Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
J Diabetes Complications ; 34(9): 107637, 2020 09.
Article in English | MEDLINE | ID: covidwho-1828813

ABSTRACT

BACKGROUND: The novel coronavirus SARS-CoV-2 has taken the world by storm. Alongside COVID-19, diabetes is a long-standing global epidemic. The diabetes population has been reported to suffer adverse outcomes if infected by COVID-19. The aim was to summarise information and resources available on diabetes and COVID-19, highlighting special measures that individuals with diabetes need to follow. METHODS: A search using keywords "COVID-19" and "Diabetes" was performed using different sources, including PubMed and World Health Organization. RESULTS: COVID-19 may enhance complications in individuals with diabetes through an imbalance in angiotension-converting enzyme 2 (ACE2) activation pathways leading to an inflammatory response. ACE2 imbalance in the pancreas causes acute ß-cell dysfunction and a resultant hyperglycemic state. These individuals may be prone to worsened COVID-19 complications including vasculopathy, coagulopathy as well as psychological stress. Apart from general preventive measures, remaining hydrated, monitoring blood glucose regularly and monitoring ketone bodies in urine if on insulin is essential. All this while concurrently maintaining physical activity and a healthy diet. Different supporting entities are being set up to help this population. CONCLUSION: COVID-19 is a top priority. It is important to remember that a substantial proportion of the world's population is affected by other co-morbidities such as diabetes. These require special attention during this pandemic to avoid adding on to the burden of countries' healthcare systems.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , COVID-19 , Humans , SARS-CoV-2
2.
J Leukoc Biol ; 111(2): 497-508, 2022 02.
Article in English | MEDLINE | ID: covidwho-1669515

ABSTRACT

Coronaviruses (CoVs) are RNA viruses that cause human respiratory infections. Zoonotic transmission of the SARS-CoV-2 virus caused the recent COVID-19 pandemic, which led to over 2 million deaths worldwide. Elevated inflammatory responses and cytotoxicity in the lungs are associated with COVID-19 severity in SARS-CoV-2-infected individuals. Bats, which host pathogenic CoVs, operate dampened inflammatory responses and show tolerance to these viruses with mild clinical symptoms. Delineating the mechanisms governing these host-specific inflammatory responses is essential to understand host-virus interactions determining the outcome of pathogenic CoV infections. Here, we describe the essential role of inflammasome activation in determining COVID-19 severity in humans and innate immune tolerance in bats that host several pathogenic CoVs. We further discuss mechanisms leading to inflammasome activation in human SARS-CoV-2 infection and how bats are molecularly adapted to suppress these inflammasome responses. We also report an analysis of functionally important residues of inflammasome components that provide new clues of bat strategies to suppress inflammasome signaling and innate immune responses. As spillover of bat viruses may cause the emergence of new human disease outbreaks, the inflammasome regulation in bats and humans likely provides specific strategies to combat the pathogenic CoV infections.


Subject(s)
COVID-19/pathology , Immune Tolerance , Immunity, Innate , Inflammasomes/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Chiroptera , Humans , Inflammasomes/metabolism , Phylogeny
3.
J Immunotoxicol ; 18(1): 23-29, 2021 12.
Article in English | MEDLINE | ID: covidwho-1593522

ABSTRACT

The coronavirus SARS-CoV-2 of 2019 (COVID-19) causes a pandemic that has been diagnosed in more than 70 million people worldwide. Mild-to-moderate COVID-19 symptoms include coughing, fever, myalgia, shortness of breath, and acute inflammatory lung injury (ALI). In contrast, acute respiratory distress syndrome (ARDS) and respiratory failure occur in patients diagnosed with severe COVID-19. ARDS is mediated, at least in part, by a dysregulated inflammatory response due to excessive levels of circulating cytokines, a condition known as the "cytokine-storm syndrome." Currently, there are FDA-approved therapies that attenuate the dysregulated inflammation that occurs in COVID-19 patients, such as dexamethasone or other corticosteroids and IL-6 inhibitors, including sarilumab, tocilizumab, and siltuximab. However, the efficacy of these treatments have been shown to be inconsistent. Compounds that activate the vagus nerve-mediated cholinergic anti-inflammatory reflex, such as the α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuate ARDS/inflammatory lung injury by decreasing the extracellular levels of high mobility group box-1 (HMGB1) in the airways and the circulation. It is possible that HMGB1 may be an important mediator of the "cytokine-storm syndrome." Notably, high plasma levels of HMGB1 have been reported in patients diagnosed with severe COVID-19, and there is a significant negative correlation between HMGB1 plasma levels and clinical outcomes. Nicotine can activate the cholinergic anti-inflammatory reflex, which attenuates the up-regulation and the excessive release of pro-inflammatory cytokines/chemokines. Therefore, we hypothesize that low molecular weight compounds that activate the cholinergic anti-inflammatory reflex, such as nicotine or GTS-21, may represent a potential therapeutic approach to attenuate the dysregulated inflammatory responses in patients with severe COVID-19.


Subject(s)
Benzylidene Compounds/pharmacology , COVID-19/drug therapy , Cholinergic Agents/pharmacology , Inflammation/drug therapy , Nicotine/metabolism , Pyridines/pharmacology , SARS-CoV-2/physiology , Tobacco Use Disorder/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Cigarette Smoking/adverse effects , Dexamethasone/therapeutic use , HMGB1 Protein/blood , Humans , Pandemics , alpha7 Nicotinic Acetylcholine Receptor/agonists
4.
Jpn J Infect Dis ; 74(6): 530-536, 2021 Nov 22.
Article in English | MEDLINE | ID: covidwho-1534555

ABSTRACT

It is important to determine the inflammatory biomarkers in the severity of coronavirus disease 2019 (COVID-19) with the emergence of the pandemic. Galectins and prostaglandins play important roles in the regulation of immune and inflammatory responses. Therefore, this study aimed to investigate Galectin-1 (Gal-1), Galectin-3 (Gal-3), and prostaglandin E2 (PGE2) levels in patients with COVID-19. Serum concentrations of Gal-1, Gal-3, and PGE2 were measured using enzyme-linked immunosorbent assay on 84 patients with COVID-19 (severe = 29 and nonsevere = 55) and 56 healthy controls. In this study, increased levels of Gal-1 (median, 9.86, 6.35, and 3.67 ng/mL), Gal-3 (median, 415.31, 326.33, and 243.13 pg/mL), and PGE2 (median, 193.17, 192.58, and 124.62 pg/mL) levels were found in patients with COVID-19 than in healthy controls (P < 0.001 for all). In the severe disease group, Gal-3 levels were higher, while no differences were noted in Gal-1 and PGE2 levels (P = 0.011, P = 0.263, and P = 0.921, respectively). Serum levels of Gal-1 were positively correlated with those of Gal-3 (P = 0.871 and P < 0.001). Gal-3, C-reactive protein, lymphocyte count, and age were found as independent predictors of disease severity (P = 0.002, P = 0.001, P = 0.007, and P = 0.003, respectively). With the emergence of effective drug needs in the COVID-19 pandemic, differentiation of severe disease is important. Therefore, Gal-3 could be a potential prognostic biomarker of COVID-19.


Subject(s)
COVID-19 , Dinoprostone/blood , Galectin 1/blood , Galectin 3/blood , Biomarkers/blood , COVID-19/blood , Case-Control Studies , Humans , Pandemics
5.
J Med Virol ; 93(10): 5853-5863, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1432418

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) infection may rely on a potential genetic background for the variations in the inflammatory response. We aimed to investigate the possible correlation between polymorphisms in the IL-6 gene at rs1800796/rs1800795, in IL-6R at rs2228145, in IL-10 at rs1800896 and rs1800871, in IL-17 at rs2275913 and rs763780 loci, and COVID-19 prevalence and mortality rates among populations of 23 countries. METHODS: We searched the literature for polymorphisms in China, Japan, India, Spain, Mexico, Sweden, Turkey, Brazil, Russia, Poland, Italy, South Africa, Netherlands, Greece, Germany, UK, Iran, Finland, Czechia, Tunisia, Norway, Egypt, Croatia. We recorded the prevalence and mortality rates (per million) caused by the Coronavirus infection recorded on 7th September 2020 and 6th December 2020. RESULTS: There was a significant positive correlation between the frequency of AG genotype of rs1800896 and prevalence recorded on 6th December 2020 (r: 0.53, r2 : 0.28, p < .05). There was a significant negative correlation between the mortality rates recorded on 7th September, and the AG genotype of rs2275913 (r: -0.51, r2 : 0.26, p < .05). There was a significant positive correlation between the prevalence recorded on 6th December, and TT genotype at rs763780 (r: 0.65, r2 :0.42, p < .05) while a negative correlation between prevalence and TC genotype at rs763780 (r: -0.66, r2 : 0.43, p < .05). Also, a significant negative correlation was found between mortality rates recorded on 6th December 2020 and CC genotype at rs763780 (r: -0.56, r2 : 0.31, p < .05). CONCLUSION: The variations in prevalence of COVID-19 and its mortality rates among countries may be explained by the polymorphisms at rs1800896 in IL-10, rs2275913 in IL-17A, and rs763780 loci in the IL-17F gene.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Interleukins/genetics , COVID-19/mortality , Genetic Association Studies , Genotype , Humans , Interleukin-10/genetics , Interleukin-17/genetics , Interleukin-6/genetics , Polymorphism, Single Nucleotide , Prevalence , Receptors, Interleukin-6/genetics , SARS-CoV-2
6.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1388432

ABSTRACT

Using AI, we identified baricitinib as having antiviral and anticytokine efficacy. We now show a 71% (95% CI 0.15 to 0.58) mortality benefit in 83 patients with moderate-severe SARS-CoV-2 pneumonia with few drug-induced adverse events, including a large elderly cohort (median age, 81 years). An additional 48 cases with mild-moderate pneumonia recovered uneventfully. Using organotypic 3D cultures of primary human liver cells, we demonstrate that interferon-α2 increases ACE2 expression and SARS-CoV-2 infectivity in parenchymal cells by greater than fivefold. RNA-seq reveals gene response signatures associated with platelet activation, fully inhibited by baricitinib. Using viral load quantifications and superresolution microscopy, we found that baricitinib exerts activity rapidly through the inhibition of host proteins (numb-associated kinases), uniquely among antivirals. This reveals mechanistic actions of a Janus kinase-1/2 inhibitor targeting viral entry, replication, and the cytokine storm and is associated with beneficial outcomes including in severely ill elderly patients, data that incentivize further randomized controlled trials.


Subject(s)
Antiviral Agents/pharmacology , Azetidines/pharmacology , COVID-19/mortality , Enzyme Inhibitors/pharmacology , Janus Kinases/antagonists & inhibitors , Liver/virology , Purines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2/pathogenicity , Sulfonamides/pharmacology , Adult , Aged , Aged, 80 and over , COVID-19/drug therapy , COVID-19/metabolism , COVID-19/virology , Cytokine Release Syndrome , Cytokines/metabolism , Drug Evaluation, Preclinical , Female , Gene Expression Profiling , Humans , Interferon alpha-2/metabolism , Italy , Janus Kinases/metabolism , Liver/drug effects , Male , Middle Aged , Patient Safety , Platelet Activation , Proportional Hazards Models , RNA-Seq , Spain , Virus Internalization/drug effects
7.
Mar Drugs ; 19(1)2020 Dec 24.
Article in English | MEDLINE | ID: covidwho-1389434

ABSTRACT

Compromised lung function is a feature of both infection driven and non-infective pathologies. Viral infections-including the current pandemic strain SARS-CoV-2-that affect lung function can cause both acute and long-term chronic damage. SARS-CoV-2 infection suppresses innate immunity and promotes an inflammatory response. Targeting these aspects of SARS-CoV-2 is important as the pandemic affects greater proportions of the population. In clinical and animal studies, fucoidans have been shown to increase innate immunity and decrease inflammation. In addition, dietary fucoidan has been shown to attenuate pulmonary damage in a model of acute viral infection. Direct inhibition of SARS-CoV-2 in vitro has been described, but is not universal. This short review summarizes the current research on fucoidan with regard to viral lung infections and lung damage.


Subject(s)
COVID-19/drug therapy , Lung/drug effects , Polysaccharides/pharmacology , SARS-CoV-2 , Animals , COVID-19/immunology , Humans , Lung/physiology , Lung Diseases/drug therapy , Polysaccharides/therapeutic use , Virus Diseases/drug therapy
8.
Am J Trop Med Hyg ; 104(5): 1611-1612, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1273618

ABSTRACT

COVID-19 can trigger a systemic inflammatory response that in some cases leads to severe lung involvement, multisystem dysfunction, and death. Dexamethasone therapy, because of its potent anti-inflammatory effects, has been proposed for the management of hospitalized patients with severe COVID-19. The subject of this article is to discuss potential strategies to tackle Strongyloides hyperinfection in hospitalized patients with COVID-19 receiving dexamethasone therapy in low- and middle-income countries. In this context, dexamethasone treatment has been found to be generally safe. However, its use in people coinfected with undetected Strongyloides stercoralis increases the risk for Strongyloides hyperinfection/dissemination a potentially fatal complication. Infection caused by S. stercoralis may remain asymptomatic or with mild symptoms in humans for several years. Early detection and specific treatment prevent a fatal evolution of this complication, but the challenge is to screen before corticosteroid therapy. In some cases, presumptive treatment may be justified. Ivermectin is the gold standard for treatment.


Subject(s)
COVID-19/drug therapy , Dexamethasone/adverse effects , SARS-CoV-2 , Strongyloides stercoralis , Strongyloidiasis/etiology , Animals , Developing Countries , Strongyloidiasis/drug therapy
9.
Psychiatry Investig ; 18(6): 505-512, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1271097

ABSTRACT

OBJECTIVE: The whole world is still struggling with the COVID-19 pandemic. Inflammation response, thought to be associated with severe illness and death, is an important research topic in COVID-19. Inflammation is also an essential condition explored in psychiatric illnesses. Our knowledge about the relationship between the inflammation response and psychiatric comorbidities in patients with COVID-19 is very limited. In this study, the relationship between anxiety and depression levels and inflammation response of patients with COVID-19 hospitalized in the hospital was examined. METHODS: 175 patients were included in the study. Sociodemographic Data Form, Beck Depression Inventory and Beck Anxiety Inventory were applied to the patients. To evaluate the inflammation responses, blood sedimentation rate, C-reactive protein (CRP), procalcitonin, ferritin, neutrophil/lymphocyte ratio (NLR), and IL-6 levels were examined. RESULTS: In our study, no relationship was found between anxiety and depression levels and inflammatory responses in patients hospitalized with a diagnosis of COVID-19. Anxiety and depression levels of women were higher than men, and NLR, ferritin, IL-6 levels were found to be lower than men. Anxiety levels increase with age. There is a positive correlation between NLR and ferritin levels and duration of hospitalization. CONCLUSION: Our study examining the relationship of psychiatric comorbidities with the inflammation response and our increasing literature knowledge, together with studies evaluating the mental effects of COVID-19, suggest that determining the relationship between inflammation responses and psychiatric comorbidities in COVID-19, whose pathophysiology has not been clarified yet, maybe an essential step in interventions on the course of the disease.

10.
Front Immunol ; 12: 665329, 2021.
Article in English | MEDLINE | ID: covidwho-1268251

ABSTRACT

Infection by novel coronavirus SARS-CoV-2 causes different presentations of COVID-19 and some patients may progress to a critical, fatal form of the disease that requires their admission to ICU and invasive mechanical ventilation. In order to predict in advance which patients could be more susceptible to develop a critical form of COVID-19, it is essential to define the most adequate biomarkers. In this study, we analyzed several parameters related to the cellular immune response in blood samples from 109 patients with different presentations of COVID-19 who were recruited in Hospitals and Primary Healthcare Centers in Madrid, Spain, during the first pandemic peak between April and June 2020. Hospitalized patients with the most severe forms of COVID-19 showed a potent inflammatory response that was not translated into an efficient immune response. Despite the high levels of effector cytotoxic cell populations such as NK, NKT and CD8+ T cells, they displayed immune exhaustion markers and poor cytotoxic functionality against target cells infected with pseudotyped SARS-CoV-2 or cells lacking MHC class I molecules. Moreover, patients with critical COVID-19 showed low levels of the highly cytotoxic TCRγδ+ CD8+ T cell subpopulation. Conversely, CD4 count was greatly reduced in association to high levels of Tregs, low plasma IL-2 and impaired Th1 differentiation. The relative importance of these immunological parameters to predict COVID-19 severity was analyzed by Random Forest algorithm and we concluded that the most important features were related to an efficient cytotoxic response. Therefore, efforts to fight against SARS-CoV-2 infection should be focused not only to decrease the disproportionate inflammatory response, but also to elicit an efficient cytotoxic response against the infected cells and to reduce viral replication.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Cytotoxicity, Immunologic , Intensive Care Units , Leukocytes, Mononuclear/immunology , Patient Admission/statistics & numerical data , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Biomarkers , COVID-19/diagnosis , COVID-19/virology , Comorbidity , Cytokines/metabolism , Female , Humans , Immunophenotyping , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
11.
Cardiovasc Res ; 117(10): 2148-2160, 2021 08 29.
Article in English | MEDLINE | ID: covidwho-1266112

ABSTRACT

The pandemic of coronavirus disease (COVID)-19 is a global threat, causing high mortality, especially in the elderly. The main symptoms and the primary cause of death are related to interstitial pneumonia. Viral entry also into myocardial cells mainly via the angiotensin converting enzyme type 2 (ACE2) receptor and excessive production of pro-inflammatory cytokines, however, also make the heart susceptible to injury. In addition to the immediate damage caused by the acute inflammatory response, the heart may also suffer from long-term consequences of COVID-19, potentially causing a post-pandemic increase in cardiac complications. Although the main cause of cardiac damage in COVID-19 remains coagulopathy with micro- (and to a lesser extent macro-) vascular occlusion, open questions remain about other possible modalities of cardiac dysfunction, such as direct infection of myocardial cells, effects of cytokines storm, and mechanisms related to enhanced coagulopathy. In this opinion paper, we focus on these lesser appreciated possibilities and propose experimental approaches that could provide a more comprehensive understanding of the cellular and molecular bases of cardiac injury in COVID-19 patients. We first discuss approaches to characterize cardiac damage caused by possible direct viral infection of cardiac cells, followed by formulating hypotheses on how to reproduce and investigate the hyperinflammatory and pro-thrombotic conditions observed in the heart of COVID-19 patients using experimental in vitro systems. Finally, we elaborate on strategies to discover novel pathology biomarkers using omics platforms.


Subject(s)
COVID-19/virology , Heart Diseases/virology , Heart/virology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Animals , Biomarkers/metabolism , Blood Coagulation , COVID-19/complications , Fibrosis , Heart/physiopathology , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Host-Pathogen Interactions , Humans , Inflammation Mediators/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ventricular Remodeling
12.
Front Mol Biosci ; 8: 666054, 2021.
Article in English | MEDLINE | ID: covidwho-1264344

ABSTRACT

The novel coronavirus pneumonia COVID-19 is characterized by all age susceptibility, which imposes a dramatic threat to the human species all over the world. According to current available data, the cytokine storm appears to be the most life-threatening symptom of severe COVID-19 cases accompanied with lung fibrosis. Galectin-3 (Gal-3), a member of soluble ß-galactoside-binding lectin families, has been implicated as a key regulator in various inflammation conditions in addition to its well-documented roles in cancer. The pro-inflammatory activity of Gal-3 in the inflammatory response and lung fibrosis of COVID-19 has been proposed by emerging studies, which suggested that inhibition of Gal-3 may represent a novel treatment approach for COVID-19 patients. Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with poor prognosis. ICC accounts for 10-25% of primary liver cancers with limited therapeutic options, which has higher incidence in Asian countries, particularly in China. Cancer patients, including ICC patients, are highly vulnerable to COVID-19 due to their impaired immune system. It is thus undoubtedly a challenge for our oncology department to establish effective treatment strategies under the influence of the COVID-19 crisis. According to our management procedures in the COVID-19 era, emergency treatment will be applied to ICC patients who are under life-threatening conditions, despite the COVID-19 infection. To the best of our knowledge, the modulatory function of Gal-3 in ICC is still barely explored to date. In order to evaluate the therapeutic potential of Gal-3 for ICC patients or those comprised with COVID-19, we herein report our preliminary investigation into roles of Gal-3 in ICC. Our results exhibited that the expression of Gal-3 was significantly up-regulated in ICC tissues, and a significant correlation was observed between its overexpression and malignant progression of ICC cells. We further discussed the activity and possible molecular mechanisms of Gal-3 in ICC, which may pave the ways for further exploring the possibility of Gal-3 as a potential therapeutic target for treating ICC patients or those with COVID-19-related conditions.

13.
IDCases ; 25: e01178, 2021.
Article in English | MEDLINE | ID: covidwho-1263274

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a rare but serious complication associated with COVID-19. It can lead to an inflammatory process in multiple body parts, including the heart, lungs, kidneys, and the brain. In this review, we describe the case of a 4-week-old infant with severe isolated systolic dysfunction who was found to be positive for COVID-19. He did not have the multi-system inflammatory syndrome in children (MIS-C) commonly associated with COVID-19 infection.

14.
J Infect Dev Ctries ; 15(5): 630-638, 2021 05 31.
Article in English | MEDLINE | ID: covidwho-1262629

ABSTRACT

INTRODUCTION: Viral infections have been described as triggers for Kawasaki Disease (KD), a medium vessel vasculitis that affects young children. Akin to the H1N1 pandemic in 2009, there is a similar rise in the incidence of KD in children affected with Coronavirus disease 2019 (COVID-19). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) has been reported to induce an exaggerated systemic inflammatory response resulting in multi-organ involvement, particularly initiated with pulmonary parenchymal damage. This review article will discuss KD-like manifestations in COVID-19 patients in the pediatric cohort. METHODOLOGY: Search terms "Kawasaki" "COVID-19" "SARS-COV-2" "PIM-TS" and "MIS-C" were used to look for relevant articles in PubMed and Google Scholar published in the last 5 years. RESULTS: There is some evidence to suggest that SARS-CoV-2 stimulates dysfunctional and hyperactive immune reactions mimicking KD in young patients. CONCLUSIONS: Therapeutic options, both investigational and repurposed, include intravenous immunoglobulins, steroids and anticoagulation. More studies are required to evaluate the effectiveness of these treatment options.


Subject(s)
COVID-19/complications , Mucocutaneous Lymph Node Syndrome , Child , Humans , Immunoglobulins, Intravenous/therapeutic use , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/physiopathology , Mucocutaneous Lymph Node Syndrome/virology , SARS-CoV-2
15.
J Med Virol ; 93(10): 5853-5863, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1252013

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) infection may rely on a potential genetic background for the variations in the inflammatory response. We aimed to investigate the possible correlation between polymorphisms in the IL-6 gene at rs1800796/rs1800795, in IL-6R at rs2228145, in IL-10 at rs1800896 and rs1800871, in IL-17 at rs2275913 and rs763780 loci, and COVID-19 prevalence and mortality rates among populations of 23 countries. METHODS: We searched the literature for polymorphisms in China, Japan, India, Spain, Mexico, Sweden, Turkey, Brazil, Russia, Poland, Italy, South Africa, Netherlands, Greece, Germany, UK, Iran, Finland, Czechia, Tunisia, Norway, Egypt, Croatia. We recorded the prevalence and mortality rates (per million) caused by the Coronavirus infection recorded on 7th September 2020 and 6th December 2020. RESULTS: There was a significant positive correlation between the frequency of AG genotype of rs1800896 and prevalence recorded on 6th December 2020 (r: 0.53, r2 : 0.28, p < .05). There was a significant negative correlation between the mortality rates recorded on 7th September, and the AG genotype of rs2275913 (r: -0.51, r2 : 0.26, p < .05). There was a significant positive correlation between the prevalence recorded on 6th December, and TT genotype at rs763780 (r: 0.65, r2 :0.42, p < .05) while a negative correlation between prevalence and TC genotype at rs763780 (r: -0.66, r2 : 0.43, p < .05). Also, a significant negative correlation was found between mortality rates recorded on 6th December 2020 and CC genotype at rs763780 (r: -0.56, r2 : 0.31, p < .05). CONCLUSION: The variations in prevalence of COVID-19 and its mortality rates among countries may be explained by the polymorphisms at rs1800896 in IL-10, rs2275913 in IL-17A, and rs763780 loci in the IL-17F gene.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Interleukins/genetics , COVID-19/mortality , Genetic Association Studies , Genotype , Humans , Interleukin-10/genetics , Interleukin-17/genetics , Interleukin-6/genetics , Polymorphism, Single Nucleotide , Prevalence , Receptors, Interleukin-6/genetics , SARS-CoV-2
16.
Front Physiol ; 12: 667024, 2021.
Article in English | MEDLINE | ID: covidwho-1247901

ABSTRACT

The kidnapping of the lipid metabolism of the host's cells by severe acute respiratory syndrome (SARS-CoV-2) allows the virus to transform the cells into optimal machines for its assembly and replication. Here we evaluated changes in the fatty acid (FA) profile and the participation of the activity of the desaturases, in plasma of patients with severe pneumonia by SARS-CoV-2. We found that SARS-CoV-2 alters the FA metabolism in the cells of the host. Changes are characterized by variations in the desaturases that lead to a decrease in total fatty acid (TFA), phospholipids (PL) and non-esterified fatty acids (NEFAs). These alterations include a decrease in palmitic and stearic acids (p ≤ 0.009) which could be used for the formation of the viral membranes and for the reparation of the host's own membrane. There is also an increase in oleic acid (OA; p = 0.001) which could modulate the inflammatory process, the cytokine release, apoptosis, necrosis, oxidative stress (OS). An increase in linoleic acid (LA) in TFA (p = 0.03) and a decreased in PL (p = 0.001) was also present. They result from damage of the internal mitochondrial membrane. The arachidonic acid (AA) percentage was elevated (p = 0.02) in the TFA and this can be participated in the inflammatory process. EPA was decreased (p = 0.001) and this may decrease of pro-resolving mediators with increase in the inflammatory process. The total of NEFAs (p = 0.03), PL (p = 0.001), cholesterol, HDL and LDL were decreased, and triglycerides were increased in plasma of the COVID-19 patients. Therefore, SARS-CoV-2 alters the FA metabolism, the changes are characterized by alterations in the desaturases that lead to variations in the TFA, PL, and NEFAs profiles. These changes may favor the replication of the virus but, at the same time, they are part of the defense system provided by the host cell metabolism in its eagerness to repair damage caused by the virus to cell membranes.

17.
Biomark Insights ; 16: 11772719211013363, 2021.
Article in English | MEDLINE | ID: covidwho-1247538

ABSTRACT

OBJECTIVES: There are several published works on the prognostic value of biomarkers in relation to the severity or fatal outcome of coronavirus disease 2019 (COVID-19). In Spain, the second European country in incidence of the disease at the time of data collection, there are few studies that include both laboratory parameters and clinical parameters. Our aim is to study the relationship of a wide series of biomarkers with admission to intensive care and death in a hospital in the Autonomous Community of Madrid (Spain), with special attention to IL-6 due to its role in the systemic inflammatory response associated with a worse prognosis of the disease. METHODS: Data were collected from 546 hospitalized patients with COVID-19. All of them had IL-6 results, in addition to other biochemical and haematological parameters. The difference of the medians for the selected parameters between the groups (ICU vs non-ICU, dead vs survivors) was studied using a Mann-Whitney analysis. The independent variables that predicted death were studied using a Cox proportional hazard regression model. RESULTS: Higher age and blood concentrations of ALT, creatinine, CK, cTnI, LDH, NT-proBNP, CRP, IL-6, leucocyte count and D-dimer together with lower blood concentrations of albumin and lymphocyte count were associated with mortality in univariate analysis. Age, LDH, IL-6 and lymphocyte count remained associated with death in multivariate analysis. CONCLUSIONS: Age, LDH, IL-6 and lymphocyte count, as independent predictors of death, could be used to establish more aggressive therapies in COVID-19 patients.

18.
Crit Care ; 25(1): 178, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1243817

ABSTRACT

A growing consensus seems to be emerging that dexamethasone is a crucial component in the treatment of COVID-19-associated oxygen-dependent respiratory failure. Although dexamethasone has an undeniably beneficial effect on the inflammatory response in a subgroup of patients, the potential negative effects of corticosteroids must also be considered. In view of these negative effects, we argue that a one-size-fits-all dexamethasone approach may be potentially harmful in specific subsets of patients with COVID-19-associated ARDS. We propose a different individually tailored treatment strategy based on the patient's inflammatory response.


Subject(s)
COVID-19/drug therapy , Critical Care/methods , Dexamethasone/therapeutic use , Inflammation/prevention & control , Respiratory Insufficiency/drug therapy , COVID-19/complications , Dexamethasone/adverse effects , Humans , Intensive Care Units , Respiratory Insufficiency/virology , Treatment Outcome
19.
Medicine (Baltimore) ; 100(21): e26023, 2021 May 28.
Article in English | MEDLINE | ID: covidwho-1242120

ABSTRACT

ABSTRACT: To assess tocilizumab (TCZ) efficacy associated to standard of care (SOC) compared to SOC alone in severe coronavirus associated disease 2019 (COVID-19) patients. In a matched case-control study from 3 French Hospital COVID-19 Departments, 27 patients with severe COVID-19 treated with TCZ and SOC were matched for baseline epidemiological and clinical features and compared to 27 severe COVID-19 patients treated with SOC alone. Baseline characteristics of the study population were comparable between groups. Eleven patients (20%) died. TCZ was not associated with clinical improvement as compared to SOC regarding oxygen-free status (44% vs 63%) and death (18.5% vs 22%), despite a higher decrease of the C-reactive protein at Day 7 (10.7 vs 52 mg/L; P < 10-3). Compared to the 43 patients alive at the end-of follow-up, patients who died were older (78 vs 64 years; P < 10-3), with 82% of them older than 72 years vs only 23% of live patients (P < 10-3). Age (OR = 1.15; 95%CI = 1.04-1.3; P = .008) and age over 72 years (OR) = 14.85; 95%CI = 2.7-80; P = .002) were independently associated with mortality. TCZ in addition to SOC for severe COVID-19 patients did not reduce mortality, subsequent need for invasive mechanical ventilation nor did it shorten the time of oxygen support, despite better control of the inflammatory response. More powerful and randomized controlled trials are warranted to determine if TCZ is effective in the management of COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , COVID-19/therapy , Respiration, Artificial/statistics & numerical data , Standard of Care/statistics & numerical data , Age Factors , Aged , COVID-19/diagnosis , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Female , Follow-Up Studies , France/epidemiology , Hospital Mortality , Humans , Male , Middle Aged , Oxygen/administration & dosage , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Treatment Outcome
20.
Scand J Clin Lab Invest ; 81(4): 255-263, 2021 07.
Article in English | MEDLINE | ID: covidwho-1242057

ABSTRACT

Coronaviruses belonging to the Coronaviridae family are single-stranded RNA viruses. The entry of SARS-CoV-2 is accomplished via ACE-2 receptors. SARS-CoV-2 infection coactivates both innate and adaptive immune responses. Although SARS-CoV-2 stimulates antibody production with a typical pattern of IgM/IgG, cellular immunity is also impaired. In severe cases, low CD4 + and CD8 + T cell counts are associated with impaired immune functions, and high neutrophil/lymphocyte ratios accompanying low lymphocyte subsets have been demonstrated. Recently, high IFN -α/γ ratios with impaired T cell responses, and increased IL-1, IL-6, TNF-α, MCP-1, IP-10, IL-4, IL-10 have been reported in COVID-19 infection. Increased proinflammatory cytokines and chemokines in patients with severe COVID-19 may cause the suppression of CD4 + and CD8 + T cells and regulatory T cells, causing excessive inflammatory responses and fatal cytokine storm with tissue and organ damage. Consequently, novel therapeutics to be developed against host immune system, including blockade of cytokines (IL-6, IL-1, IFN) themselves, their receptors or signaling pathways- JAK inhibitors- could be effective as potential therapeutics.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/immunology , COVID-19/physiopathology , Adrenal Cortex Hormones/therapeutic use , Animals , Antiviral Agents/therapeutic use , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/virology , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Glucocorticoids/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Immunotherapy/methods , Macrophages/immunology , Macrophages/pathology , Macrophages/virology
SELECTION OF CITATIONS
SEARCH DETAIL