Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Vox Sang ; 116(10): 1076-1083, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1515248

ABSTRACT

BACKGROUND AND OBJECTIVES: Convalescent plasma (CP) has been embraced as a safe therapeutic option for coronavirus disease 2019 (COVID-19), while other treatments are developed. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not transmissible by transfusion, but bloodborne pathogens remain a risk in regions with high endemic prevalence of disease. Pathogen reduction can mitigate this risk; thus, the objective of this study was to evaluate the effect of riboflavin and ultraviolet light (R + UV) pathogen reduction technology on the functional properties of COVID-19 CP (CCP). MATERIALS AND METHODS: COVID-19 convalescent plasma units (n = 6) from recovered COVID-19 research donors were treated with R + UV. Pre- and post-treatment samples were tested for coagulation factor and immunoglobulin retention. Antibody binding to spike protein receptor-binding domain (RBD), S1 and S2 epitopes of SARS-CoV-2 was assessed by ELISA. Neutralizing antibody (nAb) function was assessed by pseudovirus reporter viral particle neutralization (RVPN) assay and plaque reduction neutralization test (PRNT). RESULTS: Mean retention of coagulation factors was ≥70%, while retention of immunoglobulins was 100%. Starting nAb titres were low, but PRNT50 titres did not differ between pre- and post-treatment samples. No statistically significant differences were detected in levels of IgG (P ≥ 0·3665) and IgM (P ≥ 0·1208) antibodies to RBD, S1 and S2 proteins before and after treatment. CONCLUSION: R + UV PRT effects on coagulation factors were similar to previous reports, but no significant effects were observed on immunoglobulin concentration and antibody function. SARS-CoV-2 nAb function in CCP is conserved following R + UV PRT treatment.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Riboflavin , SARS-CoV-2 , Technology , Ultraviolet Rays
2.
Infect Disord Drug Targets ; 21(4): 541-552, 2021.
Article in English | MEDLINE | ID: covidwho-1496791

ABSTRACT

BACKGROUND: Since December 2019, a novel coronavirus, SARS-CoV-2, has caused global public health issues after being reported for the first time in Wuhan province of China. So far, there have been approximately 14.8 million confirmed cases and 0.614 million deaths due to the SARS-CoV-2 infection globally, and still, numbers are increasing. Although the virus has caused a global public health concern, no effective treatment has been developed. OBJECTIVE: One of the strategies to combat the COVID-19 disease caused by SARS-CoV-2 is the development of vaccines that can make humans immune to these infections. Considering this approach, in this study, an attempt has been made to design epitope-based vaccine for combatting COVID-19 disease by analyzing the complete proteome of the virus by using immuno-informatics tools. METHODS: The protein sequence of the SARS-CoV-2 was retrieved and the individual proteins were checked for their allergic potential. Then, from non-allergen proteins, antigenic epitopes were identified that could bind with MHCII molecules. The epitopes were modeled and docked to predict the interaction with MHCII molecules. The stability of the epitope-MHCII complex was further analyzed by performing a molecular dynamics simulation study. The selected vaccine candidates were also analyzed for their global population coverage and conservancy among SARS-related coronavirus species. RESULTS: The study has predicted 5 peptide molecules that can act as potential candidates for epitope- based vaccine development. Among the 5 selected epitopes, the peptide LRARSVSPK can be the most potent epitope because of its high geometric shape complementarity score, low ACE and very high response towards it by the world population (81.81% global population coverage). Further, molecular dynamic simulation analysis indicated the formation of a stable epitope-MHCII complex. The epitope LRARSVSPK was also found to be highly conserved among the SARS-CoV- -2 isolated from different countries. CONCLUSION: The study has predicted T-cell epitopes that can elicit a robust immune response in the global human population and act as potential vaccine candidates. However, the ability of these epitopes to act as vaccine candidate needs to be validated in wet lab studies.


Subject(s)
COVID-19 , Vaccines , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
J Virol ; 95(15): e0053021, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1486507

ABSTRACT

Elicitation of lung tissue-resident memory CD8 T cells (TRMs) is a goal of T cell-based vaccines against respiratory viral pathogens, such as influenza A virus (IAV). C-C chemokine receptor type 2 (CCR2)-dependent monocyte trafficking plays an essential role in the establishment of CD8 TRMs in lungs of IAV-infected mice. Here, we used a combination adjuvant-based subunit vaccine strategy that evokes multifaceted (TC1/TC17/TH1/TH17) IAV nucleoprotein-specific lung TRMs to determine whether CCR2 and monocyte infiltration are essential for vaccine-induced TRM development and protective immunity to IAV in lungs. Following intranasal vaccination, neutrophils, monocytes, conventional dendritic cells (DCs), and monocyte-derived dendritic cells internalized and processed vaccine antigen in lungs. We found that basic leucine zipper ATF-like transcription factor 3 (BATF3)-dependent DCs were essential for eliciting T cell responses, but CCR2 deficiency enhanced the differentiation of CD127hi, KLRG-1lo, OX40+ve CD62L+ve, and mucosally imprinted CD69+ve CD103+ve effector and memory CD8 T cells in lungs and airways of vaccinated mice. Mechanistically, increased development of lung TRMs induced by CCR2 deficiency was linked to dampened expression of T-bet but not altered TCF-1 levels or T cell receptor signaling in CD8 T cells. T1/T17 functional programming, parenchymal localization of CD8/CD4 effector and memory T cells, recall T cell responses, and protective immunity to a lethal IAV infection were unaffected in CCR2-deficient mice. Taken together, we identified a negative regulatory role for CCR2 and monocyte trafficking in mucosal imprinting and differentiation of vaccine-induced TRMs. Mechanistic insights from this study may aid the development of T-cell-based vaccines against respiratory viral pathogens, including IAV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IMPORTANCE While antibody-based immunity to influenza A virus (IAV) is type and subtype specific, lung- and airway-resident memory T cells that recognize conserved epitopes in the internal viral proteins are known to provide heterosubtypic immunity. Hence, broadly protective IAV vaccines need to elicit robust T cell memory in the respiratory tract. We have developed a combination adjuvant-based IAV nucleoprotein vaccine that elicits strong CD4 and CD8 T cell memory in lungs and protects against H1N1 and H5N1 strains of IAV. In this study, we examined the mechanisms that control vaccine-induced protective memory T cells in the respiratory tract. We found that trafficking of monocytes into lungs might limit the development of antiviral lung-resident memory T cells following intranasal vaccination. These findings suggest that strategies that limit monocyte infiltration can potentiate vaccine-induced frontline T-cell immunity to respiratory viruses, such as IAV and SARS-CoV-2.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunity, Mucosal , Immunologic Memory , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Receptors, CCR2/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Influenza A virus/genetics , Influenza Vaccines/genetics , Influenza Vaccines/pharmacology , Lung/immunology , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/prevention & control , Receptors, CCR2/genetics
4.
Clin Infect Dis ; 73(7): e2444-e2449, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455256

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) and dengue fever are difficult to distinguish given shared clinical and laboratory features. Failing to consider COVID-19 due to false-positive dengue serology can have serious implications. We aimed to assess this possible cross-reactivity. METHODS: We analyzed clinical data and serum samples from 55 individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To assess dengue serology status, we used dengue-specific antibodies by means of lateral-flow rapid test, as well as enzyme-linked immunosorbent assay (ELISA). Additionally, we tested SARS-CoV-2 serology status in patients with dengue and performed in-silico protein structural analysis to identify epitope similarities. RESULTS: Using the dengue lateral-flow rapid test we detected 12 positive cases out of the 55 (21.8%) COVID-19 patients versus zero positive cases in a control group of 70 healthy individuals (P = 2.5E-5). This includes 9 cases of positive immunoglobulin M (IgM), 2 cases of positive immunoglobulin G (IgG), and 1 case of positive IgM as well as IgG antibodies. ELISA testing for dengue was positive in 2 additional subjects using envelope protein directed antibodies. Out of 95 samples obtained from patients diagnosed with dengue before September 2019, SARS-CoV-2 serology targeting the S protein was positive/equivocal in 21 (22%) (16 IgA, 5 IgG) versus 4 positives/equivocal in 102 controls (4%) (P = 1.6E-4). Subsequent in-silico analysis revealed possible similarities between SARS-CoV-2 epitopes in the HR2 domain of the spike protein and the dengue envelope protein. CONCLUSIONS: Our findings support possible cross-reactivity between dengue virus and SARS-CoV-2, which can lead to false-positive dengue serology among COVID-19 patients and vice versa. This can have serious consequences for both patient care and public health.


Subject(s)
COVID-19 , Dengue Virus , Antibodies, Viral , Cross Reactions , Humans , SARS-CoV-2
5.
J Infect Dis ; 224(6): 956-966, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1429243

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) continues to be a major public health challenge globally. The identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived T-cell epitopes is of critical importance for peptide vaccines or diagnostic tools of COVID-19. METHODS: In this study, several SARS-CoV-2-derived human leukocyte antigen (HLA)-I binding peptides were predicted by NetMHCpan-4.1 and selected by Popcover to achieve pancoverage of the Chinese population. The top 5 ranked peptides derived from each protein of SARS-CoV-2 were then evaluated using peripheral blood mononuclear cells from unexposed individuals (negative for SARS-CoV-2 immunoglobulin G). RESULTS: Seven epitopes derived from 4 SARS-CoV-2 proteins were identified. It is interesting to note that most (5 of 7) of the SARS-CoV-2-derived peptides with predicted affinities for HLA-I molecules were identified as HLA-II-restricted epitopes and induced CD4+ T cell-dependent responses. These results complete missing pieces of pre-existing SARS-CoV-2-specific T cells and suggest that pre-existing T cells targeting all SARS-CoV-2-encoded proteins can be discovered in unexposed populations. CONCLUSIONS: In summary, in the current study, we present an alternative and effective strategy for the identification of T-cell epitopes of SARS-CoV-2 in healthy subjects, which may indicate an important role in the development of peptide vaccines for COVID-19.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Epitopes, T-Lymphocyte/immunology , Vaccines, Subunit/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Humans , Leukocytes, Mononuclear/immunology , SARS-CoV-2
6.
iScience ; 24(2): 102096, 2021 Feb 19.
Article in English | MEDLINE | ID: covidwho-1385756

ABSTRACT

CD8+ T cells are crucial for anti-viral immunity; however, understanding T cell responses requires the identification of epitopes presented by human leukocyte antigens (HLA). To date, few SARS-CoV-2-specific CD8+ T cell epitopes have been described. Internal viral proteins are typically more conserved than surface proteins and are often the target of CD8+ T cells. Therefore, we have characterized eight peptides derived from the internal SARS-CoV-2 nucleocapsid protein predicted to bind HLA-A∗02:01, the most common HLA molecule in the global population. We determined not all peptides could form a complex with HLA-A∗02:01, and the six crystal structures determined revealed that some peptides adopted a mobile conformation. We therefore provide a molecular understanding of SARS-CoV-2 CD8+ T cell epitopes. Furthermore, we show that there is limited pre-existing CD8+ T cell response toward these epitopes in unexposed individuals. Together, these data show that SARS-CoV-2 nucleocapsid might not contain potent epitopes restricted to HLA-A∗02:01.

7.
Front Immunol ; 12: 660019, 2021.
Article in English | MEDLINE | ID: covidwho-1389181

ABSTRACT

SARS-CoV-2 is the cause of a recent pandemic that has led to more than 3 million deaths worldwide. Most individuals are asymptomatic or display mild symptoms, which raises an inherent question as to how does the immune response differs from patients manifesting severe disease? During the initial phase of infection, dysregulated effector immune cells such as neutrophils, macrophages, monocytes, megakaryocytes, basophils, eosinophils, erythroid progenitor cells, and Th17 cells can alter the trajectory of an infected patient to severe disease. On the other hand, properly functioning CD4+, CD8+ cells, NK cells, and DCs reduce the disease severity. Detailed understanding of the immune response of convalescent individuals transitioning from the effector phase to the immunogenic memory phase can provide vital clues to understanding essential variables to assess vaccine-induced protection. Although neutralizing antibodies can wane over time, long-lasting B and T memory cells can persist in recovered individuals. The natural immunological memory captures the diverse repertoire of SARS-CoV-2 epitopes after natural infection whereas, currently approved vaccines are based on a single epitope, spike protein. It is essential to understand the nature of the immune response to natural infection to better identify 'correlates of protection' against this disease. This article discusses recent findings regarding immune response against natural infection to SARS-CoV-2 and the nature of immunogenic memory. More precise knowledge of the acute phase of immune response and its transition to immunological memory will contribute to the future design of vaccines and the identification of variables essential to maintain immune protection across diverse populations.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Disease Resistance , Epitopes, T-Lymphocyte/immunology , Humans , Immunity, Cellular , Immunologic Memory
8.
Commun Biol ; 4(1): 225, 2021 02 12.
Article in English | MEDLINE | ID: covidwho-1387490

ABSTRACT

Serodiagnosis of SARS-CoV-2 infection is impeded by immunological cross-reactivity among the human coronaviruses (HCoVs): SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43, 229E, HKU1, and NL63. Here we report the identification of humoral immune responses to SARS-CoV-2 peptides that may enable discrimination between exposure to SARS-CoV-2 and other HCoVs. We used a high-density peptide microarray and plasma samples collected at two time points from 50 subjects with SARS-CoV-2 infection confirmed by qPCR, samples collected in 2004-2005 from 11 subjects with IgG antibodies to SARS-CoV-1, 11 subjects with IgG antibodies to other seasonal human coronaviruses (HCoV), and 10 healthy human subjects. Through statistical modeling with linear regression and multidimensional scaling we identified specific peptides that were reassembled to identify 29 linear SARS-CoV-2 epitopes that were immunoreactive with plasma from individuals who had asymptomatic, mild or severe SARS-CoV-2 infections. Larger studies will be required to determine whether these peptides may be useful in serodiagnostics.


Subject(s)
COVID-19/immunology , COVID-19/virology , Peptide Mapping , Peptides/immunology , SARS-CoV-2/physiology , Amino Acid Sequence , Animals , COVID-19/blood , Chiroptera , Epitopes/immunology , Humans , Immunoglobulin G/metabolism , Peptides/chemistry , Proteome/metabolism
9.
Cell Mol Immunol ; 18(8): 1847-1860, 2021 08.
Article in English | MEDLINE | ID: covidwho-1387308

ABSTRACT

CD4+ T cells orchestrate adaptive immune responses via binding of antigens to their receptors through specific peptide/MHC-II complexes. To study these responses, it is essential to identify protein-derived MHC-II peptide ligands that constitute epitopes for T cell recognition. However, generating cells expressing single MHC-II alleles and isolating these proteins for use in peptide elution or binding studies is time consuming. Here, we express human MHC alleles (HLA-DR4 and HLA-DQ6) as native, noncovalent αß dimers on yeast cells for direct flow cytometry-based screening of peptide ligands from selected antigens. We demonstrate rapid, accurate identification of DQ6 ligands from pre-pro-hypocretin, a narcolepsy-related immunogenic target. We also identify 20 DR4-binding SARS-CoV-2 spike peptides homologous to SARS-CoV-1 epitopes, and one spike peptide overlapping with the reported SARS-CoV-2 epitope recognized by CD4+ T cells from unexposed individuals carrying DR4 subtypes. Our method is optimized for immediate application upon the emergence of novel pathogens.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , COVID-19/metabolism , Epitopes, T-Lymphocyte/metabolism , HLA-DQ Antigens/metabolism , HLA-DR4 Antigen/metabolism , Saccharomyces cerevisiae/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Two-Hybrid System Techniques , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , COVID-19/genetics , COVID-19/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Flow Cytometry , HLA-DQ Antigens/genetics , HLA-DQ Antigens/immunology , HLA-DR4 Antigen/genetics , HLA-DR4 Antigen/immunology , Ligands , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
10.
Vaccines (Basel) ; 8(3)2020 Jul 20.
Article in English | MEDLINE | ID: covidwho-1389560

ABSTRACT

The efficacy of SARS-CoV-2 nucleic acid-based vaccines may be limited by proteolysis of the translated product due to anomalous protein folding. This may be the case for vaccines employing linear SARS-CoV-2 B-cell epitopes identified in previous studies since most of them participate in secondary structure formation. In contrast, we have employed a consensus of predictors for epitopic zones plus a structural filter for identifying 20 unstructured B-cell epitope-containing loops (uBCELs) in S, M, and N proteins. Phylogenetic comparison suggests epitope switching with respect to SARS-CoV in some of the identified uBCELs. Such events may be associated with the reported lack of serum cross-protection between the 2003 and 2019 pandemic strains. Incipient variability within a sample of 1639 SARS-CoV-2 isolates was also detected for 10 uBCELs which could cause vaccine failure. Intermediate stages of the putative epitope switch events were observed in bat coronaviruses in which additive mutational processes possibly facilitating evasion of the bat immune system appear to have taken place prior to transfer to humans. While there was some overlap between uBCELs and previously validated SARS-CoV B-cell epitopes, multiple uBCELs had not been identified in prior studies. Overall, these uBCELs may facilitate the development of biomedical products for SARS-CoV-2.

12.
Front Immunol ; 11: 1836, 2020.
Article in English | MEDLINE | ID: covidwho-1389162

ABSTRACT

Examining CD8+ and CD4+ T cell responses after primary Yellow Fever vaccination in a cohort of 210 volunteers, we have identified and tetramer-validated 92 CD8+ and 50 CD4+ T cell epitopes, many inducing strong and prevalent (i.e., immunodominant) T cell responses. Restricted by 40 and 14 HLA-class I and II allotypes, respectively, these responses have wide population coverage and might be of considerable academic, diagnostic and therapeutic interest. The broad coverage of epitopes and HLA overcame the otherwise confounding effects of HLA diversity and non-HLA background providing the first evidence of T cell immunodomination in humans. Also, double-staining of CD4+ T cells with tetramers representing the same HLA-binding core, albeit with different flanking regions, demonstrated an extensive diversification of the specificities of many CD4+ T cell responses. We suggest that this could reduce the risk of pathogen escape, and that multi-tetramer staining is required to reveal the true magnitude and diversity of CD4+ T cell responses. Our T cell epitope discovery approach uses a combination of (1) overlapping peptides representing the entire Yellow Fever virus proteome to search for peptides containing CD4+ and/or CD8+ T cell epitopes, (2) predictors of peptide-HLA binding to suggest epitopes and their restricting HLA allotypes, (3) generation of peptide-HLA tetramers to identify T cell epitopes, and (4) analysis of ex vivo T cell responses to validate the same. This approach is systematic, exhaustive, and can be done in any individual of any HLA haplotype. It is all-inclusive in the sense that it includes all protein antigens and peptide epitopes, and encompasses both CD4+ and CD8+ T cell epitopes. It is efficient and, importantly, reduces the false discovery rate. The unbiased nature of the T cell epitope discovery approach presented here should support the refinement of future peptide-HLA class I and II predictors and tetramer technologies, which eventually should cover all HLA class I and II isotypes. We believe that future investigations of emerging pathogens (e.g., SARS-CoV-2) should include population-wide T cell epitope discovery using blood samples from patients, convalescents and/or long-term survivors, who might all hold important information on T cell epitopes and responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Vaccination , Yellow Fever Vaccine/immunology , Yellow Fever/prevention & control , Yellow fever virus/immunology , Betacoronavirus/immunology , COVID-19 , Cohort Studies , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Healthy Volunteers , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Humans , Immunogenicity, Vaccine , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Yellow Fever/virology
13.
BMC Bioinformatics ; 21(Suppl 17): 484, 2020 Dec 14.
Article in English | MEDLINE | ID: covidwho-1388725

ABSTRACT

BACKGROUND: We previously introduced PCPS (Proteasome Cleavage Prediction Server), a web-based tool to predict proteasome cleavage sites using n-grams. Here, we evaluated the ability of PCPS immunoproteasome cleavage model to discriminate CD8+ T cell epitopes. RESULTS: We first assembled an epitope dataset consisting of 844 unique virus-specific CD8+ T cell epitopes and their source proteins. We then analyzed cleavage predictions by PCPS immunoproteasome cleavage model on this dataset and compared them with those provided by a related method implemented by NetChop web server. PCPS was clearly superior to NetChop in term of sensitivity (0.89 vs. 0.79) but somewhat inferior with regard to specificity (0.55 vs. 0.60). Judging by the Mathew's Correlation Coefficient, PCPS predictions were overall superior to those provided by NetChop (0.46 vs. 0.39). We next analyzed the power of C-terminal cleavage predictions provided by the same PCPS model to discriminate CD8+ T cell epitopes, finding that they could be discriminated from random peptides with an accuracy of 0.74. Following these results, we tuned the PCPS web server to predict CD8+ T cell epitopes and predicted the entire SARS-CoV-2 epitope space. CONCLUSIONS: We report an improved version of PCPS named iPCPS for predicting proteasome cleavage sites and peptides with CD8+ T cell epitope features. iPCPS is available for free public use at https://imed.med.ucm.es/Tools/pcps/ .


Subject(s)
Epitopes, T-Lymphocyte , Proteasome Endopeptidase Complex/metabolism , Proteomics/methods , SARS-CoV-2 , Viral Proteins , COVID-19/virology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/metabolism , Humans , Peptides/chemistry , Peptides/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Software , Viral Proteins/chemistry , Viral Proteins/metabolism
14.
Med Hypotheses ; 145: 110342, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1386307

ABSTRACT

This study aimed at identifying human neural proteins that can be attacked by cross-reacting SARS-COV-2 antibodies causing Guillain-Barré syndrome. These markers can be used for the diagnosis of Guillain-Barré syndrome (GBS). To achieve this goal, proteins implicated in the development of GBS were retrieved from literature. These human proteins were compared to SARS-COV-2 surface proteins to identify homologous sequences using Blastp. Then, MHC-I and MHC-II epitopes were determined in the homologous sequences and used for further analysis. Similar human and SARS-COV-2 epitopes were docked to the corresponding MHC molecule to compare the binding pattern of human and SARS-COV-2 proteins to the MHC molecule. Neural cell adhesion molecule is the only neural protein that showed homologous sequence to SARS-COV-2 envelope protein. The homologous sequence was part of HLA-A68 and HLA-DQA/HLA-DQB epitopes had a similar binding pattern to SARS-COV-2 envelope protein. Based on these results, the study suggests that NCAM may play a significant role in the immunopathogenesis of GBS. NCAM antibodies can be used as a marker for Guillain-Barré syndrome. However, more experimental studies are needed to prove these results.


Subject(s)
CD56 Antigen/chemistry , Coronavirus Envelope Proteins/chemistry , Guillain-Barre Syndrome/immunology , SARS-CoV-2 , Viral Proteins/chemistry , Amino Acid Motifs , COVID-19/immunology , Computational Biology , Computer Simulation , Crystallography, X-Ray , Epitopes/chemistry , HLA-A Antigens/chemistry , HLA-DQ alpha-Chains/chemistry , HLA-DQ beta-Chains/chemistry , Humans , Major Histocompatibility Complex , Models, Theoretical , Peptides/chemistry , Protein Binding
15.
Brief Bioinform ; 22(2): 1309-1323, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1352112

ABSTRACT

The recurrent and recent global outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has turned into a global concern which has infected more than 42 million people all over the globe, and this number is increasing in hours. Unfortunately, no vaccine or specific treatment is available, which makes it more deadly. A vaccine-informatics approach has shown significant breakthrough in peptide-based epitope mapping and opens the new horizon in vaccine development. In this study, we have identified a total of 15 antigenic peptides [including thymus cells (T-cells) and bone marrow or bursa-derived cells] in the surface glycoprotein (SG) of SARS-CoV-2 which is nontoxic and nonallergenic in nature, nonallergenic, highly antigenic and non-mutated in other SARS-CoV-2 virus strains. The population coverage analysis has found that cluster of differentiation 4 (CD4+) T-cell peptides showed higher cumulative population coverage over cluster of differentiation 8 (CD8+) peptides in the 16 different geographical regions of the world. We identified 12 peptides ((LTDEMIAQY, WTAGAAAYY, WMESEFRVY, IRASANLAA, FGAISSVLN, VKQLSSNFG, FAMQMAYRF, FGAGAALQI, YGFQPTNGVGYQ, LPDPSKPSKR, QTQTNSPRRARS and VITPGTNTSN) that are $80\hbox{--} 90\%$ identical with experimentally determined epitopes of SARS-CoV, and this will likely be beneficial for a quick progression of the vaccine design. Moreover, docking analysis suggested that the identified peptides are tightly bound in the groove of human leukocyte antigen molecules which can induce the T-cell response. Overall, this study allows us to determine potent peptide antigen targets in the SG on intuitive grounds, which opens up a new horizon in the coronavirus disease (COVID-19) research. However, this study needs experimental validation by in vitro and in vivo.


Subject(s)
COVID-19/prevention & control , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Vaccines, Subunit/immunology , Amino Acid Sequence , COVID-19/immunology , Computational Biology , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , HLA Antigens/chemistry , Humans , Molecular Docking Simulation , Vaccines, Subunit/chemistry
16.
J Clin Pathol ; 74(8): 528-532, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1318062

ABSTRACT

AIMS: Brazil is nowadays one of the epicentres of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and new therapies are needed to face it. In the context of specific immune response against the virus, a correlation between Major Histocompatibility Complex Class I (MHC-I) and the severity of the disease in patients with COVID-19 has been suggested. Aiming at better understanding the biology of the infection and the immune response against the virus in the Brazilian population, we analysed SARS-CoV-2 protein S peptides in order to identify epitopes able to elicit an immune response mediated by the most frequent MHC-I alleles using in silico methods. METHODS: Our analyses consisted in searching for the most frequent Human Leukocyte Antigen (HLA)-A, HLA-B and HLA-C alleles in the Brazilian population, excluding the genetic isolates; then, we performed: molecular modelling for unsolved structures, MHC-I binding affinity and antigenicity prediction, peptide docking and molecular dynamics of the best fitted MHC-I/protein S complexes. RESULTS: We identified 24 immunogenic epitopes in the SARS-CoV-2 protein S that could interact with 17 different MHC-I alleles (namely, HLA-A*01:01; HLA-A*02:01; HLA-A*11:01; HLA-A*24:02; HLA-A*68:01; HLA-A*23:01; HLA-A*26:01; HLA-A*30:02; HLA-A*31:01; HLA-B*07:02; HLA-B*51:01; HLA-B*35:01; HLA-B*44:02; HLA-B*35:03; HLA-C*05:01; HLA-C*07:01 and HLA-C*15:02) in the Brazilian population. CONCLUSIONS: Being aware of the intrinsic limitations of in silico analysis (mainly the differences between the real and the Protein Data Bank (PDB) structure; and accuracy of the methods for simulate proteasome cleavage), we identified 24 epitopes able to interact with 17 MHC-I more frequent alleles in the Brazilian population that could be useful for the development of strategic methods for vaccines against SARS-CoV-2.


Subject(s)
Epitope Mapping , Epitopes , HLA Antigens/immunology , Histocompatibility Antigens Class I/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Brazil , Gene Frequency , HLA Antigens/genetics , Histocompatibility Antigens Class I/genetics , Host-Pathogen Interactions , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , SARS-CoV-2/pathogenicity
17.
J Biol Regul Homeost Agents ; 35(2): 423-427, 2021.
Article in English | MEDLINE | ID: covidwho-1298274

ABSTRACT

Acute severe respiratory syndrome coronavirus-2 (SARS-CoV-2) infection causes coronavirus disease-2019 (COVID-19) which is associated with inflammation, thrombosis edema, hemorrhage, intra-alveolar fibrin deposition, and vascular and pulmonary damage. In COVID-19, the coronavirus activates macrophages by inducing the generation of pro-inflammatory cytokines [interleukin (IL)-1, IL-6, IL-18 and TNF] that can damage endothelial cells, activate platelets and neutrophils to produce thromboxane A2 (TxA2), and mediate thrombus generation. In severe cases, all these phenomena can lead to patient death. The binding of SARS-CoV-2 to the Toll Like Receptor (TLR) results in the release of pro-IL-1ß that is cleaved by caspase-1, followed by the production of active mature IL-1ß which is the most important cytokine in causing fever and inflammation. Its activation in COVID-19 can cause a "cytokine storm" with serious biological and clinical consequences. Blockade of IL-1 with inhibitory and anti-inflammatory cytokines represents a new therapeutic strategy also for COVID-19. Recently, very rare allergic reactions to vaccines have been reported, with phenomena of pulmonary thrombosis. These side effects have raised substantial concern in the population. Highly allergic subjects should therefore be vaccinated under strict medical supervision. COVID-19 has accelerated vaccine therapy but also the use of drugs and monoclonal antibodies (mABs) which have been used in COVID-19 therapy. They are primarily adopted to treat high-risk mild-to-moderate non-hospitalized patients, and it has been noted that the administration of two mABs gave better results. mABs, other than polyclonal plasma antibodies from infected subjects with SARS-CoV-2, are produced in the laboratory and are intended to fight SARS-CoV-2. They bind specifically to the antigenic determinant of the spike protein, inhibiting the pathogenicity of the virus. The most suitable individuals for mAB therapy are people at particular risk, such as the elderly and those with serious chronic diseases including diabetics, hypertension and obesity, including subjects suffering from cardiovascular diseases. These antibodies have a well-predetermined target, they bind mainly to the protein S (formed by the S1A, B, C and D subtypes), located on the viral surface, and to the S2 protein that acts as a fuser between the virus and the cell membrane. Since mABs are derived from a single splenic immune cell, they are identical and form a cell clone which can neutralize SARS-CoV-2 by binding to the epitope of the virus. However, this COVID-19 therapy may cause several side effects such as mild pain, bleeding, bruising of the skin, soreness, swelling, thrombotic-type episodes, arterial hypertension, changes in heart activity, slowed bone marrow activity, impaired renal function, diarrhea, fatigue, nausea, vomiting, allergic reaction, fever, and possible subsequent infection may occur at the site of injection. In conclusion, the studies promoting mAB therapy in COVID-19 are very promising but the results are not yet definitive and more investigations are needed to certify both their good neutralizing effects of SARS-CoV-2, and to eliminate, or at least mitigate, the harmful side effects.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Monoclonal , Cytokine Release Syndrome , Endothelial Cells , Humans
18.
Cell Rep Med ; 2(6): 100312, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1275763

ABSTRACT

Knowledge of the epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targeted by T cells in recovered (convalescent) individuals is important for understanding T cell immunity against coronavirus disease 2019 (COVID-19). This information can aid development and assessment of COVID-19 vaccines and inform novel diagnostic technologies. Here, we provide a unified description and meta-analysis of SARS-CoV-2 T cell epitopes compiled from 18 studies of cohorts of individuals recovered from COVID-19 (852 individuals in total). Our analysis demonstrates the broad diversity of T cell epitopes that have been recorded for SARS-CoV-2. A large majority are seemingly unaffected by current variants of concern. We identify a set of 20 immunoprevalent epitopes that induced T cell responses in multiple cohorts and in a large fraction of tested individuals. The landscape of SARS-CoV-2 T cell epitopes we describe can help guide immunological studies, including those related to vaccines and diagnostics. A web-based platform has been developed to help complement these efforts.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/metabolism , Amino Acid Sequence , COVID-19/pathology , COVID-19/virology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HLA Antigens/genetics , Humans , Immunity , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
19.
J Virol ; 95(17): e0066721, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1274527

ABSTRACT

Cellular immune responses play a key role in the control of viral infection. The nucleocapsid (N) protein of infectious bronchitis virus (IBV) is a major immunogenic protein that can induce protective immunity. To screen for potential T-cell epitopes on IBV N protein, 40 overlapping peptides covering the entirety of the N protein were designed and synthesized. Four T-cell epitope peptides were identified by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot), intracellular cytokine staining, and carboxyfluorescein succinimidyl ester (CFSE) lymphocyte proliferation assays; among them, three peptides (N211-230, N271-290, and N381-400) were cytotoxic T lymphocyte (CTL) epitopes, and one peptide (N261-280) was a dual-specific T-cell epitope, which can be recognized by both CD8+ and CD4+ T cells. Multi-epitope gene transcription cassettes comprising four neutralizing epitope domains and four T-cell epitope peptides were synthesized and inserted into the genome of Newcastle disease virus strain La Sota between the P and M genes. Recombinant IBV multi-epitope vaccine candidate rLa Sota/SBNT was generated via reverse genetics, and its immune protection efficacy was evaluated in specific-pathogen-free chickens. Our results show that rLa Sota/SBNT induced IBV-specific neutralizing antibody and T-cell responses and provided significant protection against homologous and heterologous IBV challenge. Thus, the T-cell epitope peptides identified in this study could be good candidates for IBV vaccine development, and recombinant Newcastle disease virus-expressing IBV multi-epitope genes represent a safe and effective vaccine candidate for controlling infectious bronchitis. IMPORTANCE T-cell-mediated immune responses are critical for the elimination of IBV-infected cells. To screen conserved T-cell epitopes in the IBV N protein, 40 overlapping peptides covering the entirety of the N protein were designed and synthesized. By combining IFN-γ ELISpot, intracellular cytokine staining, and CFSE lymphocyte proliferation assays, we identified three CTL epitopes and one dual-specific T-cell epitope. The value of T-cell epitope peptides identified in the N protein was further verified by the design of an IBV multi-epitope vaccine. Results show that IBV multi-epitope vaccine candidate rLa Sota/SBNT provided cross protection against challenges with a QX-like or a TW-like IBV strain. So, T-cell-mediated immune responses play an important role in the control of viral infection, and conserved T-cell epitopes serve as promising candidates for use in multi-epitope vaccine construction. Our results provide a new perspective for the development of a safer and more effective IBV vaccine.


Subject(s)
Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Immunity, Cellular/immunology , Infectious bronchitis virus/immunology , Nucleocapsid Proteins/immunology , Poultry Diseases/prevention & control , Viral Vaccines/administration & dosage , Animals , Chickens , Coronavirus Infections/immunology , Coronavirus Infections/virology , Immunity, Cellular/drug effects , Poultry Diseases/immunology , Specific Pathogen-Free Organisms , T-Lymphocytes, Cytotoxic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Vaccines/immunology
20.
Acta Trop ; 221: 106013, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1272275

ABSTRACT

AIM: This study is looking for a common pathogenicity between SARS-CoV-2 and Plasmodium species, in individuals with certain HLA serotypes. METHODS: 1. Tblastx searches of SARS-CoV-2 are performed by limiting searches to five Plasmodium species that infect humans. 2. Aligned sequences in the respective organisms' proteomes are searched with blastp. 3. Binding predictions of the identified SARS-CoV-2 peptide to HLA supertype representatives are performed. 4. Blastp searches of predicted epitopes that bind strongly to the identified HLA allele are performed by limiting searches to H. sapiens and Plasmodium species, separately. 5. Peptides with minimum 60% identity to the predicted epitopes are found in results. 6. Peptides among those, which bind strongly to the same HLA allele, are predicted. 7. Step-4 is repeated by limiting searches to H. sapiens, followed by the remaining steps until step-7, for peptides sourced by Plasmodium species after step-6. RESULTS: SARS-CoV-2 peptide with single letter amino acid code CFLGYFCTCYFGLFC has the highest identity to P. vivax. Its YFCTCYFGLF part is predicted to bind strongly to HLA-A*24:02. Peptides in the human proteome both homologous to YFCTCYFGLF and with a strong binding affinity to HLA-A*24:02 are YYCARRFGLF, YYCHCPFGVF, and YYCQQYFFLF. Such peptides in the Plasmodium species' proteomes are FFYTFYFELF, YFVACLFILF, and YFPTITFHLF. The first one belonging to P. falciparum has a homologous peptide (YFYLFSLELF) in the human proteome, which also has a strong binding affinity to the same HLA allele. CONCLUSION: Immune responses to the identified-peptides with similar sequences and strong binding affinities to HLA-A*24:02 can be related to autoimmune response risk in individuals with HLA-A*24:02 serotypes, upon getting infected with SARS-CoV-2 or P. falciparum.


Subject(s)
COVID-19 , HLA-A24 Antigen , Malaria, Vivax , Peptides , Epitopes, T-Lymphocyte , Humans , Peptides/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL