Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Int J Mol Sci ; 21(14)2020 Jul 08.
Article in English | MEDLINE | ID: covidwho-1934087

ABSTRACT

Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30-40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways.


Subject(s)
Acute Lung Injury/metabolism , Deubiquitinating Enzymes/metabolism , Respiratory Distress Syndrome/metabolism , Animals , Humans , Pneumonia/metabolism , Signal Transduction/physiology , Ubiquitin/metabolism , Ubiquitination/physiology
2.
Sci Adv ; 6(48)2020 11.
Article in English | MEDLINE | ID: covidwho-1388431

ABSTRACT

Acute respiratory distress syndrome is associated with a robust inflammatory response that damages the vascular endothelium, impairing gas exchange. While restoration of microcapillaries is critical to avoid mortality, therapeutic targeting of this process requires a greater understanding of endothelial repair mechanisms. Here, we demonstrate that lung endothelium possesses substantial regenerative capacity and lineage tracing reveals that native endothelium is the source of vascular repair after influenza injury. Ablation of chicken ovalbumin upstream promoter-transcription factor 2 (COUP-TF2) (Nr2f2), a transcription factor implicated in developmental angiogenesis, reduced endothelial proliferation, exacerbating viral lung injury in vivo. In vitro, COUP-TF2 regulates proliferation and migration through activation of cyclin D1 and neuropilin 1. Upon influenza injury, nuclear factor κB suppresses COUP-TF2, but surviving endothelial cells ultimately reestablish vascular homeostasis dependent on restoration of COUP-TF2. Therefore, stabilization of COUP-TF2 may represent a therapeutic strategy to enhance recovery from pathogens, including H1N1 influenza and SARS-CoV-2.


Subject(s)
COUP Transcription Factor II/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Influenza A Virus, H1N1 Subtype , Lung/cytology , Lung/physiology , Orthomyxoviridae Infections/metabolism , Regeneration/genetics , Animals , COUP Transcription Factor II/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Disease Models, Animal , Female , Gene Knockout Techniques , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Orthomyxoviridae Infections/virology , Transfection
3.
Cochrane Database Syst Rev ; 2: CD008274, 2021 02 08.
Article in English | MEDLINE | ID: covidwho-1375589

ABSTRACT

BACKGROUND: All major guidelines for antihypertensive therapy recommend weight loss. Dietary interventions that aim to reduce body weight might therefore be a useful intervention to reduce blood pressure and adverse cardiovascular events associated with hypertension. OBJECTIVES: Primary objectives To assess the long-term effects of weight-reducing diets in people with hypertension on all-cause mortality, cardiovascular morbidity, and adverse events (including total serious adverse events, withdrawal due to adverse events, and total non-serious adverse events). Secondary objectives To assess the long-term effects of weight-reducing diets in people with hypertension on change from baseline in systolic blood pressure, change from baseline in diastolic blood pressure, and body weight reduction. SEARCH METHODS: For this updated review, the Cochrane Hypertension Information Specialist searched the following databases for randomised controlled trials up to April 2020: the Cochrane Hypertension Specialised Register, CENTRAL (2020, Issue 3), Ovid MEDLINE, Ovid Embase, and ClinicalTrials.gov. We also contacted authors of relevant papers about further published and unpublished work. The searches had no language restrictions. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of at least 24 weeks' duration that compared weight-reducing dietary interventions to no dietary intervention in adults with primary hypertension. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed risks of bias and extracted data. Where appropriate and in the absence of significant heterogeneity between studies (P > 0.1), we pooled studies using a fixed-effect meta-analysis. In case of moderate or larger heterogeneity as measured by Higgins I2, we used a random-effects model. MAIN RESULTS: This second review update did not reveal any new trials, so the number of included trials remains the same: eight RCTs involving a total of 2100 participants with high blood pressure and a mean age of 45 to 66 years. Mean treatment duration was 6 to 36 months. We judged the risks of bias as unclear or high for all but two trials. No study included mortality as a predefined outcome. One RCT evaluated the effects of dietary weight loss on a combined endpoint consisting of the necessity of reinstating antihypertensive therapy and severe cardiovascular complications. In this RCT, weight-reducing diet lowered the endpoint compared to no diet: hazard ratio 0.70 (95% confidence interval (CI) 0.57 to 0.87). None of the trials evaluated adverse events as designated in our protocol. The certainty of the evidence was low for a blood pressure reduction in participants assigned to weight-loss diets as compared to controls: systolic blood pressure: mean difference (MD) -4.5 mm Hg (95% CI -7.2 to -1.8 mm Hg) (3 studies, 731 participants), and diastolic blood pressure: MD -3.2 mm Hg (95% CI -4.8 to -1.5 mm Hg) (3 studies, 731 participants). We judged the certainty of the evidence to be high for weight reduction in dietary weight loss groups as compared to controls: MD -4.0 kg (95% CI -4.8 to -3.2) (5 trials, 880 participants). Two trials used withdrawal of antihypertensive medication as their primary outcome. Even though we did not consider this a relevant outcome for our review, the results of these RCTs strengthen the finding of a reduction of blood pressure by dietary weight-loss interventions. AUTHORS' CONCLUSIONS: In this second update, the conclusions remain unchanged, as we found no new trials. In people with primary hypertension, weight-loss diets reduced body weight and blood pressure, but the magnitude of the effects are uncertain due to the small number of participants and studies included in the analyses. Whether weight loss reduces mortality and morbidity is unknown. No useful information on adverse effects was reported in the relevant trials.


Subject(s)
Diet, Reducing/adverse effects , Hypertension/diet therapy , Aged , Antihypertensive Agents/therapeutic use , Bias , Blood Pressure , Cardiovascular Diseases/prevention & control , Humans , Hypertension/drug therapy , Hypertension/mortality , Middle Aged , Randomized Controlled Trials as Topic , Weight Loss
4.
Curr Cardiovasc Risk Rep ; 15(8): 11, 2021.
Article in English | MEDLINE | ID: covidwho-1358125

ABSTRACT

PURPOSE OF REVIEW: Hypertension is common, impacting an estimated 108 million US adults, and deadly, responsible for the deaths of one in six adults annually. Optimal management includes frequent blood pressure monitoring and antihypertensive medication titration, but in the traditional office-based care delivery model, patients have their blood pressure measured only intermittently and in a way that is subject to misdiagnosis with white coat or masked hypertension. There is a growing opportunity to leverage our expanding repository of digital technology to reimagine hypertension care delivery. This paper reviews existing and emerging digital tools available for hypertension management, as well as behavioral economic insights that could supercharge their impact. RECENT FINDINGS: Digitally connected blood pressure monitors offer an alternative to office-based blood pressure monitoring. A number of cuffless blood pressure monitors are in development but require further validation before they can be deployed for widespread clinical use. Patient-facing hubs and applications offer a means to transmit blood pressure data to clinicians. Though artificial intelligence could allow for curation of this data, its clinical use for hypertension remains limited to assessing risk factors at this time. Finally, text-based and telemedicine platforms are increasingly being employed to translate hypertension data into clinical outcomes with promising results. SUMMARY: The digital management of hypertension shows potential as an avenue for increasing patient engagement and improving clinical efficiency and outcomes. It is important for clinicians to understand the benefits, limitations, and future directions of digital health to optimize management of hypertension.

5.
Clin Hemorheol Microcirc ; 78(2): 199-207, 2021.
Article in English | MEDLINE | ID: covidwho-1352794

ABSTRACT

INTRODUCTION: Coronavirus disease-19 (COVID-19) is a new type of epidemic pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The population is generally susceptible to COVID-19, which mainly causes lung injury. Some cases may develop severe acute respiratory distress syndrome (ARDS). Currently, ARDS treatment is mainly mechanical ventilation, but mechanical ventilation often causes ventilator-induced lung injury (VILI) accompanied by hypercapnia in 14% of patients. Extracorporeal carbon dioxide removal (ECCO2R) can remove carbon dioxide from the blood of patients with ARDS, correct the respiratory acidosis, reduce the tidal volume and airway pressure, and reduce the incidence of VILI. CASE REPORT: Two patients with critical COVID-19 combined with multiple organ failure undertook mechanical ventilation and suffered from hypercapnia. ECCO2R, combined with continuous renal replacement therapy (CRRT), was conducted concomitantly. In both cases (No. 1 and 2), the tidal volume and positive end-expiratory pressure (PEEP) were down-regulated before the treatment and at 1.5 hours, one day, three days, five days, eight days, and ten days after the treatment, together with a noticeable decrease in PCO2 and clear increase in PO2, while FiO2 decreased to approximately 40%. In case No 2, compared with the condition before treatment, the PCO2 decreased significantly with down-regulation in the tidal volume and PEEP and improvement in the pulmonary edema and ARDS after the treatment. CONCLUSION: ECCO2R combined with continuous blood purification therapy in patients with COVID-19 who are criti-cally ill and have ARDS and hypercapnia might gain both time and opportunity in the treatment, down-regulate the ventilator parameters, reduce the incidence of VILI and achieve favorable therapeutic outcomes.


Subject(s)
COVID-19/complications , Carbon Dioxide/isolation & purification , Extracorporeal Circulation/methods , Hemofiltration/methods , Hypercapnia/therapy , Respiratory Distress Syndrome/therapy , SARS-CoV-2/isolation & purification , Aged , COVID-19/transmission , COVID-19/virology , Humans , Hypercapnia/physiopathology , Hypercapnia/virology , Male , Positive-Pressure Respiration , Respiration, Artificial , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/virology
6.
J Thromb Haemost ; 18(7): 1752-1755, 2020 07.
Article in English | MEDLINE | ID: covidwho-1317980

ABSTRACT

A prothrombotic coagulopathy is commonly found in critically ill COVID-19 patients with acute respiratory distress syndrome (ARDS). A unique feature of COVID-19 respiratory failure is a relatively preserved lung compliance and high Alveolar-arterial oxygen gradient, with pathology reports consistently demonstrating diffuse pulmonary microthrombi on autopsy, all consistent with a vascular occlusive etiology of respiratory failure rather than the more classic findings of low-compliance in ARDS. The COVID-19 pandemic is overwhelming the world's medical care capacity with unprecedented needs for mechanical ventilators and high rates of mortality once patients progress to needing mechanical ventilation, and in many environments including in parts of the United States the medical capacity is being exhausted. Fibrinolytic therapy has previously been used in a Phase 1 clinical trial that led to reduced mortality and marked improvements in oxygenation. Here we report a series of three patients with severe COVID-19 respiratory failure who were treated with tissue plasminogen activator. All three patients had a temporally related improvement in their respiratory status, with one of them being a durable response.


Subject(s)
Betacoronavirus/pathogenicity , Blood Coagulation Disorders/drug therapy , Coronavirus Infections/drug therapy , Fibrinolysis/drug effects , Fibrinolytic Agents/administration & dosage , Pneumonia, Viral/drug therapy , Thrombolytic Therapy , Tissue Plasminogen Activator/administration & dosage , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/virology , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Fatal Outcome , Female , Fibrinolytic Agents/adverse effects , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Recovery of Function , SARS-CoV-2 , Thrombolytic Therapy/adverse effects , Tissue Plasminogen Activator/adverse effects , Treatment Outcome
7.
Cell Rep Med ; 2(7): 100327, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1275765

ABSTRACT

Severe COVID-19 appears rare in children. This is unexpected, especially in young infants, who are vulnerable to severe disease caused by other respiratory viruses. We evaluate convalescent immune responses in 4 infants under 3 months old with confirmed COVID-19 who presented with mild febrile illness, alongside their parents, and adult controls recovered from confirmed COVID-19. Although not statistically significant, compared to seropositive adults, infants have high serum levels of IgG and IgA to SARS-CoV-2 spike protein, with a corresponding functional ability to block SARS-CoV-2 cellular entry. Infants also exhibit robust saliva anti-spike IgG and IgA responses. Spike-specific IFN-γ production by infant peripheral blood mononuclear cells appears restrained, but the frequency of spike-specific IFN-γ- and/or TNF-α-producing T cells is comparable between infants and adults. On principal-component analysis, infant immune responses appear distinct from their parents. Robust functional antibody responses alongside restrained IFN-γ production may help protect infants from severe COVID-19.


Subject(s)
Antibody Formation , COVID-19/immunology , Interferon-gamma/metabolism , Spike Glycoprotein, Coronavirus/immunology , Adult , Female , Humans , Immunoglobulin A , Immunoglobulin G , Infant , Infant, Newborn , Interferon-gamma/immunology , Leukocytes, Mononuclear/metabolism , Male , Young Adult
8.
Clin Infect Dis ; 72(12): e970-e977, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1269552

ABSTRACT

BACKGROUND: Susceptibility of children and adults to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and persistence of antibody response to the virus after infection resolution remain poorly understood, despite their significant public health implications. METHODS: A prospective cross-sectional seroprevalence study with volunteer families that included at least 1 first-reported adult case positive by SARS-CoV-2 by polymerase chain reaction (PCR) and at least 1 child aged <15 years living in the same household under strict home confinement was conducted in the metropolitan Barcelona Health Region, Spain, during the pandemic period 28 April 2020-3 June 2020. All household members were tested at home using a rapid SARS-CoV-2 antibody assay with finger prick-obtained capillary blood. RESULTS: A total of 381 family households including 381 first-reported PCR-positive adult cases and 1084 contacts (672 children, 412 adults) were enrolled. SARS-CoV-2 seroprevalence rates were 17.6% (118 of 672) in children and 18.7% (77 of 335) in adult contacts (P = .64). Among first-reported cases, seropositivity rates varied from 84.0% in adults previously hospitalized and tested within 6 weeks since the first positive PCR result to 31.5% in those not hospitalized and tested after that lag time (P < .001). Nearly all (99.9%) positive children were asymptomatic or had mild symptoms. CONCLUSIONS: Children appear to have similar probability as adults to become infected by SARS-CoV-2 in quarantined family households but remain largely asymptomatic. Adult antibody protection against SARS-CoV-2 seems to be weak beyond 6 weeks post-infection confirmation, especially in cases that have experienced mild disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Cross-Sectional Studies , Humans , Prospective Studies , Seroepidemiologic Studies , Spain/epidemiology
9.
Ann Vasc Surg ; 73: 86-96, 2021 May.
Article in English | MEDLINE | ID: covidwho-1258320

ABSTRACT

OBJECTIVES: To analyze the outcome of vascular procedures performed in patients with COVID-19 infection during the 2020 pandemic. METHODS: This is a multicenter, prospective observational cohort study. We analyzed data from 75 patients with COVID-19 infection undergoing vascular surgery procedures in 17 hospitals across Spain and Andorra between March and May 2020. The primary end point was 30-day mortality. Clinical Trials registry number NCT04333693. RESULTS: The mean age was 70.9 (45-94) and 58 (77.0%) patients were male. Around 70.7% had postoperative complications, 36.0% of patients experienced respiratory failure, 22.7% acute renal failure, and 22.7% acute respiratory distress syndrome (ARDS). All-cause 30-days mortality rate was 37.3%. Multivariate analysis identified age >65 years (P = 0.009), American Society of Anesthesiologists (ASA) classification IV (P = 0.004), preoperative lymphocyte count <0.6 (×109/L) (P = 0.001) and lactate dehydrogenase (LDH) >500 (UI/L) (P = 0.004), need for invasive ventilation (P = 0.043), postoperative acute renal failure (P = 0.001), ARDS (P = 0.003) and major amputation (P = 0.009) as independent variables associated with mortality. Preoperative coma (P = 0.001), quick Sepsis Related Organ Failure Assessment (qSOFA) score ≥2 (P = 0.043), lymphocytes <0.6 (×109/L) (P = 0.019) leucocytes >11.5 (×109/L) (P = 0.007) and serum ferritin >1800 mg/dL (P = 0.004), bilateral lung infiltrates on thorax computed tomography (P = 0.025), and postoperative acute renal failure (P = 0.009) increased the risk of postoperative ARDS. qSOFA score ≥2 was the only risk factor associated with postoperative sepsis (P = 0.041). CONCLUSIONS: Patients with COVID-19 infection undergoing vascular surgery procedures showed poor 30-days survival. Age >65 years, preoperative lymphocytes <0.6 (x109/L) and LDH >500 (UI/L), and postoperative acute renal failure, ARDS and need for major amputation were identified as prognostic factors of 30-days mortality.


Subject(s)
COVID-19/complications , Postoperative Complications/epidemiology , Vascular Surgical Procedures/adverse effects , Acute Kidney Injury/etiology , Age Factors , Aged , Aged, 80 and over , Analysis of Variance , Andorra/epidemiology , COVID-19/mortality , Cohort Studies , Female , Humans , L-Lactate Dehydrogenase/blood , Lymphocyte Count , Male , Middle Aged , Postoperative Complications/mortality , Prognosis , Respiratory Distress Syndrome/etiology , Risk Factors , Spain/epidemiology , Treatment Outcome
10.
Thromb J ; 19(1): 39, 2021 Jun 02.
Article in English | MEDLINE | ID: covidwho-1255939

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) associated coagulopathy (CAC) leads to thromboembolic events in a high number of critically ill COVID-19 patients. However, specific diagnostic or therapeutic algorithms for CAC have not been established. In the current study, we analyzed coagulation abnormalities with point-of-care testing (POCT) and their relation to hemostatic complications in patients suffering from COVID-19 induced Acute Respiratory Distress Syndrome (ARDS). Our hypothesis was that specific diagnostic patterns can be identified in patients with COVID-19 induced ARDS at risk of thromboembolic complications utilizing POCT. METHODS: This is a single-center, retrospective observational study. Longitudinal data from 247 rotational thromboelastometries (Rotem®) and 165 impedance aggregometries (Multiplate®) were analysed in 18 patients consecutively admitted to the ICU with a COVID-19 induced ARDS between March 12th to June 30th, 2020. RESULTS: Median age was 61 years (IQR: 51-69). Median PaO2/FiO2 on admission was 122 mmHg (IQR: 87-189), indicating moderate to severe ARDS. Any form of hemostatic complication occurred in 78 % of the patients with deep vein/arm thrombosis in 39 %, pulmonary embolism in 22 %, and major bleeding in 17 %. In Rotem® elevated A10 and maximum clot firmness (MCF) indicated higher clot strength. The delta between EXTEM A10 minus FIBTEM A10 (ΔA10) > 30 mm, depicting the sole platelet-part of clot firmness, was associated with a higher risk of thromboembolic events (OD: 3.7; 95 %CI 1.3-10.3; p = 0.02). Multiplate® aggregometry showed hypoactive platelet function. There was no correlation between single Rotem® and Multiplate® parameters at intensive care unit (ICU) admission and thromboembolic or bleeding complications. CONCLUSIONS: Rotem® and Multiplate® results indicate hypercoagulability and hypoactive platelet dysfunction in COVID-19 induced ARDS but were all in all poorly related to hemostatic complications..

11.
J Infect Dis ; 223(9): 1503-1505, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1238202
12.
J Leukoc Biol ; 110(1): 27-38, 2021 07.
Article in English | MEDLINE | ID: covidwho-1222640

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a devastating and life-threatening syndrome that results in high morbidity and mortality. Current pharmacologic treatments and mechanical ventilation have limited value in targeting the underlying pathophysiology of ARDS. Mesenchymal stromal cells (MSCs) have shown potent therapeutic advantages in experimental and clinical trials through direct cell-to-cell interaction and paracrine signaling. However, safety concerns and the indeterminate effects of MSCs have resulted in the investigation of MSC-derived extracellular vesicles (MSC-EVs) due to their low immunogenicity and tumorigenicity. Over the past decades, soluble proteins, microRNAs, and organelles packaged in EVs have been identified as efficacious molecules to orchestrate nearby immune responses, which attenuate acute lung injury by facilitating pulmonary epithelium repair, reducing acute inflammation, and restoring pulmonary vascular leakage. Even though MSC-EVs possess similar bio-functional effects to their parental cells, there remains existing barriers to employing this alternative from bench to bedside. Here, we summarize the current established research in respect of molecular mechanisms of MSC-EV effects in ARDS and highlight the future challenges of MSC-EVs for clinical application.


Subject(s)
Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Respiratory Distress Syndrome/metabolism , Animals , Clinical Trials as Topic , Humans , Mitochondria/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
J Pharm Pract ; : 8971900211015055, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1219520

ABSTRACT

BACKGROUND: Emerging data suggest that coagulopathy, cytokine storm, and acute respiratory distress syndrome are associated with the 2019 coronavirus disease (COVID-19). The prevalence of hypercoagulable state in these patients is unknown, but appears to be higher compared to those with other critically ill patients. Elevated D-dimer, large blood vessels clots, deep vein thrombosis, pulmonary embolism and disseminated intravascular coagulation have been reported in patients diagnosed with COVID-19 either on admission or during hospitalization and may be predictors of poor outcomes. METHODS: We performed a comprehensive literature review using the search terms of COVID-19; severe acute respiratory syndrome coronavirus-2, coagulopathy, thrombosis and anticoagulation in PubMed, Ovid, google scholar, Medline and EMBASE databases from December 2019 to May 30, 2020. RESULTS: A total of 64 relevant studies were reviewed; of which, 4 studies met the inclusion criteria and were included for analysis. The majority of the studies were retrospective involving 525 critically ill COVID-19 patients. The most commonly studied anticoagulant administered was low molecular weight heparins. Anticoagulation dosing varied throughout the studies and may be classified as standard venous thromboembolism prophylaxis, intermediate dosing, or full dose anticoagulation. The most studied objective was improvement in coagulopathy. Significant reduction in D-dimer, improvement in coagulopathy markers such as Interlukin-6, fibrinogen degradation product level, as well as lymphocyte count were reported. CONCLUSION: Despite the limited quality of studies analyzed, prophylaxis and higher intensity dosed anticoagulation is associated with improved pulmonary oxygenation, decreased coagulopathy markers and decreased mortality in COVID-19 patients.

14.
Int J Environ Res Public Health ; 18(9)2021 Apr 29.
Article in English | MEDLINE | ID: covidwho-1217076

ABSTRACT

BACKGROUND: This study was carried out to estimate the seroprevalence of SARS-CoV-2 antibodies in a Southern Italian population. METHODS: The study was performed among students and workers of the University of Campania "Luigi Vanvitelli" and the relative Teaching Hospital. Participants were invited to undergo a blood sampling, an interview or to complete a self-administered questionnaire. RESULTS: A total of 140 participants (5.8%) tested positive for SARS-CoV-2 antibodies. Positive SARS-CoV-2 test results increased significantly during the months of testing, and those who had had at least one symptom among fever, cough, dyspnea, loss of taste or smell and who had had contact with a family member/cohabitant with confirmed COVID-19 were more likely to test positive. Faculty members were less likely to have a positive test result compared to the healthcare workers (HCWs). Among HCWs, physicians showed the lowest rate of seroconversion (5.2%) compared to nurses (8.9%) and other categories (10%). Nurses and other HCWs compared to the physicians, those who had had at least one symptom among fever, cough, dyspnea, loss of taste or smell, and who had had contact with a family member/cohabitant with confirmed COVID-19 were more likely to test positive. CONCLUSIONS: The results have demonstrated that SARS-CoV-2 infection is rapidly spreading even in Southern Italy and confirm the substantial role of seroprevalence studies for the assessment of SARS-CoV-2 infection circulation and potential for further spreading.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Health Personnel , Humans , Italy/epidemiology , Seroepidemiologic Studies
15.
BMC Infect Dis ; 21(1): 412, 2021 May 04.
Article in English | MEDLINE | ID: covidwho-1216882

ABSTRACT

BACKGROUND: Since the outbreak of coronavirus disease 2019 in December 2019, more than 8 million cases have occurred worldwide as of June 16, 2020. However, it is important to distinguish COVID-19 from other respiratory infectious diseases, such as influenza. Here, we comparatively described the clinical characteristics of children with COVID-19 and paediatric patients with influenza. METHODS: In this retrospective, single-centre study, we reviewed the electronic medical records of 585 paediatric patients with COVID-19 or influenza in Wuhan Children's Hospital, China. Clinical and epidemiological characteristics, laboratory findings, and clinical outcomes were comparatively analysed. RESULTS: The median ages were 6.96 years (IQR, 2-10.81) for children with confirmed COVID-19, 2.67 years (IQR, 1.03-15.25) for those with influenza A and 3.67 years (IQR, 1.62-5.54) for those with influenza B. Fever was a symptom in 84 (34.7%) COVID-19 cases, 132 (70.21%) influenza A cases and 111 (74.50%) influenza B cases. The median length of stay (LOS) was 11 (8-15) days for paediatric COVID-19 patients, 4 (3-6) days for influenza A patients and 5 (3-6) days for influenza B patients. Twenty-six (13.98%) influenza A patients and 18 (12.59%) influenza B patients presented with decreased white blood cell counts, while 13 (5.33%) COVID-19 patients presented with decreased white blood cell counts. Eight (3.28%) COVID-19 patients, 23 (12.71%) influenza A patients and 21 (14.79%) influenza B patients experienced lymphocytopenia. Acute cardiac injury occurred in 18 (7.29%) COVID-19 patients, while 37 (19.68%) influenza A and 27 (18.12%) influenza B patients had acute cardiac injury. CONCLUSION: In this study, the illnesses of children with COVID-19 were demonstrated to be less severe than those of paediatric patients with influenza, and COVID-19 patients had milder illness and fewer complications.


Subject(s)
COVID-19/drug therapy , COVID-19/etiology , Influenza, Human/drug therapy , Influenza, Human/etiology , Adolescent , COVID-19/epidemiology , Child , Child, Hospitalized , Child, Preschool , China/epidemiology , Comorbidity , Female , Fever/epidemiology , Hospitals, Pediatric , Humans , Infant , Influenza, Human/epidemiology , Length of Stay , Lymphopenia/epidemiology , Lymphopenia/virology , Male , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/virology , Retrospective Studies
16.
Cells ; 10(4)2021 04 17.
Article in English | MEDLINE | ID: covidwho-1194614

ABSTRACT

Emerging data suggest that obesity is a major risk factor for the progression of major complications such as acute respiratory distress syndrome (ARDS), cytokine storm and coagulopathy in COVID-19. Understanding the mechanisms underlying the link between obesity and disease severity as a result of SARS-CoV-2 infection is crucial for the development of new therapeutic interventions and preventive measures in this high-risk group. We propose that multiple features of obesity contribute to the prevalence of severe COVID-19 and complications. First, viral entry can be facilitated by the upregulation of viral entry receptors, like angiotensin-converting enzyme 2 (ACE2), among others. Second, obesity-induced chronic inflammation and disruptions of insulin and leptin signaling can result in impaired viral clearance and a disproportionate or hyper-inflammatory response, which together with elevated ferritin levels can be a direct cause for ARDS and cytokine storm. Third, the negative consequences of obesity on blood coagulation can contribute to the progression of thrombus formation and hemorrhage. In this review we first summarize clinical findings on the relationship between obesity and COVID-19 disease severity and then further discuss potential mechanisms that could explain the risk for major complications in patients suffering from obesity.


Subject(s)
COVID-19/complications , Obesity/complications , Animals , COVID-19/immunology , COVID-19/pathology , Chronic Disease , Humans , Immunity , Inflammation/complications , Inflammation/immunology , Inflammation/pathology , Insulin Resistance , Obesity/immunology , Obesity/pathology , Risk Factors , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Severity of Illness Index , Unfolded Protein Response , Virus Internalization
17.
Science ; 372(6543): 738-741, 2021 05 14.
Article in English | MEDLINE | ID: covidwho-1180894

ABSTRACT

Vaccination and infection promote the formation, tissue distribution, and clonal evolution of B cells, which encode humoral immune memory. We evaluated pediatric and adult blood and deceased adult organ donor tissues to determine convergent antigen-specific antibody genes of similar sequences shared between individuals. B cell memory varied for different pathogens. Polysaccharide antigen-specific clones were not exclusive to the spleen. Adults had higher clone frequencies and greater class switching in lymphoid tissues than blood, while pediatric blood had abundant class-switched convergent clones. Consistent with reported serology, prepandemic children had class-switched convergent clones to severe acute respiratory syndrome coronavirus 2 with weak cross-reactivity to other coronaviruses, while adult blood or tissues showed few such clones. These results highlight the prominence of early childhood B cell clonal expansions and cross-reactivity for future responses to novel pathogens.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , Coronavirus/immunology , Immunologic Memory , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Aging , Child, Preschool , Cross Reactions , Ebolavirus/immunology , Female , Fetal Blood/immunology , Genes, Immunoglobulin , Humans , Immunoglobulin Class Switching , Immunoglobulin D/genetics , Immunoglobulin D/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin M/genetics , Immunoglobulin M/immunology , Infant , Lymph Nodes/immunology , Male , Middle Aged , Receptors, Antigen, B-Cell/immunology , Somatic Hypermutation, Immunoglobulin , Spleen/immunology , Young Adult
18.
J Transl Med ; 18(1): 422, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-916977

ABSTRACT

BACKGROUND: In the present study the blood expression level of inflammatory response and autoimmunity associated long non-coding RNAs (lncRNAs) were compared in patients with different chronic respiratory diseases and investigated whether they could be used as biomarkers in these diseases. METHODS: In the discovery cohort, the gene expression level of 84 lncRNAs were measured in the blood of 24 adult patients including healthy controls and patients with asthma and COPD. In the replication cohort the expression of 6 selected lncRNAs were measured in 163 subjects including healthy controls and adults with allergic rhinitis, asthma, COPD and children with asthma. It was evaluated whether these lncRNAs can be used as diagnostic biomarkers for any studied disease. With systems biology analysis the biological functions of the selected lncRNAs were predicted. RESULTS: In the discovery cohort, the mean expression of 27 lncRNAs showed nominally significant differences in at least one comparison. OIP5-AS1, HNRNPU, RP11-325K4.3, JPX, RP11-282O18.3, MZF1-AS1 were selected for measurement in the replication cohort. Three lncRNAs (HNRNPU, RP11-325K4.3, JPX) expressed significantly higher in healthy children than in adult controls. All the mean expression level of the 6 lncRNAs differed significantly between adult allergic rhinitis patients and controls. RP11-325K4.3, HNRNPU and OIP5-AS1 expressed higher in allergic asthma than in non-allergic asthma. COPD and asthma differed in the expression of RP11-325K4.3 from each other. In examining of the lncRNAs as biomarkers the weighted accuracy (WA) values were especially high in the comparison of healthy controls and patients with allergic rhinitis. OIP5-AS1 and JPX achieved 0.98 and 0.9 WA values, respectively, and the combination of the selected lncRNAs also resulted in a high performance (WA = 0.98). Altogether, OIP5-AS1 had the highest discriminative power in case of three out of six comparisons. CONCLUSION: Differences were detected in the expression of circulating lncRNAs in chronic respiratory diseases. Some of these differences might be utilized as biomarkers and also suggest a possible role of these lncRNAs in the pathomechanism of these diseases. The lncRNAs and the associated pathways are potential therapeutic targets in these diseases, but naturally additional studies are needed for the confirmation of these results.


Subject(s)
Asthma/diagnosis , Pulmonary Disease, Chronic Obstructive/diagnosis , RNA, Long Noncoding , Rhinitis, Allergic/diagnosis , Adult , Biomarkers , Child , Humans , RNA, Long Noncoding/blood
19.
Transl Res ; 233: 104-116, 2021 07.
Article in English | MEDLINE | ID: covidwho-1051128

ABSTRACT

The p53/p21 pathway is activated in response to cell stress. However, its role in acute lung injury has not been elucidated. Acute lung injury is associated with disruption of the alveolo-capillary barrier leading to acute respiratory distress syndrome (ARDS). Mechanical ventilation may be necessary to support gas exchange in patients with ARDS, however, high positive airway pressures can cause regional overdistension of alveolar units and aggravate lung injury. Here, we report that acute lung injury and alveolar overstretching activate the p53/p21 pathway to maintain homeostasis and avoid massive cell apoptosis. A systematic pooling of transcriptomic data from animal models of lung injury demonstrates the enrichment of specific p53- and p21-dependent gene signatures and a validated senescence profile. In a clinically relevant, murine model of acid aspiration and mechanical ventilation, we observed changes in the nuclear envelope and the underlying chromatin, DNA damage and activation of the Tp53/p21 pathway. Absence of Cdkn1a decreased the senescent response, but worsened lung injury due to increased cell apoptosis. Conversely, treatment with lopinavir and/or ritonavir led to Cdkn1a overexpression and ameliorated cell apoptosis and lung injury. The activation of these mechanisms was associated with early markers of senescence, including expression of senescence-related genes and increases in senescence-associated heterochromatin foci in alveolar cells. Autopsy samples from lungs of patients with ARDS revealed increased senescence-associated heterochromatin foci. Collectively, these results suggest that acute lung injury activates p53/p21 as an antiapoptotic mechanism to ameliorate damage, but with the side effect of induction of senescence.


Subject(s)
Acute Lung Injury/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Acids/administration & dosage , Acids/toxicity , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Animals , Apoptosis , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21/deficiency , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Damage , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Signal Transduction , Stress, Mechanical , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
20.
Trends Pharmacol Sci ; 42(6): 431-433, 2021 06.
Article in English | MEDLINE | ID: covidwho-1157753

ABSTRACT

Latest research shows that SERPINE1 overexpression has an important role in Coronavirus 2019 (COVID-19)-associated coagulopathy leading to acute respiratory distress syndrome (ARDS). However, ways to target this protein remain elusive. In this forum, we discuss recent evidence linking SERPINE1 with COVID-19-related ARDS and summarize the available data on inhibitors of this target.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Complement Activation , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL