Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Infect Dis ; 224(6): 956-966, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1429243

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) continues to be a major public health challenge globally. The identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived T-cell epitopes is of critical importance for peptide vaccines or diagnostic tools of COVID-19. METHODS: In this study, several SARS-CoV-2-derived human leukocyte antigen (HLA)-I binding peptides were predicted by NetMHCpan-4.1 and selected by Popcover to achieve pancoverage of the Chinese population. The top 5 ranked peptides derived from each protein of SARS-CoV-2 were then evaluated using peripheral blood mononuclear cells from unexposed individuals (negative for SARS-CoV-2 immunoglobulin G). RESULTS: Seven epitopes derived from 4 SARS-CoV-2 proteins were identified. It is interesting to note that most (5 of 7) of the SARS-CoV-2-derived peptides with predicted affinities for HLA-I molecules were identified as HLA-II-restricted epitopes and induced CD4+ T cell-dependent responses. These results complete missing pieces of pre-existing SARS-CoV-2-specific T cells and suggest that pre-existing T cells targeting all SARS-CoV-2-encoded proteins can be discovered in unexposed populations. CONCLUSIONS: In summary, in the current study, we present an alternative and effective strategy for the identification of T-cell epitopes of SARS-CoV-2 in healthy subjects, which may indicate an important role in the development of peptide vaccines for COVID-19.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Epitopes, T-Lymphocyte/immunology , Vaccines, Subunit/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Humans , Leukocytes, Mononuclear/immunology , SARS-CoV-2
2.
Vaccines (Basel) ; 8(3)2020 Jul 20.
Article in English | MEDLINE | ID: covidwho-1389560

ABSTRACT

The efficacy of SARS-CoV-2 nucleic acid-based vaccines may be limited by proteolysis of the translated product due to anomalous protein folding. This may be the case for vaccines employing linear SARS-CoV-2 B-cell epitopes identified in previous studies since most of them participate in secondary structure formation. In contrast, we have employed a consensus of predictors for epitopic zones plus a structural filter for identifying 20 unstructured B-cell epitope-containing loops (uBCELs) in S, M, and N proteins. Phylogenetic comparison suggests epitope switching with respect to SARS-CoV in some of the identified uBCELs. Such events may be associated with the reported lack of serum cross-protection between the 2003 and 2019 pandemic strains. Incipient variability within a sample of 1639 SARS-CoV-2 isolates was also detected for 10 uBCELs which could cause vaccine failure. Intermediate stages of the putative epitope switch events were observed in bat coronaviruses in which additive mutational processes possibly facilitating evasion of the bat immune system appear to have taken place prior to transfer to humans. While there was some overlap between uBCELs and previously validated SARS-CoV B-cell epitopes, multiple uBCELs had not been identified in prior studies. Overall, these uBCELs may facilitate the development of biomedical products for SARS-CoV-2.

3.
Cell Rep Med ; 2(6): 100312, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1275763

ABSTRACT

Knowledge of the epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targeted by T cells in recovered (convalescent) individuals is important for understanding T cell immunity against coronavirus disease 2019 (COVID-19). This information can aid development and assessment of COVID-19 vaccines and inform novel diagnostic technologies. Here, we provide a unified description and meta-analysis of SARS-CoV-2 T cell epitopes compiled from 18 studies of cohorts of individuals recovered from COVID-19 (852 individuals in total). Our analysis demonstrates the broad diversity of T cell epitopes that have been recorded for SARS-CoV-2. A large majority are seemingly unaffected by current variants of concern. We identify a set of 20 immunoprevalent epitopes that induced T cell responses in multiple cohorts and in a large fraction of tested individuals. The landscape of SARS-CoV-2 T cell epitopes we describe can help guide immunological studies, including those related to vaccines and diagnostics. A web-based platform has been developed to help complement these efforts.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/metabolism , Amino Acid Sequence , COVID-19/pathology , COVID-19/virology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HLA Antigens/genetics , Humans , Immunity , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Immunol Cell Biol ; 99(9): 990-1000, 2021 10.
Article in English | MEDLINE | ID: covidwho-1258941

ABSTRACT

In-depth understanding of human T-cell-mediated immunity in coronavirus disease 2019 (COVID-19) is needed if we are to optimize vaccine strategies and immunotherapies. Identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T-cell epitopes and generation of peptide-human leukocyte antigen (peptide-HLA) tetramers facilitate direct ex vivo analyses of SARS-CoV-2-specific T cells and their T-cell receptor (TCR) repertoires. We utilized a combination of peptide prediction and in vitro peptide stimulation to validate novel SARS-CoV-2 epitopes restricted by HLA-A*24:02, one of the most prominent HLA class I alleles, especially in Indigenous and Asian populations. Of the peptides screened, three spike-derived peptides generated CD8+ IFNγ+ responses above background, S1208-1216 (QYIKWPWYI), S448-456 (NYNYLYRLF) and S193-201 (VFKNIDGYF), with S1208 generating immunodominant CD8+ IFNγ+ responses. Using peptide-HLA-I tetramers, we performed direct ex vivo tetramer enrichment for HLA-A*24:02-restricted CD8+ T cells in COVID-19 patients and prepandemic controls. The precursor frequencies for HLA-A*24:02-restricted epitopes were within the range previously observed for other SARS-CoV-2 epitopes for both COVID-19 patients and prepandemic individuals. Naïve A24/SARS-CoV-2-specific CD8+ T cells increased nearly 7.5-fold above the average precursor frequency during COVID-19, gaining effector and memory phenotypes. Ex vivo single-cell analyses of TCRαß repertoires found that the A24/S448 + CD8+ T-cell TCRαß repertoire was driven by a common TCRß chain motif, whereas the A24/S1208 + CD8+ TCRαß repertoire was diverse across COVID-19 patients. Our study provides an in depth characterization and important insights into SARS-CoV-2-specific CD8+ T-cell responses associated with a prominent HLA-A*24:02 allomorph. This contributes to our knowledge on adaptive immune responses during primary COVID-19 and could be exploited in vaccine or immunotherapeutic approaches.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 , HLA-A24 Antigen , Receptors, Antigen, T-Cell/immunology , COVID-19/immunology , Humans , SARS-CoV-2
5.
NPJ Vaccines ; 6(1): 71, 2021 May 13.
Article in English | MEDLINE | ID: covidwho-1228257

ABSTRACT

Natural and vaccine-induced SARS-CoV-2 immunity in humans has been described but correlates of protection are not yet defined. T cells support the SARS-CoV-2 antibody response, clear virus-infected cells, and may be required to block transmission. In this study, we identified peptide epitopes associated with SARS-CoV-2 T-cell immunity. Using immunoinformatic methods, T-cell epitopes from spike, membrane, and envelope were selected for maximal HLA-binding potential, coverage of HLA diversity, coverage of circulating virus, and minimal potential cross-reactivity with self. Direct restimulation of PBMCs collected from SARS-CoV-2 convalescents confirmed 66% of predicted epitopes, whereas only 9% were confirmed in naive individuals. However, following a brief period of epitope-specific T-cell expansion, both cohorts demonstrated robust T-cell responses to 97% of epitopes. HLA-DR3 transgenic mouse immunization with peptides co-formulated with poly-ICLC generated a potent Th1-skewed, epitope-specific memory response, alleviating safety concerns of enhanced respiratory disease associated with Th2 induction. Taken together, these epitopes may be used to improve our understanding of natural and vaccine-induced immunity, and to facilitate the development of T-cell-targeted vaccines that harness pre-existing SARS-CoV-2 immunity.

6.
J Immunol ; 206(11): 2527-2535, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1227097

ABSTRACT

The T cell response is an important detection index in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine development. The present study was undertaken to determine the T cell epitopes in the spike (S) protein of SARS-CoV-2 that dominate the T cell responses in SARS-CoV-2-infected patients. PBMCs from rhesus macaques vaccinated with a DNA vaccine encoding the full-length S protein were isolated, and an ELISPOT assay was used to identify the recognized T cell epitopes among a total of 158 18-mer and 10-aa-overlapping peptides spanning the full-length S protein. Six multipeptide-based epitopes located in the S1 region, with four of the six located in the receptor-binding domain, were defined as the most frequently recognized epitopes in macaques. The conservation of the epitopes across species was also verified, and peptide mixtures for T cell response detection were established. Six newly defined T cell epitopes were found in the current study, which may provide a novel potential target for T cell response detection and the diagnosis and vaccine design of SARS-CoV-2 based on multipeptide subunit-based epitopes.


Subject(s)
Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Macaca mulatta
7.
Chimia (Aarau) ; 75(4): 276-284, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1204184

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current public health crisis with devastating consequences to our societies. This COVID-19 pandemic has become the most serious threat to global public health in recent history. Given the unprecedented economic and social impact that it is causing, identification of immunodominant epitopes from SARS-CoV-2 is of great interest, not only to gain better insight into the adaptive immune response, but also for the development of vaccines, treatments and diagnostic tools. In this review, we summarize the already published or preprinted reports on the experimental identification of B-cell linear epitopes of SARS-CoV-2 proteins. Six different epitopes leading to neutralizing antibodies have been identified. Moreover, a summary of peptide candidates to be used for diagnostic tools is also included.


Subject(s)
COVID-19 , Pandemics , B-Lymphocytes , Epitopes, B-Lymphocyte , Humans , Immunodominant Epitopes , SARS-CoV-2
8.
Nat Immunol ; 22(1): 74-85, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065902

ABSTRACT

T cell immunity is central for the control of viral infections. To characterize T cell immunity, but also for the development of vaccines, identification of exact viral T cell epitopes is fundamental. Here we identify and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals. SARS-CoV-2-specific peptides enabled detection of post-infectious T cell immunity, even in seronegative convalescent individuals. Cross-reactive SARS-CoV-2 peptides revealed pre-existing T cell responses in 81% of unexposed individuals and validated similarity with common cold coronaviruses, providing a functional basis for heterologous immunity in SARS-CoV-2 infection. Diversity of SARS-CoV-2 T cell responses was associated with mild symptoms of COVID-19, providing evidence that immunity requires recognition of multiple epitopes. Together, the proposed SARS-CoV-2 T cell epitopes enable identification of heterologous and post-infectious T cell immunity and facilitate development of diagnostic, preventive and therapeutic measures for COVID-19.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , Peptides/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Viral Vaccines/immunology , COVID-19/prevention & control , COVID-19/virology , Cross Reactions/immunology , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Immunologic Memory/immunology , SARS-CoV-2/physiology , T-Lymphocytes/metabolism , Viral Vaccines/administration & dosage
9.
Adv Drug Deliv Rev ; 171: 29-47, 2021 04.
Article in English | MEDLINE | ID: covidwho-1064698

ABSTRACT

Growing evidence suggests that T cells may play a critical role in combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, COVID-19 vaccines that can elicit a robust T cell response may be particularly important. The design, development and experimental evaluation of such vaccines is aided by an understanding of the landscape of T cell epitopes of SARS-CoV-2, which is largely unknown. Due to the challenges of identifying epitopes experimentally, many studies have proposed the use of in silico methods. Here, we present a review of the in silico methods that have been used for the prediction of SARS-CoV-2 T cell epitopes. These methods employ a diverse set of technical approaches, often rooted in machine learning. A performance comparison is provided based on the ability to identify a specific set of immunogenic epitopes that have been determined experimentally to be targeted by T cells in convalescent COVID-19 patients, shedding light on the relative performance merits of the different approaches adopted by the in silico studies. The review also puts forward perspectives for future research directions.


Subject(s)
COVID-19 Vaccines/metabolism , COVID-19/metabolism , Computer Simulation , Epitopes, T-Lymphocyte/metabolism , SARS-CoV-2/metabolism , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Computer Simulation/trends , Epitopes, T-Lymphocyte/immunology , Humans , SARS-CoV-2/immunology
10.
Clin Transl Immunology ; 9(12): e1227, 2020.
Article in English | MEDLINE | ID: covidwho-1037499

ABSTRACT

OBJECTIVES: Bacillus Calmette-Guérin (BCG) vaccination has been implicated in protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and as a non-specific immunisation method against the virus. We therefore decided to investigate T-cell and B-cell epitopes within the BCG-Pasteur strain proteome for similarity to immunogenic peptides of SARS-CoV-2. METHODS: We used NetMHC 4.0 and BepiPred 2.0 epitope prediction methods for the analysis of the BCG-Pasteur proteome to identify similar peptides to established and novel SARS-CoV-2 T-cell and B-cell epitopes. RESULTS: We found 112 BCG MHC-I-restricted T-cell epitopes similar to MHC-I-restricted T-cell SARS-CoV-2 epitopes and 690 BCG B-cell epitopes similar to SARS-CoV-2 B-cell epitopes. The SARS-CoV-2 T-cell epitopes represented 16 SARS-CoV-2 proteins, and the SARS-CoV-2 B-cell epitopes represented 5 SARS-CoV-2 proteins, including the receptor binding domain of the spike glycoprotein. CONCLUSION: Altogether, our results provide a mechanistic basis for the potential cross-reactive adaptive immunity that may exist between the two microorganisms.

11.
Sci Rep ; 10(1): 22375, 2020 12 23.
Article in English | MEDLINE | ID: covidwho-997939

ABSTRACT

The global population is at present suffering from a pandemic of Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The goal of this study was to use artificial intelligence (AI) to predict blueprints for designing universal vaccines against SARS-CoV-2, that contain a sufficiently broad repertoire of T-cell epitopes capable of providing coverage and protection across the global population. To help achieve these aims, we profiled the entire SARS-CoV-2 proteome across the most frequent 100 HLA-A, HLA-B and HLA-DR alleles in the human population, using host-infected cell surface antigen presentation and immunogenicity predictors from the NEC Immune Profiler suite of tools, and generated comprehensive epitope maps. We then used these epitope maps as input for a Monte Carlo simulation designed to identify statistically significant "epitope hotspot" regions in the virus that are most likely to be immunogenic across a broad spectrum of HLA types. We then removed epitope hotspots that shared significant homology with proteins in the human proteome to reduce the chance of inducing off-target autoimmune responses. We also analyzed the antigen presentation and immunogenic landscape of all the nonsynonymous mutations across 3,400 different sequences of the virus, to identify a trend whereby SARS-COV-2 mutations are predicted to have reduced potential to be presented by host-infected cells, and consequently detected by the host immune system. A sequence conservation analysis then removed epitope hotspots that occurred in less-conserved regions of the viral proteome. Finally, we used a database of the HLA haplotypes of approximately 22,000 individuals to develop a "digital twin" type simulation to model how effective different combinations of hotspots would work in a diverse human population; the approach identified an optimal constellation of epitope hotspots that could provide maximum coverage in the global population. By combining the antigen presentation to the infected-host cell surface and immunogenicity predictions of the NEC Immune Profiler with a robust Monte Carlo and digital twin simulation, we have profiled the entire SARS-CoV-2 proteome and identified a subset of epitope hotspots that could be harnessed in a vaccine formulation to provide a broad coverage across the global population.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Machine Learning , Pandemics/prevention & control , Proteome , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/immunology , Algorithms , Alleles , Amino Acid Sequence , COVID-19/virology , Drug Evaluation, Preclinical/methods , Epitopes, T-Lymphocyte/immunology , HLA Antigens/genetics , Haplotypes , Humans , Immunogenicity, Vaccine , Mutation , Proteomics/methods , SARS-CoV-2/genetics , Software
12.
Biology (Basel) ; 9(9)2020 Sep 18.
Article in English | MEDLINE | ID: covidwho-789329

ABSTRACT

The outbreak of 2019-novel coronavirus (SARS-CoV-2) that causes severe respiratory infection (COVID-19) has spread in China, and the World Health Organization has declared it a pandemic. However, no approved drug or vaccines are available, and treatment is mainly supportive and through a few repurposed drugs. The urgency of the situation requires the development of SARS-CoV-2-based vaccines. Immunoinformatic and molecular modelling are time-efficient methods that are generally used to accelerate the discovery and design of the candidate peptides for vaccine development. In recent years, the use of multiepitope vaccines has proved to be a promising immunization strategy against viruses and pathogens, thus inducing more comprehensive protective immunity. The current study demonstrated a comprehensive in silico strategy to design stable multiepitope vaccine construct (MVC) from B-cell and T-cell epitopes of essential SARS-CoV-2 proteins with the help of adjuvants and linkers. The integrated molecular dynamics simulations analysis revealed the stability of MVC and its interaction with human Toll-like receptors (TLRs), which trigger an innate and adaptive immune response. Later, the in silico cloning in a known pET28a vector system also estimated the possibility of MVC expression in Escherichia coli. Despite that this study lacks validation of this vaccine construct in terms of its efficacy, the current integrated strategy encompasses the initial multiple epitope vaccine design concepts. After validation, this MVC can be present as a better prophylactic solution against COVID-19.

13.
Arch Med Res ; 52(1): 15-24, 2021 01.
Article in English | MEDLINE | ID: covidwho-753927

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic has spread to almost all nooks and corners of the world. There are numerous potential approaches to pharmacologically fight COVID-19: small-molecule drugs, interferon therapies, vaccines, oligonucleotides, peptides, and monoclonal antibodies. Medications are being developed to target the spike, membrane, nucleocapsid or envelope proteins. The spike protein is also a critical target for vaccine development. Immunoinformatic approaches are being used for the identification of B cell and cytotoxic T lymphocyte (CTL) epitopes in the SARS-CoV-2 spike protein. Different vaccine vectors are also being developed. Chemical and physical methods such as formaldehyde, UV light or ß-propiolactone are being deployed for the preparation of inactivated virus vaccine. Currently, there are many vaccines undergoing clinical trials. Even though mRNA and DNA vaccines are being designed and moved into clinical trials, these types of vaccines are yet to be approved by regulatory bodies for human use. This review focuses on the drugs and vaccines being developed against the COVID-19.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/immunology , COVID-19 Vaccines/chemistry , Drug Development/methods , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Spike Glycoprotein, Coronavirus/chemistry
14.
Emerg Microbes Infect ; 9(1): 1988-1996, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-730431

ABSTRACT

ABSTRACT Pandemic SARS-CoV-2 has caused unprecedented mortalities. Vaccine is in urgent need to stop the pandemic. Despite great progresses on SARS-CoV-2 vaccine development, the efficacy of the vaccines remains to be determined. Deciphering the interactions of the viral epitopes with the elicited neutralizing antibodies in convalescent population inspires the vaccine development. In this study, we devised a peptide array composed of 20-mer overlapped peptides of spike (S), membrane (M) and envelope (E) proteins, and performed a screening with 120 COVID-19 convalescent sera and 24 non-COVID-19 sera. We identified five SARS-CoV-2-specific dominant epitopes that reacted with above 40% COVID-19 convalescent sera. Of note, two peptides non-specifically interacted with most of the non-COVID-19 sera. Neutralization assay indicated that only five sera completely blocked viral infection at the dilution of 1:200. By using a peptide-compete neutralizing assay, we found that three dominant epitopes partially competed the neutralization activity of several convalescent sera, suggesting antibodies elicited by these epitopes played an important role in neutralizing viral infection. The epitopes we identified in this study may serve as vaccine candidates to elicit neutralizing antibodies in most vaccinated people or specific antigens for SARS-CoV-2 diagnosis.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Epitopes, B-Lymphocyte/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Animals , B-Lymphocytes/immunology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Humans , Immunization, Passive , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Viral Envelope Proteins/immunology
15.
Science ; 370(6512): 89-94, 2020 10 02.
Article in English | MEDLINE | ID: covidwho-695026

ABSTRACT

Many unknowns exist about human immune responses to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. SARS-CoV-2-reactive CD4+ T cells have been reported in unexposed individuals, suggesting preexisting cross-reactive T cell memory in 20 to 50% of people. However, the source of those T cells has been speculative. Using human blood samples derived before the SARS-CoV-2 virus was discovered in 2019, we mapped 142 T cell epitopes across the SARS-CoV-2 genome to facilitate precise interrogation of the SARS-CoV-2-specific CD4+ T cell repertoire. We demonstrate a range of preexisting memory CD4+ T cells that are cross-reactive with comparable affinity to SARS-CoV-2 and the common cold coronaviruses human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Thus, variegated T cell memory to coronaviruses that cause the common cold may underlie at least some of the extensive heterogeneity observed in coronavirus disease 2019 (COVID-19) disease.


Subject(s)
Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte/immunology , Immunologic Memory , Pneumonia, Viral/immunology , Betacoronavirus/genetics , Blood Donors , COVID-19 , Cross Reactions , Epitope Mapping , Epitopes, T-Lymphocyte/genetics , Genome, Viral , Humans , Open Reading Frames , Pandemics , SARS-CoV-2 , Sequence Homology
16.
Int Immunopharmacol ; 86: 106738, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-625162

ABSTRACT

The beginning of 2020 was marked as the emergence of a COVID-19 outbreak caused by a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there is no vaccine or approved treatment for this infectious virus so the invention of an efficient vaccine is certainly a high priority. Some studies have employed several techniques to facilitate the combination of the immunoinformatics approach and comparative genomic approach in order to determine the potential peptides for designing the T-cell epitope-based peptide vaccine using the 2019-nCoV envelope protein as a target. Via screening the bioimmunoinformatic SARS-CoV2 derived B-cell and T-cell epitopes within the basic immunogenic of SARS-CoV2 proteins, we presented a set of inferred B-cell and T-cell epitopes from the spike (S) and nucleocapsid (N) proteins with high antigenicity and without allergenic property or toxic effects. Our findings provide a screened set of epitopes that can be introduced as potential targets for developing peptide vaccines against the SARS-CoV-2 virus.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Nucleocapsid Proteins/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , COVID-19 , Computational Biology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Drug Development/methods , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Vaccines, Subunit/immunology , Vaccines, Subunit/therapeutic use , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL