Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 886
Filter
Add filters

Document Type
Year range
1.
Clin Infect Dis ; 2020 Jul 01.
Article in English | MEDLINE | ID: covidwho-1621566

ABSTRACT

We are learning that the host response to SARS-CoV-2 infection is complex and highly dynamic. Effective initial host defense in the lung is associated with mild symptoms and disease resolution. Viral evasion of the immune response can lead to refractory alveolar damage, ineffective lung repair mechanisms, and systemic inflammation with associated organ dysfunction. The immune response in these patients is highly variable and can include moderate to severe systemic inflammation and/or marked systemic immune suppression. There is unlikely to be a "one size fits all" approach to immunomodulation in patients with COVID-19.  We believe that a personalized, immunophenotype-driven approach to immunomodulation that may include anti-cytokine therapy in carefully selected patients and immunostimulatory therapies in others is the shortest path to success in the study and treatment of patients with critical illness due to COVID-19.

2.
Anaesthesist ; 2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-1574765

ABSTRACT

Since December 2019 a novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) has rapidly spread around the world resulting in an acute respiratory illness pandemic. The immense challenges for clinicians and hospitals as well as the strain on many healthcare systems has been unprecedented.The majority of patients present with mild symptoms of coronavirus disease 2019 (COVID-19); however, 5-8% become critically ill and require intensive care treatment. Acute hypoxemic respiratory failure with severe dyspnea and an increased respiratory rate (>30/min) usually leads to intensive care unit (ICU) admission. At this point bilateral pulmonary infiltrates are typically seen. Patients often develop a severe acute respiratory distress syndrome (ARDS).So far, remdesivir and dexamethasone have shown clinical effectiveness in severe COVID-19 in hospitalized patients. The main goal of supportive treatment is to ascertain adequate oxygenation. Invasive mechanical ventilation and repeated prone positioning are key elements in treating severely hypoxemic COVID-19 patients.Strict adherence to basic infection control measures (including hand hygiene) and correct use of personal protection equipment (PPE) are essential in the care of patients. Procedures that lead to formation of aerosols should be carried out with utmost precaution and preparation.

3.
Zhonghua Nei Ke Za Zhi ; 59(8): 610-617, 2020 Aug 01.
Article in Chinese | MEDLINE | ID: covidwho-1555470

ABSTRACT

Objective: To explore the feasibility of direct renin inhibitor aliskiren for the treatment of severe or critical coronavirus disease 2019 (COVID-19) patients with hypertension. Methods: The antihypertensive effects and safety of aliskiren was retrospectively analyzed in three severe and one critical COVID-19 patients with hypertension. Results: Four patients, two males and two females, with an average age of 78 years (66-87 years), were referred to hospital mainly because of respiratory symptoms. Three were diagnosed by positive novel coronavirus 2019 (2019-nCoV) nucleic acid or antibody, and the critical patient with cardiac insufficiency was clinically determined. Two patients were treated with calcium channel antagonist (CCB), one with angiotensin converting enzyme inhibitor (ACEI), and one with angiotensin Ⅱ receptor antagonist (ARB). After admission, ACEI and ARB were discontinued, one patient with heart failure was treated by aliskiren combined with diuretic.Three patients were treated with aliskiren combined with CCB among whom two withdrew CCB due to low blood pressure after 1 to 2 weeks. Based on comprehensive treatment including antiviral and oxygenation treatment, blood pressure was satisfactorily controlled by aliskiren after three to four weeks without serious adverse events. All patients were finally discharged. Conclusion: Our preliminary clinical data shows that antihypertensive effect of aliskiren is satisfactory and safe for severe COVID-19 patients complicated with hypertension.

