Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Vaccines (Basel) ; 9(4)2021 Apr 12.
Article in English | MEDLINE | ID: covidwho-1344400

ABSTRACT

Intramuscular injection of DNA vectors expressing the extracellular vesicle (EV)-anchoring protein Nefmut fused at its C-terminus to viral and tumor antigens elicit a potent, effective, and anti-tolerogenic CD8+ T cell immunity against the heterologous antigen. The immune response is induced through the production of EVs incorporating Nefmut-derivatives released by muscle cells. In the perspective of a possible translation into the clinic of the Nefmut-based vaccine platform, we aimed at increasing its safety profile by identifying the minimal part of Nefmut retaining the EV-anchoring protein property. We found that a C-terminal deletion of 29-amino acids did not affect the ability of Nefmut to associate with EVs. The EV-anchoring function was also preserved when antigens from both HPV16 (i.e., E6 and E7) and SARS-CoV-2 (i.e., S1 and S2) were fused to its C-terminus. Most important, the Nefmut C-terminal deletion did not affect levels, quality, and diffusion at distal sites of the antigen-specific CD8+ T immunity. We concluded that the C-terminal Nefmut truncation does not influence stability, EV-anchoring, and CD8+ T cell immunogenicity of the fused antigen. Hence, the C-terminal deleted Nefmut may represent a safer alternative to the full-length isoform for vaccines in humans.

2.
Int J Mol Sci ; 22(8)2021 Apr 08.
Article in English | MEDLINE | ID: covidwho-1299441

ABSTRACT

Pneumonia due to respiratory infection with most prominently bacteria, but also viruses, fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global threat. As such, a better understanding of pathogen virulence on the one, and the development of innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of men against microbes. Recent data show that the secretome of bacteria consists not only of soluble mediators of virulence but also to a significant proportion of extracellular vesicles-lipid bilayer-delimited particles that form integral mediators of intercellular communication. Extracellular vesicles are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity. In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and their immunogenic potential could pave the way to novel treatment strategies in pneumonia and effective preventive approaches.


Subject(s)
Bacteria/metabolism , Bacterial Outer Membrane/metabolism , Extracellular Vesicles/metabolism , Pneumonia, Bacterial/microbiology , Adaptive Immunity , Animals , Antigens, Bacterial/immunology , Bacteria/immunology , Bacterial Outer Membrane/immunology , Bacterial Vaccines/immunology , Host-Pathogen Interactions/immunology , Humans , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/prevention & control , Respiratory Mucosa/immunology , Respiratory Mucosa/microbiology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Virulence
3.
J Extracell Vesicles ; 10(8): e12092, 2021 06.
Article in English | MEDLINE | ID: covidwho-1261767

ABSTRACT

The clinical manifestations of COVID-19 vary broadly, ranging from asymptomatic infection to acute respiratory failure and death. But the predictive biomarkers for characterizing the variability are still lacking. Since emerging evidence indicates that extracellular vesicles (EVs) and extracellular RNAs (exRNAs) are functionally involved in a number of pathological processes, we hypothesize that these extracellular components may be key determinants and/or predictors of COVID-19 severity. To test our hypothesis, we collected serum samples from 31 patients with mild COVID-19 symptoms at the time of their admission for discovery cohort. After symptomatic treatment without corticosteroids, 9 of the 31 patients developed severe/critical COVID-19 symptoms. We analyzed EV protein and exRNA profiles to look for correlations between these profiles and COVID-19 severity. Strikingly, we identified three distinct groups of markers (antiviral response-related EV proteins, coagulation-related markers, and liver damage-related exRNAs) with the potential to serve as early predictive biomarkers for COVID-19 severity. As the best predictive marker, EV COPB2 protein, a subunit of the Golgi coatomer complex, exhibited significantly higher abundance in patients remained mild than developed severe/critical COVID-19 and healthy controls in discovery cohort (AUC 1.00 (95% CI: 1.00-1.00)). The validation set included 40 COVID-19 patients and 39 healthy controls, and showed exactly the same trend between the three groups with excellent predictive value (AUC 0.85 (95% CI: 0.73-0.97)). These findings highlight the potential of EV COPB2 expression for patient stratification and for making early clinical decisions about strategies for COVID-19 therapy.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Cell-Free Nucleic Acids/blood , Coatomer Protein/blood , Extracellular Vesicles/chemistry , Biomarkers/blood , COVID-19/immunology , Humans , Retrospective Studies , SARS-CoV-2/physiology , Severity of Illness Index
4.
J Extracell Vesicles ; 10(8): e12110, 2021 06.
Article in English | MEDLINE | ID: covidwho-1258076

ABSTRACT

Circulating nucleic acids, encapsulated within small extracellular vesicles (EVs), provide a remote cellular snapshot of biomarkers derived from diseased tissues, however selective isolation is critical. Current laboratory-based purification techniques rely on the physical properties of small-EVs rather than their inherited cellular fingerprints. We established a highly-selective purification assay, termed EV-CATCHER, initially designed for high-throughput analysis of low-abundance small-RNA cargos by next-generation sequencing. We demonstrated its selectivity by specifically isolating and sequencing small-RNAs from mouse small-EVs spiked into human plasma. Western blotting, nanoparticle tracking, and transmission electron microscopy were used to validate and quantify the capture and release of intact small-EVs. As proof-of-principle for sensitive detection of circulating miRNAs, we compared small-RNA sequencing data from a subset of small-EVs serum-purified with EV-CATCHER to data from whole serum, using samples from a small cohort of recently hospitalized Covid-19 patients. We identified and validated, only in small-EVs, hsa-miR-146a and hsa-miR-126-3p to be significantly downregulated with disease severity. Separately, using convalescent sera from recovered Covid-19 patients with high anti-spike IgG titers, we confirmed the neutralizing properties, against SARS-CoV-2 in vitro, of a subset of small-EVs serum-purified by EV-CATCHER, as initially observed with ultracentrifuged small-EVs. Altogether our data highlight the sensitivity and versatility of EV-CATCHER.


Subject(s)
Extracellular Vesicles/chemistry , Immunologic Techniques/methods , Animals , Bodily Secretions/chemistry , COVID-19/blood , COVID-19/physiopathology , Chlorocebus aethiops , Circulating MicroRNA , High-Throughput Nucleotide Sequencing , Humans , MCF-7 Cells , Mice , RAW 264.7 Cells , Severity of Illness Index , Vero Cells
5.
J Extracell Vesicles ; 10(8): e12092, 2021 06.
Article in English | MEDLINE | ID: covidwho-1258075

ABSTRACT

The clinical manifestations of COVID-19 vary broadly, ranging from asymptomatic infection to acute respiratory failure and death. But the predictive biomarkers for characterizing the variability are still lacking. Since emerging evidence indicates that extracellular vesicles (EVs) and extracellular RNAs (exRNAs) are functionally involved in a number of pathological processes, we hypothesize that these extracellular components may be key determinants and/or predictors of COVID-19 severity. To test our hypothesis, we collected serum samples from 31 patients with mild COVID-19 symptoms at the time of their admission for discovery cohort. After symptomatic treatment without corticosteroids, 9 of the 31 patients developed severe/critical COVID-19 symptoms. We analyzed EV protein and exRNA profiles to look for correlations between these profiles and COVID-19 severity. Strikingly, we identified three distinct groups of markers (antiviral response-related EV proteins, coagulation-related markers, and liver damage-related exRNAs) with the potential to serve as early predictive biomarkers for COVID-19 severity. As the best predictive marker, EV COPB2 protein, a subunit of the Golgi coatomer complex, exhibited significantly higher abundance in patients remained mild than developed severe/critical COVID-19 and healthy controls in discovery cohort (AUC 1.00 (95% CI: 1.00-1.00)). The validation set included 40 COVID-19 patients and 39 healthy controls, and showed exactly the same trend between the three groups with excellent predictive value (AUC 0.85 (95% CI: 0.73-0.97)). These findings highlight the potential of EV COPB2 expression for patient stratification and for making early clinical decisions about strategies for COVID-19 therapy.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Cell-Free Nucleic Acids/blood , Coatomer Protein/blood , Extracellular Vesicles/chemistry , Biomarkers/blood , COVID-19/immunology , Humans , Retrospective Studies , SARS-CoV-2/physiology , Severity of Illness Index
8.
Cell Death Dis ; 12(6): 541, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1243286

ABSTRACT

More and more patients suffered from Coronavirus disease 2019 (COVID-19) have got recovery gradually due to suitable intervention. Increasing data mainly studies the clinical characteristics of recovered COVID-19 patients, and their molecular changes especially proteome changes also play the same important role in understanding of biological characteristics of recovered COVID-19 patients as clinical characteristics do. In our study, we reported the whole lung-ground glass-CT value-average of mild/severe recovered patients 3 months after discharge without underlying diseases was significantly lower than that of healthy subjects. Then we isolated the extracellular vesicles (EVs) of plasma from 19 healthy subjects and 67 recovered COVID-19 patients. Mass Spectrometry was used to catalogue the proteins of these EVs compared to a defined group of controls. Identified 174 proteins were differentially expressed in the EVs of COVID-19 patients compared with healthy subjects, which involved in lipid metabolic process, response to cellular, and response to stress oxygen-containing compound. Besides, we identified several protein of plasma EVs in recovered patients associated with coagulation activity, inflammatory reaction, immune response, and low organ function. In addition, proteins correlating with clinical index such as alkaline phosphatase (ALP) and alanine aminotransferase (ALT) were also detected. Moreover, we also identified many unique or characteristic associations found in the recovered COVID-19 patients, which especially involved the kidney, serum electrolyte levels, and inflammation functions. This finding suggests that monitoring the situation of recovered patients might be useful, especially the indexes of coagulation, inflammation, immunity, and organ function, which can prevent bleeding, reinfection and organ dysfunction.


Subject(s)
COVID-19/metabolism , Convalescence , Extracellular Vesicles/metabolism , Adult , COVID-19/blood , COVID-19/pathology , COVID-19/physiopathology , Extracellular Vesicles/pathology , Female , Humans , Lipids/blood , Male , Middle Aged , Prospective Studies , Proteins/metabolism , Proteomics , SARS-CoV-2 , Severity of Illness Index
9.
Res Pract Thromb Haemost ; 5(4): e12525, 2021 May.
Article in English | MEDLINE | ID: covidwho-1233232

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with activation of coagulation that mainly presents as thrombosis. Sepsis is also associated with activation of coagulation that mainly presents as disseminated intravascular coagulation. Many studies have reported increased levels of plasma d-dimer in patients with COVID-19 that is associated with severity, thrombosis, and mortality. OBJECTIVES: The aim of this study was to compare levels of circulating extracellular vesicle tissue factor (EVTF) activity and active plasminogen activator inhibitor 1 (PAI-1) in plasma from patients with COVID-19 or sepsis. METHODS: We measured levels of d-dimer, EVTF activity, and active PAI-1 in plasma samples from patients with COVID-19 (intensive care unit [ICU], N = 15; and non-ICU, N = 20) and patients with sepsis (N = 35). RESULTS: Patients with COVID-19 had significantly higher levels of d-dimer, EVTF activity, and active PAI-1 compared with healthy controls. Patients with sepsis had significantly higher levels of d-dimer and EVTF activity compared with healthy controls. Levels of d-dimer were significantly lower in patients with COVID-19 compared with patients with sepsis. Levels of EVTF activity were significantly higher in ICU patients with COVID-19 compared with patients with sepsis. Levels of active PAI-1 were significantly higher in patients with COVID-19 compared with patients with sepsis. CONCLUSIONS: High levels of both EVTF activity and active PAI-1 may promote thrombosis in patients with COVID-19 due to simultaneous activation of coagulation and inhibition of fibrinolysis. The high levels of active PAI-1 in patients with COVID-19 may limit plasmin degradation of crosslinked fibrin and the release of d-dimer. This may explain the lower levels of D-dimer in patients with COVID-19 compared with patients with sepsis.

10.
J Exp Pathol (Wilmington) ; 2(1): 47-52, 2021.
Article in English | MEDLINE | ID: covidwho-1160223

ABSTRACT

This is a Commentary of a review about extracellular vesicles of immune cells published two years ago in Clinical and Experimental Immunology, a prestigious journal of the field. The aim is to establish whether, and to what extent, results in scientific area of the review have been extended and strengthened by innovative findings of considerable interest. The analysis of the recently published results has revealed that in various areas of the review developments have occurred. However, innovative findings have been only about the extracellular vesicles secreted by mesenchymal stem cells, usually indicated as MSC-EVs. Based on these findings, the Commentary has been focused on recent MSC-EVs findings presented in three Sections dealing with 1. recently appeared, relevant functions of the latter vesicles; 2. therapeutic processes developed according well known criteria, however innovative in many respects; and 3. protection of COVID-19 disease patients from organ lesions induced by the specific virus, SARS-CoV-2, during the disease. As everybody knows, the COVID-19 pandemic started at the end of 2019, thus after the publication of the aforementioned review. Data of Section 3 are therefore innovative, of great potential interest also at the clinical level, applied by translational medicine to various organs, from lung to brain, heart, kidney, immune and other cells. In view of its relevance, the author expects that research and medical use of MSC-EV, active at present, will be further developed, acquiring additional relevance in the near future.

11.
Biology (Basel) ; 10(2)2021 Jan 27.
Article in English | MEDLINE | ID: covidwho-1050586

ABSTRACT

Extracellular vesicles (EVs) are secreted from almost all human cells and mediate intercellular communication by transferring heterogeneous molecules (i.e., DNA, RNAs, proteins, and lipids). In this way, EVs participate in various biological processes, including immune responses. Viruses can hijack EV biogenesis systems for their dissemination, while EVs from infected cells can transfer viral proteins to uninfected cells and to immune cells in order to mask the infection or to trigger a response. Several studies have highlighted the role of native or engineered EVs in the induction of B cell and CD8(+) T cell reactions against viral proteins, strongly suggesting these antigen-presenting EVs as a novel strategy for vaccine design, including the emerging COVID-19. EV-based vaccines overcome some limitations of conventional vaccines and introduce novel unique characteristics useful in vaccine design, including higher bio-safety and efficiency as antigen-presenting systems and as adjuvants. Here, we review the state-of-the-art for antiviral EV-based vaccines, including the ongoing projects of some biotech companies in the development of EV-based vaccines for SARS-CoV-2. Finally, we discuss the limits for further development of this promising class of therapeutic agents.

12.
J Extracell Vesicles ; 10(1): e12004, 2020 10.
Article in English | MEDLINE | ID: covidwho-972342

ABSTRACT

Exosome extracellular vesicles as biologic therapy for COVID-19 are discussed for two areas. The first involves the growing use of mesenchymal stromal cells (MSCs) for the profound clinical cytokine storm and severe pneumonia in COVID-19 patients. Instead, it is recommended to treat alternatively with their MSC-released exosomes. This is because many reports in the literature and our data have shown that the release of exosomes from the in vivo administered MSC is actually responsible for their beneficial effects. Further, the exosomes are superior, simpler and clinically more convenient compared to their parental MSC. Additionally, in the context of COVID-19, the known tendency of MSC to intravascularly aggregate causing lung dysfunction might synergize with the pneumonia aspects, and the tendency of MSC peripheral vascular micro aggregates might synergize with the vascular clots of the COVID-19 disease process, causing significant central or peripheral vascular insufficiency. The second exosome therapeutic area for severe COVID-19 involves use of convalescent plasma for its content of acquired immune antibodies that must consider the role in this therapy of contained nearly trillions of exosomes. Many of these derive from activated immune modulating cells and likely can function to transfer miRNAs that acting epigenetically to also influence the convalescent plasma recipient response to the virus. There is sufficient evidence, like recovery of patients with antibody deficiencies, to postulate that the antibodies actually have little effect and that immune resistance is principally due to T cell mechanisms. Further, COVID-19 convalescent plasma has remarkably weak beneficial effects if compared to what was expected from many prior studies. This may be due to the dysfunctional immune response to the infection and resulting weak Ab that may be impaired further by antagonistic exosomes in the convalescent plasma. At the least, pre selection of plasma for the best antibodies and relevant exosomes would produce the most optimum therapy for very severely affected COVID-19 patients.


Subject(s)
Antibodies, Viral/therapeutic use , COVID-19/therapy , Exosomes/immunology , Mesenchymal Stem Cell Transplantation , Cytokine Release Syndrome , Humans , Immunization, Passive , Mesenchymal Stem Cells , MicroRNAs
13.
Arterioscler Thromb Vasc Biol ; 41(2): 878-882, 2021 02.
Article in English | MEDLINE | ID: covidwho-955412

ABSTRACT

OBJECTIVE: Patients with coronavirus disease 2019 (COVID-19) have a high rate of thrombosis. We hypothesized that severe acute respiratory syndrome coronavirus 2 infection leads to induction of TF (tissue factor) expression and increased levels of circulating TF-positive extracellular vesicles (EV) that may drive thrombosis. Approach and Results: We measured levels of plasma EV TF activity in 100 patients with COVID-19 with moderate and severe disease and 28 healthy controls. Levels of EV TF activity were significantly higher in patients with COVID-19 compared with controls. In addition, levels of EV TF activity were associated with disease severity and mortality. Finally, levels of EV TF activity correlated with several plasma markers, including D-dimer, which has been shown to be associated with thrombosis in patients with COVID-19. CONCLUSIONS: Our results indicate that severe acute respiratory syndrome coronavirus 2 infection induces the release of TF-positive EVs into the circulation that are likely to contribute to thrombosis in patients with COVID-19. EV TF activity was also associated with severity and mortality.


Subject(s)
COVID-19/blood , COVID-19/complications , Extracellular Vesicles/metabolism , Aged , Anticoagulants/therapeutic use , COVID-19/mortality , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index , Thrombosis/prevention & control , Thrombosis/virology
14.
Neural Regen Res ; 16(5): 934-938, 2021 May.
Article in English | MEDLINE | ID: covidwho-940671

ABSTRACT

Peptidylarginine deiminases are a family of calcium-activated enzymes with multifaceted roles in physiological and pathological processes, including in the central nervous system. Peptidylarginine deiminases cause post-translational deimination/citrullination, leading to changes in structure and function of a wide range of target proteins. Deimination can facilitate protein moonlighting, modify protein-protein interaction, cause protein dysfunction and induce inflammatory responses. Peptidylarginine deiminases also regulate the biogenesis of extracellular vesicles, which play important roles in cellular communication through transfer of extracellular vesicle-cargo, e.g., proteins and genetic material. Both peptidylarginine deiminases and extracellular vesicles are linked to a number of pathologies, including in the central nervous system, and their modulation with pharmacological peptidylarginine deiminase inhibitors have shown great promise in several in vitro and in vivo central nervous system disease models. Furthermore, extracellular vesicles derived from mesenchymal stem cells have been assessed for their therapeutic application in central nervous system injury. As circulating extracellular vesicles can be used as non-invasive liquid biopsies, their specific cargo-signatures (including deiminated proteins and microRNAs) may allow for disease "fingerprinting" and aid early central nervous system disease diagnosis, inform disease progression and response to therapy. This mini-review discusses recent advances in the field of peptidylarginine deiminase and extracellular vesicle research in the central nervous system, focusing on several central nervous system acute injury, degeneration and cancer models.

15.
Microb Risk Anal ; 16: 100140, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-779468

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) infect the human respiratory tract. A prototype thermodynamic equilibrium model is presented here for the probability of the virions getting through the mucus barrier and infecting epithelial cells based on the binding affinity (Kmucin) of the virions to mucin molecules in the mucus and parameters for binding and infection of the epithelial cell. Both MERS-CoV and SARS-CoV-2 bind strongly to their cellular receptors, DDP4 and ACE2, respectively, and infect very efficiently both bronchus and lung ex vivo cell cultures which are not protected by a mucus barrier. According to the model, mucin binding could reduce the infectivity for MERS-CoV compared to SARS-CoV-2 by at least 100-fold depending on the magnitude of Kmucin. Specifically Kmucin values up to 106 M-1 have little protective effect and thus the mucus barrier would not remove SARS-CoV-2 which does not bind to sialic acids (SA) and hence would have a very low Kmucin. Depending on the viability of individual virions, the ID50 for SARS-CoV-2 is estimated to be ~500 virions (viral RNA genomic copies) representing 1 to 2 pfu. In contrast MERS-CoV binds both SA and human mucin and a Kmucin of 5 × 109 M-1 as reported for lectins would mop up 99.83% of the virus according to the model with the ID50 for MERS-CoV estimated to be ~295,000 virions (viral RNA genomic copies) representing 819 pfu. This could in part explain why MERS-CoV is poorly transmitted from human to human compared to SARS-CoV-2. Some coronaviruses use an esterase to escape the mucin, although MERS-CoV does not. Instead, it is shown here that "clustering" of virions into single aerosol particles as recently reported for rotavirus in extracellular vesicles could provide a co-operative mechanism whereby MERS-CoV could theoretically overcome the mucin barrier locally and a small proportion of 10 µm diameter aerosol particles could contain ~70 virions based on reported maximum levels in saliva. Although recent evidence suggests SARS-CoV-2 initiates infection in the nasal epithelium, the thermodynamic equilibrium models presented here could complement published approaches for modelling the physical entry of pathogens to the lung based on the fate and transport of the pathogen particles (as for anthrax spores) to develop a dose-response model for aerosol exposure to respiratory viruses. This would enable the infectivity through aerosols to be defined based on molecular parameters as well as physical parameters. The role of the spike proteins of MERS-CoV and SARS-CoV-2 binding to SA and heparan sulphate, respectively, may be to aid non-specific attachment to the host cell. It is proposed that a high Kmucin is the cost for subsequent binding of MERS-CoV to SAs on the cell surface to partially overcome the unfavourable entropy of immobilisation as the virus adopts the correct orientation for spike protein interactions with its protein cellular receptor DPP4.

16.
Cytotherapy ; 22(8): 458-472, 2020 08.
Article in English | MEDLINE | ID: covidwho-209852

ABSTRACT

BACKGROUND AIMS: Human platelet lysate can replace fetal bovine serum (FBS) for xeno-free ex vivo expansion of mesenchymal stromal cells (MSCs), but pooling of platelet concentrates (PCs) increases risks of pathogen transmission. We evaluated the feasibility of performing nanofiltration of platelet lysates and determined the impact on expansion of bone marrow-derived MSCs. METHODS: Platelet lysates were prepared by freeze-thawing of pathogen-reduced (Intercept) PCs suspended in 65% storage solution (SPP+) and 35% plasma, and by serum-conversion of PCs suspended in 100% plasma. Lysates were added to the MSC growth media at 10% (v/v), filtered and subjected to cascade nanofiltration on 35- and 19-nm Planova filters. Media supplemented with 10% starting platelet lysates or FBS were used as the controls. Impacts of nanofiltration on the growth media composition, removal of platelet extracellular vesicles (PEVs) and MSC expansion were evaluated. RESULTS: Nanofiltration did not detrimentally affect contents of total protein and growth factors or the biochemical composition. The clearance factor of PEVs was >3 log values. Expansion, proliferation, membrane markers, differentiation potential and immunosuppressive properties of cells in nanofiltered media were consistently better than those expanded in FBS-supplemented media. Compared with FBS, chondrogenesis and osteogenesis genes were expressed more in nanofiltered media, and there were fewer senescent cells over six passages. CONCLUSIONS: Nanofiltration of growth media supplemented with two types of platelet lysates, including one prepared from pathogen-reduced PCs, is technically feasible. These data support the possibility of developing pathogen-reduced xeno-free growth media for clinical-grade propagation of human cells.


Subject(s)
Blood Platelets/cytology , Cell Culture Techniques/methods , Filtration , Mesenchymal Stem Cells/cytology , Nanotechnology , Adipogenesis/drug effects , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Culture Media/pharmacology , Extracellular Vesicles/metabolism , Gene Expression Profiling , Humans , Immunophenotyping , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Particle Size , Serum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL