; 101(1-2): 77-89, 2021.
Article in English | MEDLINE | ID: covidwho-1377616

ABSTRACT

While the world is in search of a vaccine that can cure COVID-19 disease, favipiravir is the most commonly used antiviral drug in the treatment of patients during the pandemic process. In this study, we investigated the host-guest interaction between the popular supramolecule calix[4]arene derivatives and the favipiravir drug by using the DFT (Density Functional Theory) method. The B3LYP hybrid method and 6-31G (d,p) basis set were utilized to determine the optimized structures of the host and guest molecules and their complexes. The negative adsorption energy (∆E) and adsorption enthalpy (∆H) calculated for the complexes formed between calix[4]arene compounds and favipiravir drug molecule mentioned that adsorption of favipiravir molecule was an exothermic process on calix[4]arene structures. On the other hand, among the calixarene derivatives in the study, Gibbs free energy change (∆G) value for the adsorption was only negative on calix[4]arene4 molecule. The infrared spectroscopy (IR) calculations were performed by examining the C=O, O-H and NH2 vibrational frequencies to see the adsorption behavior in the favipiravir-calix[4]arene complex. After adsorption of the favipiravir molecule, HOMO-LUMO gap values decreased significantly for the structures and therefore electrical conductivity increased proportionally. In addition, sensor response factors, Fermi energy levels and workfunction changes of calix[4]arene derivatives were calculated and examined. Charge transfer between the four calix[4]arene compounds and the favipiravir molecule has occurred after adsorption. This attributes that calix[4]arene derivatives can be used as a well-suited favipiravir sensor (electronic and workfunction) and adsorbent at room temperature. Based on the calculations made to see the solvent effect on the adsorption of favipiravir it was determined that it did not affect the interaction between the drug molecule and the calix[4]arene compound too much and the adsorption energy turned into a slightly less negative value.

18.
Pharmacol Res ; 160: 105036, 2020 10.
Article in English | MEDLINE | ID: covidwho-1364401

ABSTRACT

OBJECTIVES: The current diagnosis and medicines approach in coronavirus disease 2019 (COVID-19) does not reflect the heterogeneous characteristics of this disease. This study aims to find a new antiviral combination regimen by investigating the frequency of clinically relevant and objectively identified comorbidities, and the clustering of these clinical syndromes and varying results of treatment with antiviral drugs in patients hospitalized with severe COVID-19. METHODS: This study recruited 151 severe COVID-19 infection cases diagnosed in our hospital examination and illustrated the clinical potential during a consecutive 25-day medication period. Potential differences in disease severity and clinical characteristics, hematological profile, and current pharmacologic treatments (single agent, double or triple combinations, and the combined antiviral drugs plus Lianhua Qingwen) among comorbidity clusters were explored. RESULTS: Although disease severity was comparable among three clusters, it was markedly different in terms of laboratory test status. Coagulable abnormality was mainly present in cluster 1 and cluster 2. Other indicators were normal, except for a significant increase of neutrophils presented in cluster 2. Patients showed the most complicated haematological results in cluster 3, including severe coagulation abnormalities, leukocytosis, neutrophilic granulocytosis, and lymphopenia. Our results for the first time suggest that a quadruple combination therapy (Ribavirin, Lopinavir/ritonavir, Umifenovir, and Lianhua Qingwen) can be considered as a preferred treatment approach to severe COVID-19 patients. After treatment, abnormal coagulation and leukocyte had markedly improved with a better prognosis. CONCLUSION: This study expands the understanding of the co-occurrence of combination therapy in patients with COVID-19, which provides the probability of developing novel combined therapy. Furthermore, explore clinical trials of variable antivirus treatments based on subgroup analyses or on using subgroups in the selection criteria would be the next step.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/blood , Coronavirus Infections/drug therapy , Pneumonia, Viral/blood , Pneumonia, Viral/drug therapy , Adult , Aged , Blood Cell Count , Blood Coagulation , COVID-19 , Comorbidity , Drug Therapy, Combination , Female , Granulocytes , Humans , Leukocyte Count , Leukocytosis/etiology , Lymphopenia/etiology , Male , Middle Aged , Pandemics , Treatment Outcome
19.
Antimicrob Agents Chemother ; 65(9): e0268020, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1360543

ABSTRACT

Antivirals targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could improve treatment of COVID-19. We evaluated the efficacy of clinically relevant hepatitis C virus (HCV) NS3 protease inhibitors (PIs) against SARS-CoV-2 and their interactions with remdesivir, the only direct-acting antiviral approved for COVID-19 treatment. HCV PIs showed differential potency in short-term treatment assays based on the detection of SARS-CoV-2 spike protein in Vero E6 cells. Linear PIs boceprevir, telaprevir, and narlaprevir had 50% effective concentrations (EC50) of ∼40 µM. Among the macrocyclic PIs, simeprevir had the highest (EC50, 15 µM) and glecaprevir the lowest (EC50, >178 µM) potency, with paritaprevir, grazoprevir, voxilaprevir, vaniprevir, danoprevir, and deldeprevir in between. Acyclic PIs asunaprevir and faldaprevir had EC50s of 72 and 23 µM, respectively. ACH-806, inhibiting the HCV NS4A protease cofactor, had an EC50 of 46 µM. Similar and slightly increased PI potencies were found in human hepatoma Huh7.5 cells and human lung carcinoma A549-hACE2 cells, respectively. Selectivity indexes based on antiviral and cell viability assays were highest for linear PIs. In short-term treatments, combination of macrocyclic but not linear PIs with remdesivir showed synergism in Vero E6 and A549-hACE2 cells. Longer-term treatment of infected Vero E6 and A549-hACE2 cells with 1-fold EC50 PI revealed minor differences in the barrier to SARS-CoV-2 escape. Viral suppression was achieved with 3- to 8-fold EC50 boceprevir or 1-fold EC50 simeprevir or grazoprevir, but not boceprevir, in combination with 0.4- to 0.8-fold EC50 remdesivir; these concentrations did not lead to viral suppression in single treatments. This study could inform the development and application of protease inhibitors for optimized antiviral treatments of COVID-19.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Hepatitis C , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Chlorocebus aethiops , Hepacivirus , Hepatitis C/drug therapy , Humans , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vero Cells , Viral Protease Inhibitors
20.
Front Mol Biosci ; 8: 671263, 2021.
Article in English | MEDLINE | ID: covidwho-1344278

ABSTRACT

SARS-CoV-2 belongs to the family of enveloped, single-strand RNA viruses known as Betacoronavirus in Coronaviridae, first reported late 2019 in China. It has since been circulating world-wide, causing the COVID-19 epidemic with high infectivity and fatality rates. As of the beginning of April 2021, pandemic SARS-CoV-2 has infected more than 130 million people and led to more than 2.84 million deaths. Given the severity of the epidemic, scientists from academia and industry are rushing to identify antiviral strategies to combat the disease. There are several strategies in antiviral drugs for coronaviruses including empirical testing of known antiviral drugs, large-scale phenotypic screening of compound libraries and target-based drug discovery. To date, an increasing number of drugs have been shown to have anti-coronavirus activities in vitro and in vivo, but only remdesivir and several neutralizing antibodies have been approved by the US FDA for treating COVID-19. However, remdesivir's clinical effects are controversial and new antiviral drugs are still urgently needed. We will discuss the current status of the drug discovery efforts against COVID-19 and potential future directions. With the ever-increasing movability of human population and globalization of world economy, emerging and reemerging viral infectious diseases seriously threaten public health. Particularly the past and ongoing outbreaks of coronaviruses cause respiratory, enteric, hepatic and neurological diseases in infected animals and human (Woo et al., 2009). The human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1) usually cause common cold with mild, self-limiting upper respiratory tract infections. By contrast, the emergence of three deadly human betacoronaviruses, middle east respiratory syndrome coronavirus (MERS) (Zaki et al., 2012), severe acute respiratory syndrome coronavirus (SARS-CoV) (Lee et al., 2003), the SARS-CoV-2 (Jin et al., 2020a) highlight the need to identify new treatment strategies for viral infections. SARS-CoV-2 is the etiological agent of COVID-19 disease named by World Health Organization (WHO) (Zhu N. et al., 2020). This disease manifests as either an asymptomatic infection or a mild to severe pneumonia. This pandemic disease causes extent morbidity and mortality in the whole world, especially regions out of China. Similar to SARS and MERS, the SARS CoV-2 genome encodes four structural proteins, sixteen non-structural proteins (nsp) and accessory proteins. The structural proteins include spike (S), envelope (E), membrane (M), nucleoprotein (N). The spike glycoprotein directly recognizes and engages cellular receptors during viral entry. The four non-structural proteins including papain-like protease (PLpro), 3-chymotrypsin-like protease (3CLpro), helicase, and RNA-dependent RNA polymerase (RdRp) are key enzymes involved in viral transcription and replication. The spike and the four key enzymes were considered attractive targets to develop antiviral agents (Zumla et al., 2016). The catalytic sites of the four enzymes of SARS-CoV2 share high similarities with SARS CoV and MERS in genomic sequences (Morse et al., 2020). Besides, the structures of the key drug-binding pockets are highly conserved among the three coronaviruses (Morse et al., 2020). Therefore, it follows naturally that existing anti-SARS-CoV and anti-MERS drugs targeting these enzymes can be repurposed for SARS-CoV-2. Based on previous studies in SARS-CoV and MERS-CoV, it is anticipated a number of therapeutics can be used to control or prevent emerging infectious disease COVID-19 (Li and de Clercq, 2020; Wang et al., 2020c; Ita, 2021), these include small-molecule drugs, peptides, and monoclonal antibodies. Given the urgency of the SARS-CoV-2 outbreak, here we discuss the discovery and development of new therapeutics for SARS-CoV-2 infection based on the strategies from which the new drugs are derived.

SELECTION OF CITATIONS
SEARCH DETAIL