4.
Can J Anaesth ; 67(9): 1217-1248, 2020 09.
Article in English | MEDLINE | ID: covidwho-1536371

ABSTRACT

PURPOSE: We conducted two World Health Organization-commissioned reviews to inform use of high-flow nasal cannula (HFNC) in patients with coronavirus disease (COVID-19). We synthesized the evidence regarding efficacy and safety (review 1), as well as risks of droplet dispersion, aerosol generation, and associated transmission (review 2) of viral products. SOURCE: Literature searches were performed in Ovid MEDLINE, Embase, Web of Science, Chinese databases, and medRxiv. Review 1: we synthesized results from randomized-controlled trials (RCTs) comparing HFNC to conventional oxygen therapy (COT) in critically ill patients with acute hypoxemic respiratory failure. Review 2: we narratively summarized findings from studies evaluating droplet dispersion, aerosol generation, or infection transmission associated with HFNC. For both reviews, paired reviewers independently conducted screening, data extraction, and risk of bias assessment. We evaluated certainty of evidence using GRADE methodology. PRINCIPAL FINDINGS: No eligible studies included COVID-19 patients. Review 1: 12 RCTs (n = 1,989 patients) provided low-certainty evidence that HFNC may reduce invasive ventilation (relative risk [RR], 0.85; 95% confidence interval [CI], 0.74 to 0.99) and escalation of oxygen therapy (RR, 0.71; 95% CI, 0.51 to 0.98) in patients with respiratory failure. Results provided no support for differences in mortality (moderate certainty), or in-hospital or intensive care length of stay (moderate and low certainty, respectively). Review 2: four studies evaluating droplet dispersion and three evaluating aerosol generation and dispersion provided very low certainty evidence. Two simulation studies and a crossover study showed mixed findings regarding the effect of HFNC on droplet dispersion. Although two simulation studies reported no associated increase in aerosol dispersion, one reported that higher flow rates were associated with increased regions of aerosol density. CONCLUSIONS: High-flow nasal cannula may reduce the need for invasive ventilation and escalation of therapy compared with COT in COVID-19 patients with acute hypoxemic respiratory failure. This benefit must be balanced against the unknown risk of airborne transmission.


Subject(s)
Coronavirus Infections/therapy , Oxygen Inhalation Therapy/methods , Pneumonia, Viral/therapy , Respiratory Insufficiency/therapy , Aerosols , COVID-19 , Cannula , Coronavirus Infections/complications , Coronavirus Infections/mortality , Humans , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Randomized Controlled Trials as Topic , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/virology
5.
Front Cardiovasc Med ; 7: 590688, 2020.
Article in English | MEDLINE | ID: covidwho-1485040

ABSTRACT

Background: There are growing evidence demonstrating that coronavirus disease 2019 (COVID-19) is companied by acute myocardial injury. However, the associations of SARS-CoV-2-induced myocardial injury with the risk of death and prognosis after discharge in COVID-19 patients are unclear. Methods: This prospective cohort study analyzed 355 COVID-19 patients from two hospitals in different regions. Clinical and demographic information were collected and prognosis was followed up. Results: Of 355 hospitalized patients with COVID-19, 213 were mild, 90 severe, and 52 critically ill patients. On admission, 59 (16.7%) patients were with myocardial injury. Myocardial injury was more popular in critically ill patients. Univariate and multivariate logistic regression revealed that male, older age and comorbidity with hypertension were three crucial independent risk factors predicting myocardial injury of COVID-19 patients. Among 59 COVID-19 patients with myocardial injury, 25 (42.4%) died on average 10.9 days after hospitalization. Mortality was increased among COVID-19 patients with myocardial injury (42.4 vs. 3.38%, RR = 12.542, P < 0.001). Follow-up study observed that 4.67% COVID-19 patients with myocardial injury were not fully recovered in 14 days after discharge. Conclusion: Myocardial injury at early stage elevates mortality of COVID-19 patients. Male elderly patients with hypertension are more vulnerable to myocardial injury. SARS-CoV-2-induced myocardial injury has not completely recovered in 14 days after discharge.

6.
JAMA ; 323(16): 1574-1581, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-1453471

ABSTRACT

Importance: In December 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) emerged in China and has spread globally, creating a pandemic. Information about the clinical characteristics of infected patients who require intensive care is limited. Objective: To characterize patients with coronavirus disease 2019 (COVID-19) requiring treatment in an intensive care unit (ICU) in the Lombardy region of Italy. Design, Setting, and Participants: Retrospective case series of 1591 consecutive patients with laboratory-confirmed COVID-19 referred for ICU admission to the coordinator center (Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy) of the COVID-19 Lombardy ICU Network and treated at one of the ICUs of the 72 hospitals in this network between February 20 and March 18, 2020. Date of final follow-up was March 25, 2020. Exposures: SARS-CoV-2 infection confirmed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay of nasal and pharyngeal swabs. Main Outcomes and Measures: Demographic and clinical data were collected, including data on clinical management, respiratory failure, and patient mortality. Data were recorded by the coordinator center on an electronic worksheet during telephone calls by the staff of the COVID-19 Lombardy ICU Network. Results: Of the 1591 patients included in the study, the median (IQR) age was 63 (56-70) years and 1304 (82%) were male. Of the 1043 patients with available data, 709 (68%) had at least 1 comorbidity and 509 (49%) had hypertension. Among 1300 patients with available respiratory support data, 1287 (99% [95% CI, 98%-99%]) needed respiratory support, including 1150 (88% [95% CI, 87%-90%]) who received mechanical ventilation and 137 (11% [95% CI, 9%-12%]) who received noninvasive ventilation. The median positive end-expiratory pressure (PEEP) was 14 (IQR, 12-16) cm H2O, and Fio2 was greater than 50% in 89% of patients. The median Pao2/Fio2 was 160 (IQR, 114-220). The median PEEP level was not different between younger patients (n = 503 aged ≤63 years) and older patients (n = 514 aged ≥64 years) (14 [IQR, 12-15] vs 14 [IQR, 12-16] cm H2O, respectively; median difference, 0 [95% CI, 0-0]; P = .94). Median Fio2 was lower in younger patients: 60% (IQR, 50%-80%) vs 70% (IQR, 50%-80%) (median difference, -10% [95% CI, -14% to 6%]; P = .006), and median Pao2/Fio2 was higher in younger patients: 163.5 (IQR, 120-230) vs 156 (IQR, 110-205) (median difference, 7 [95% CI, -8 to 22]; P = .02). Patients with hypertension (n = 509) were older than those without hypertension (n = 526) (median [IQR] age, 66 years [60-72] vs 62 years [54-68]; P < .001) and had lower Pao2/Fio2 (median [IQR], 146 [105-214] vs 173 [120-222]; median difference, -27 [95% CI, -42 to -12]; P = .005). Among the 1581 patients with ICU disposition data available as of March 25, 2020, 920 patients (58% [95% CI, 56%-61%]) were still in the ICU, 256 (16% [95% CI, 14%-18%]) were discharged from the ICU, and 405 (26% [95% CI, 23%-28%]) had died in the ICU. Older patients (n = 786; age ≥64 years) had higher mortality than younger patients (n = 795; age ≤63 years) (36% vs 15%; difference, 21% [95% CI, 17%-26%]; P < .001). Conclusions and Relevance: In this case series of critically ill patients with laboratory-confirmed COVID-19 admitted to ICUs in Lombardy, Italy, the majority were older men, a large proportion required mechanical ventilation and high levels of PEEP, and ICU mortality was 26%.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Critical Care/statistics & numerical data , Hospital Mortality , Intensive Care Units/statistics & numerical data , Pneumonia, Viral/epidemiology , Positive-Pressure Respiration/statistics & numerical data , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , COVID-19 , Comorbidity , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Critical Illness/therapy , Female , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Sex Distribution , Young Adult
7.
JAMA ; 323(16): 1582-1589, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-1453469

ABSTRACT

Importance: Coronavirus disease 2019 (COVID-19) is a pandemic with no specific therapeutic agents and substantial mortality. It is critical to find new treatments. Objective: To determine whether convalescent plasma transfusion may be beneficial in the treatment of critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Design, Setting, and Participants: Case series of 5 critically ill patients with laboratory-confirmed COVID-19 and acute respiratory distress syndrome (ARDS) who met the following criteria: severe pneumonia with rapid progression and continuously high viral load despite antiviral treatment; Pao2/Fio2 <300; and mechanical ventilation. All 5 were treated with convalescent plasma transfusion. The study was conducted at the infectious disease department, Shenzhen Third People's Hospital in Shenzhen, China, from January 20, 2020, to March 25, 2020; final date of follow-up was March 25, 2020. Clinical outcomes were compared before and after convalescent plasma transfusion. Exposures: Patients received transfusion with convalescent plasma with a SARS-CoV-2-specific antibody (IgG) binding titer greater than 1:1000 (end point dilution titer, by enzyme-linked immunosorbent assay [ELISA]) and a neutralization titer greater than 40 (end point dilution titer) that had been obtained from 5 patients who recovered from COVID-19. Convalescent plasma was administered between 10 and 22 days after admission. Main Outcomes and Measures: Changes of body temperature, Sequential Organ Failure Assessment (SOFA) score (range 0-24, with higher scores indicating more severe illness), Pao2/Fio2, viral load, serum antibody titer, routine blood biochemical index, ARDS, and ventilatory and extracorporeal membrane oxygenation (ECMO) supports before and after convalescent plasma transfusion. Results: All 5 patients (age range, 36-65 years; 2 women) were receiving mechanical ventilation at the time of treatment and all had received antiviral agents and methylprednisolone. Following plasma transfusion, body temperature normalized within 3 days in 4 of 5 patients, the SOFA score decreased, and Pao2/Fio2 increased within 12 days (range, 172-276 before and 284-366 after). Viral loads also decreased and became negative within 12 days after the transfusion, and SARS-CoV-2-specific ELISA and neutralizing antibody titers increased following the transfusion (range, 40-60 before and 80-320 on day 7). ARDS resolved in 4 patients at 12 days after transfusion, and 3 patients were weaned from mechanical ventilation within 2 weeks of treatment. Of the 5 patients, 3 have been discharged from the hospital (length of stay: 53, 51, and 55 days), and 2 are in stable condition at 37 days after transfusion. Conclusions and Relevance: In this preliminary uncontrolled case series of 5 critically ill patients with COVID-19 and ARDS, administration of convalescent plasma containing neutralizing antibody was followed by improvement in their clinical status. The limited sample size and study design preclude a definitive statement about the potential effectiveness of this treatment, and these observations require evaluation in clinical trials.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Adult , Aged , Antibodies, Viral/blood , Antiviral Agents/therapeutic use , Blood Donors , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Critical Illness , Female , Glucocorticoids/therapeutic use , Humans , Immunization, Passive , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Methylprednisolone/therapeutic use , Middle Aged , Organ Dysfunction Scores , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/physiopathology , SARS-CoV-2
9.
Ann Intensive Care ; 10(1): 24, 2020 Feb 13.
Article in English | MEDLINE | ID: covidwho-1453061

ABSTRACT

BACKGROUND: Right ventricular (RV) function evaluation by echocardiography is key in the management of ICU patients with acute respiratory distress syndrome (ARDS), however, it remains challenging. Quantification of RV deformation by speckle-tracking echocardiography (STE) is a recently available and reproducible technique that provides an integrated analysis of the RV. However, data are scarce regarding its use in critically ill patients. The aim of this study was to assess its feasibility and clinical usefulness in moderate-severe ARDS patients. RESULTS: Forty-eight ARDS patients under invasive mechanical ventilation (MV) were consecutively enrolled in a prospective observational study. A full transthoracic echocardiography was performed within 36 h of MV initiation. STE-derived and conventional parameters were recorded. Strain imaging of the RV lateral, inferior and septal walls was highly feasible (47/48 (98%) patients). Interobserver reproducibility of RV strain values displayed good reliability (intraclass correlation coefficients (ICC) > 0.75 for all STE-derived parameters) in ARDS patients. ROC curve analysis showed that lateral, inferior, global (average of the 3 RV walls) longitudinal systolic strain (LSS) and global strain rate demonstrated significant diagnostic values when compared to several conventional indices (TAPSE, S', RV FAC). A RV global LSS value > - 13.7% differentiated patients with a TAPSE < vs > 12 mm with a sensitivity of 88% and a specificity of 83%. Regarding clinical outcomes, mortality and cumulative incidence of weaning from MV at day 28 were not different in patients with normal versus abnormal STE-derived parameters. CONCLUSIONS: Global STE assessment of the RV was highly achievable and reproducible in moderate-severe ARDS patients under MV and additionally correlated with several conventional parameters of RV function. In our cohort, STE-derived parameters did not provide any incremental value in terms of survival or weaning from MV prediction. Further investigations are needed to evaluate their theranostic usefulness. Trial registration NCT02638844: NCT.

10.
Pharmacotherapy ; 40(5): 416-437, 2020 05.
Article in English | MEDLINE | ID: covidwho-1449937

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into an emergent global pandemic. Coronavirus disease 2019 (COVID-19) can manifest on a spectrum of illness from mild disease to severe respiratory failure requiring intensive care unit admission. As the incidence continues to rise at a rapid pace, critical care teams are faced with challenging treatment decisions. There is currently no widely accepted standard of care in the pharmacologic management of patients with COVID-19. Urgent identification of potential treatment strategies is a priority. Therapies include novel agents available in clinical trials or through compassionate use, and other drugs, repurposed antiviral and immunomodulating therapies. Many have demonstrated in vitro or in vivo potential against other viruses that are similar to SARS-CoV-2. Critically ill patients with COVID-19 have additional considerations related to adjustments for organ impairment and renal replacement therapies, complex lists of concurrent medications, limitations with drug administration and compatibility, and unique toxicities that should be evaluated when utilizing these therapies. The purpose of this review is to summarize practical considerations for pharmacotherapy in patients with COVID-19, with the intent of serving as a resource for health care providers at the forefront of clinical care during this pandemic.


Subject(s)
Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Coronavirus Infections/drug therapy , Immunomodulation , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adrenal Cortex Hormones , Alanine/administration & dosage , Alanine/adverse effects , Alanine/analogs & derivatives , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Azetidines/administration & dosage , Azetidines/adverse effects , Betacoronavirus , COVID-19 , Chloroquine/administration & dosage , Chloroquine/adverse effects , Coronavirus Infections/therapy , Drug Combinations , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Immunization, Passive , Interferon-alpha/administration & dosage , Interferon-alpha/adverse effects , Lopinavir/administration & dosage , Lopinavir/adverse effects , Nelfinavir/administration & dosage , Nelfinavir/adverse effects , Nitro Compounds , Pandemics , Purines , Pyrazoles , Ribavirin/administration & dosage , Ribavirin/adverse effects , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Thiazoles/administration & dosage , Thiazoles/adverse effects
14.
Tuberk Toraks ; 68(4): 388-398, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1380064

ABSTRACT

Introduction: Respiratory virus infections may cause serious respiratory failure requiring intensive care unit (ICU) admission. The objective of this study was to evaluate the clinical features and the outcome in patients with acute respiratory failure (ARF) due to viral infections comparing etiological agents. Materials and Methods: ARF patients with positive viral serology were retrospectively recruited. Cohort was evaluated with regard to subgroups as influenza and other respiratory viruses (ORV), as well as survivors and nonsurvivors. Result: Out of 938 admitted patients, 319 were followed as ARF and only 149 patients had viral respiratory panel results. In 49 patients with ARF, 52 positive viral results were detected and 47 patients with single positive viral isolates of either influenza or ORV were included. Among them, 62% had ORV with quite similar characteristics with influenza group apart from diabetes mellitus which was encountered more in influenza group (p= 0.02). Overall ICU mortality was 32% and there was no difference between the two groups (p= 0.42). Acute Physiology and Chronic Health Evaluation (APACHE) II score was independently associated with ICU mortality (OR: 1.25; 95% CI: 1.04-1.51; p= 0.02). Conclusions: This study emphasizes to consider the possibility of other respiratory viruses for the cause of ARF with similar characteristics and mortality as influenza species.


Subject(s)
Critical Illness , Influenza, Human/mortality , Patient Admission , Respiratory Distress Syndrome/mortality , APACHE , Adult , Aged , Cohort Studies , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies , Turkey , Young Adult
15.
J Clin Invest ; 130(9): 4791-4797, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-1365265

ABSTRACT

BACKGROUNDConvalescent plasma is the only antibody-based therapy currently available for patients with coronavirus disease 2019 (COVID-19). It has robust historical precedence and sound biological plausibility. Although promising, convalescent plasma has not yet been shown to be safe as a treatment for COVID-19.METHODSThus, we analyzed key safety metrics after transfusion of ABO-compatible human COVID-19 convalescent plasma in 5000 hospitalized adults with severe or life-threatening COVID-19, with 66% in the intensive care unit, as part of the US FDA expanded access program for COVID-19 convalescent plasma.RESULTSThe incidence of all serious adverse events (SAEs), including mortality rate (0.3%), in the first 4 hours after transfusion was <1%. Of the 36 reported SAEs, there were 25 reported incidences of related SAEs, including mortality (n = 4), transfusion-associated circulatory overload (n = 7), transfusion-related acute lung injury (n = 11), and severe allergic transfusion reactions (n = 3). However, only 2 of 36 SAEs were judged as definitely related to the convalescent plasma transfusion by the treating physician. The 7-day mortality rate was 14.9%.CONCLUSIONGiven the deadly nature of COVID-19 and the large population of critically ill patients included in these analyses, the mortality rate does not appear excessive. These early indicators suggest that transfusion of convalescent plasma is safe in hospitalized patients with COVID-19.TRIAL REGISTRATIONClinicalTrials.gov NCT04338360.FUNDINGMayo Clinic, Biomedical Advanced Research and Development Authority (75A50120C00096), National Center for Advancing Translational Sciences (UL1TR002377), National Heart, Lung, and Blood Institute (5R35HL139854 and R01 HL059842), National Institute of Diabetes and Digestive and Kidney Diseases (5T32DK07352), Natural Sciences and Engineering Research Council of Canada (PDF-532926-2019), National Institute of Allergy and Infectious Disease (R21 AI145356, R21 AI152318, and AI152078), Schwab Charitable Fund, United Health Group, National Basketball Association, Millennium Pharmaceuticals, and Octapharma USA Inc.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Compassionate Use Trials , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Female , Humans , Immunization, Passive/adverse effects , Immunization, Passive/mortality , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Safety , Transfusion Reaction/epidemiology , Transfusion Reaction/etiology , Transfusion-Related Acute Lung Injury/epidemiology , Transfusion-Related Acute Lung Injury/etiology , United States/epidemiology , United States Food and Drug Administration , Young Adult
18.
Biochimie ; 179: 275-280, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1326919

ABSTRACT

In around 10% of SARS-CoV-2 infected patients, coronavirus disease-2019 (Covid-19) symptoms are complicated with a severe lung damage called Acute Respiratory Distress Syndrome (ARDS), which is often lethal. ARDS is mainly associated with an uncontrolled overproduction of immune cells and cytokines, called "cytokine storm syndrome"; it appears 7-15 days following the onset of symptoms, leading to systemic inflammation and multiple organ failure. Because they are well-known metabolic precursors of specialized pro-resolving lipid mediators (SPMs), omega-3 long-chain polyunsaturated fatty acids (omega-3 LC-PUFAs) could help improve the resolution of the inflammatory balance, limiting therefore the level and duration of the critical inflammatory period. Omega-3 LC-PUFAs may also interact at different stages of the viral infection, notably on the virus entry and replication. In the absence of demonstrated treatment and while waiting for vaccine possibility, the use of omega-3 LC-PUFAs deserve therefore to be considered, based on previous clinical studies suggesting that omega-3 supplementation could improve clinical outcomes of critically ill patients at the acute phase of ARDS. In this context, it is crucial to remind that the omega-3 PUFA dietary intake levels in Western countries remains largely below the current recommendations, considering both the omega-3 precursor α-linolenic acid (ALA) and long chain derivatives such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). An optimized omega-3 PUFAs status could be helpful to prevent infectious diseases, including Covid-19.


Subject(s)
COVID-19/complications , Dietary Supplements , Fatty Acids, Omega-3/pharmacology , Animals , Clinical Trials as Topic , Humans
19.
Am J Chin Med ; 48(6): 1315-1330, 2020.
Article in English | MEDLINE | ID: covidwho-1243726

ABSTRACT

Critical care medicine is a medical specialty engaging the diagnosis and treatment of critically ill patients who have or are likely to have life-threatening organ failure. Sepsis, a life-threatening condition that arises when the body responds to infection, is currently the major cause of death in intensive care units (ICU). Although progress has been made in understanding the pathophysiology of sepsis, many drawbacks in sepsis treatment remains unresolved. For example, antimicrobial resistance, controversial of glucocorticoids use, prolonged duration of ICU care and the subsequent high cost of the treatment. Recent years have witnessed a growing trend of applying traditional Chinese medicine (TCM) in sepsis management. The TCM application emphasizes use of herbal formulation to balance immune responses to infection, which include clearing heat and toxin, promoting blood circulation and removing its stasis, enhancing gastrointestinal function, and strengthening body resistance. In this paper, we will provide an overview of the current status of Chinese herbal formulations, single herbs, and isolated compounds, as an add-on therapy to the standard Western treatment in the sepsis management. With the current trajectory of worldwide pandemic eruption of newly identified Coronavirus Disease-2019 (COVID-19), the adjuvant TCM therapy can be used in the ICU to treat critically ill patients infected with the novel coronavirus.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/therapeutic use , Immunologic Factors/therapeutic use , Medicine, Chinese Traditional , Pneumonia, Viral/drug therapy , Sepsis/drug therapy , Artemisinins/therapeutic use , Astragalus propinquus , Berberine/therapeutic use , Betacoronavirus , COVID-19 , Critical Illness , Emodin/therapeutic use , Humans , Intensive Care Units , Intestinal Mucosa , Microcirculation , Pandemics , Permeability , Rheum , SARS-CoV-2 , Salvia miltiorrhiza
20.
Med Intensiva (Engl Ed) ; 44(9): 551-565, 2020 Dec.
Article in Spanish | MEDLINE | ID: covidwho-1243085

ABSTRACT

The clinical picture of SARS-CoV-2 infection (COVID-19) is characterized in its more severe form, by an acute respiratory failure which can worsen to pneumonia and acute respiratory distress syndrome (ARDS) and get complicated with thrombotic events and heart dysfunction. Therefore, admission to the Intensive Care Unit (ICU) is common. Ultrasound, which has become an everyday tool in the ICU, can be very useful during COVID-19 pandemic, since it provides the clinician with information which can be interpreted and integrated within a global assessment during the physical examination. A description of some of the potential applications of ultrasound is depicted in this document, in order to supply the physicians taking care of these patients with an adapted guide to the intensive care setting. Some of its applications since ICU admission include verification of the correct position of the endotracheal tube, contribution to safe cannulation of lines, and identification of complications and thrombotic events. Furthermore, pleural and lung ultrasound can be an alternative diagnostic test to assess the degree of involvement of the lung parenchyma by means of the evaluation of specific ultrasound patterns, identification of pleural effusions and barotrauma. Echocardiography provides information of heart involvement, detects cor pulmonale and shock states.


Subject(s)
COVID-19/diagnostic imaging , SARS-CoV-2 , Ultrasonography, Interventional/methods , Blood Vessels/diagnostic imaging , COVID-19/complications , Critical Care , Critical Illness , Echocardiography , Heart Diseases/diagnostic imaging , Heart Diseases/etiology , Heart Ventricles/diagnostic imaging , Humans , Hypertension, Pulmonary/diagnostic imaging , Intensive Care Units , Intubation, Intratracheal/methods , Lung/diagnostic imaging , Organ Size , Pleura/diagnostic imaging , Pleural Effusion/diagnostic imaging , Pneumothorax/diagnostic imaging , Pulmonary Heart Disease/diagnostic imaging , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Shock/diagnostic imaging , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...