Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Viral Immunol ; 34(3): 165-173, 2021 04.
Article in English | MEDLINE | ID: covidwho-1569564

ABSTRACT

The current pandemic is caused by the coronavirus disease 2019 (COVID-19), which is, in turn, induced by a novel coronavirus (SARS-CoV-2) that triggers an acute respiratory disease. In recent years, the emergence of SARS-CoV-2 is the third highly pathogenic event and large-scale epidemic affecting the human population. It follows the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. This novel SARS-CoV-2 employs the angiotensin-converting enzyme 2 (ACE2) receptor, like SARS-CoV, and spreads principally in the respiratory tract. The viral spike (S) protein of coronaviruses facilities the attachment to the cellular receptor, entrance, and membrane fusion. The S protein is a glycoprotein and is critical to elicit an immune response. Glycosylation is a biologically significant post-translational modification in virus surface proteins. These glycans play important roles in the viral life cycle, structure, immune evasion, and cell infection. However, it is necessary to search for new information about viral behavior and immunological host's response after SARS-CoV-2 infection. The present review discusses the implications of the CoV-2 S protein glycosylation in the SARS-CoV-2/ACE2 interaction and the immunological response. Elucidation of the glycan repertoire on the spike protein can propel research for the development of an appropriate vaccine.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , COVID-19/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/physiology , Glycosylation , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/genetics
2.
J Biomol Struct Dyn ; 39(15): 5768-5778, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1390294

ABSTRACT

The entire human population over the globe is currently facing appalling conditions due to the spread of infection from coronavirus disease-2019 (COVID-19). The spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present on the surface of the virion mediates the virus entry into the host cells and therefore is targeted by several scientific groups as a novel drug target site. The spike glycoprotein binds to the human angiotensin-converting enzyme-2 (hACE2) cell surface receptor abundantly expressed in lung tissues, and this binding phenomenon is a primary determinant of cell tropism and pathogenesis. The binding and internalization of the virus is the primary and most crucial step in the process of infection, and therefore the molecules targeting the inhibition of this process certainly hold a significant therapeutic value. Thus, we systematically applied the computational techniques to identify the plausible inhibitor from a chosen set of well characterized diaryl pyrimidine analogues which may disrupt interfacial interaction of spike glycoprotein (S) at the surface of hACE2. Using molecular docking, molecular dynamics (MD) simulation and binding free energy calculation, we have identified AP-NP (2-(2-amino-5-(naphthalen-2-yl)pyrimidin-4-yl)phenol), AP-3-OMe-Ph (2-(2-amino-5-(3-methoxyphenyl)pyrimidin-4-yl)phenol) and AP-4-Me-Ph (2-(2-amino-5-(p-tolyl) pyrimidin-4-yl)phenol) from a group of diaryl pyrimidine derivatives which appears to bind at the interface of the hACE2-S complex with low binding free energy. Thus, pyrimidine derivative AP-NP may be explored as an effective inhibitor for hACE2-S complex. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-COV-2. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrimidines/pharmacology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Nat Commun ; 12(1): 141, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-1387322

ABSTRACT

Coronaviruses spike (S) glycoproteins mediate viral entry into host cells by binding to host receptors. However, how the S1 subunit undergoes conformational changes for receptor recognition has not been elucidated in Alphacoronavirus. Here, we report the cryo-EM structures of the HCoV-229E S trimer in prefusion state with two conformations. The activated conformation may pose the potential exposure of the S1-RBDs by decreasing of the interaction area between the S1-RBDs and the surrounding S1-NTDs and S1-RBDs compared to the closed conformation. Furthermore, structural comparison of our structures with the previously reported HCoV-229E S structure showed that the S trimers trended to open the S2 subunit from the closed conformation to open conformation, which could promote the transition from pre- to postfusion. Our results provide insights into the mechanisms involved in S glycoprotein-mediated Alphacoronavirus entry and have implications for vaccine and therapeutic antibody design.


Subject(s)
CD13 Antigens/metabolism , Coronavirus 229E, Human/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Cell Line, Tumor , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cryoelectron Microscopy , Humans , Models, Molecular , Protein Conformation, alpha-Helical , Protein Multimerization , Protein Structure, Quaternary , Protein Subunits/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure
4.
Int J Antimicrob Agents ; 57(2): 106272, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1385674

ABSTRACT

INTRODUCTION: Genomic alterations in a viral genome can lead to either better or worse outcome and identifying these mutations is of utmost importance. Here, we correlated protein-level mutations in the SARS-CoV-2 virus to clinical outcome. METHODS: Mutations in viral sequences from the GISAID virus repository were evaluated by using "hCoV-19/Wuhan/WIV04/2019" as the reference. Patient outcomes were classified as mild disease, hospitalization and severe disease (death or documented treatment in an intensive-care unit). Chi-square test was applied to examine the association between each mutation and patient outcome. False discovery rate was computed to correct for multiple hypothesis testing and results passing FDR cutoff of 5% were accepted as significant. RESULTS: Mutations were mapped to amino acid changes for 3,733 non-silent mutations. Mutations correlated to mild outcome were located in the ORF8, NSP6, ORF3a, NSP4, and in the nucleocapsid phosphoprotein N. Mutations associated with inferior outcome were located in the surface (S) glycoprotein, in the RNA dependent RNA polymerase, in ORF3a, NSP3, ORF6 and N. Mutations leading to severe outcome with low prevalence were found in the ORF3A and in NSP7 proteins. Four out of 22 of the most significant mutations mapped onto a 10 amino acid long phosphorylated stretch of N indicating that in spite of obvious sampling restrictions the approach can find functionally relevant sites in the viral genome. CONCLUSIONS: We demonstrate that mutations in the viral genes may have a direct correlation to clinical outcome. Our results help to quickly identify SARS-CoV-2 infections harboring mutations related to severe outcome.


Subject(s)
COVID-19/drug therapy , COVID-19/etiology , Mutation , SARS-CoV-2/genetics , Coronavirus Nucleocapsid Proteins/genetics , Female , Hospitalization , Humans , Male , Mutation Rate , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Viroporin Proteins/genetics
5.
Microorganisms ; 8(10)2020 Sep 25.
Article in English | MEDLINE | ID: covidwho-1302376

ABSTRACT

Zaire Ebola virus (EBOV) is a member of the Filoviridae family of negative sense, single-stranded RNA viruses. EBOV infection causes Ebola virus disease (EVD), characterized by coagulopathy, lymphopenia, and multi-organ failure, which can culminate in death. In 2019, the FDA approved the first vaccine against EBOV, a recombinant live-attenuated viral vector wherein the G protein of vesicular stomatitis virus is replaced with the glycoprotein (GP) of EBOV (rVSV-EBOV-GP, Ervebo® by Merck). This vaccine demonstrates high efficacy in nonhuman primates by providing prophylactic, rapid, and post-exposure protection. In humans, rVSV-EBOV-GP demonstrated 100% protection in several phase III clinical trials in over 10,000 individuals during the 2013-2016 West Africa epidemic. As of 2020, over 218,000 doses of rVSV-EBOV-GP have been administered to individuals with high risk of EBOV exposure. Despite licensure and robust preclinical studies, the mechanisms of rVSV-EBOV-GP-mediated protection are not fully understood. Such knowledge is crucial for understanding vaccine-mediated correlates of protection from EVD and to aid the further design and development of therapeutics against filoviruses. Here, we summarize the current literature regarding the host response to vaccination and EBOV exposure, and evidence regarding innate and adaptive immune mechanisms involved in rVSV-EBOV-GP-mediated protection, with a focus on the host transcriptional response. Current data strongly suggest a protective synergy between rapid innate and humoral immunity.

6.
PLoS Pathog ; 17(6): e1009662, 2021 06.
Article in English | MEDLINE | ID: covidwho-1259253

ABSTRACT

Signal-regulatory protein alpha (SIRPA) is a well-known inhibitor of phagocytosis when it complexes with CD47 expressed on target cells. Here we show that SIRPA decreased in vitro infection by a number of pathogenic viruses, including New World and Old World arenaviruses, Zika virus, vesicular stomatitis virus and pseudoviruses bearing the Machupo virus, Ebola virus and SARS-CoV-2 glycoproteins, but not HSV-1, MLV or mNoV. Moreover, mice with targeted mutation of the Sirpa gene that renders it non-functional were more susceptible to infection with the New World arenaviruses Junín virus vaccine strain Candid 1 and Tacaribe virus, but not MLV or mNoV. All SIRPA-inhibited viruses have in common the requirement for trafficking to a low pH endosomal compartment. This was clearly demonstrated with SARS-CoV-2 pseudovirus, which was only inhibited by SIRPA in cells in which it required trafficking to the endosome. Similar to its role in phagocytosis inhibition, SIRPA decreased virus internalization but not binding to cell surface receptors. We also found that increasing SIRPA levels via treatment with IL-4 led to even greater anti-viral activity. These data suggest that enhancing SIRPA's activity could be a target for anti-viral therapies.


Subject(s)
Endocytosis , RNA Viruses/immunology , Receptors, Immunologic/physiology , Virus Internalization , Animals , Antiviral Agents/pharmacology , Cell Line , Cell Membrane/virology , Chlorocebus aethiops , Drug Delivery Systems , Integrins/immunology , Interleukin-4/pharmacology , Mice , Mice, Knockout , Protein Domains , Receptors, Immunologic/genetics , Vero Cells
7.
Front Immunol ; 12: 641360, 2021.
Article in English | MEDLINE | ID: covidwho-1247859

ABSTRACT

Human SP-D is a potent innate immune molecule whose presence at pulmonary mucosal surfaces allows its role in immune surveillance against pathogens. Higher levels of serum SP-D have been reported in the patients with severe acute respiratory syndrome coronavirus (SARS-CoV). Studies have suggested the ability of human SP-D to recognise spike glycoprotein of SARS-CoV; its interaction with HCoV-229E strain leads to viral inhibition in human bronchial epithelial (16HBE) cells. Previous studies have reported that a recombinant fragment of human SP-D (rfhSP-D) composed of 8 Gly-X-Y repeats, neck and CRD region, can act against a range of viral pathogens including influenza A Virus and Respiratory Syncytial Virus in vitro, in vivo and ex vivo. In this context, this study was aimed at examining the likely protective role of rfhSP-D against SARS-CoV-2 infection. rfhSP-D showed a dose-responsive binding to S1 spike protein of SARS-CoV-2 and its receptor binding domain. Importantly, rfhSP-D inhibited interaction of S1 protein with the HEK293T cells overexpressing human angiotensin converting enzyme 2 (hACE2). The protective role of rfhSP-D against SARS-CoV-2 infection as an entry inhibitor was further validated by the use of pseudotyped lentiviral particles expressing SARS-CoV-2 S1 protein; ~0.5 RLU fold reduction in viral entry was seen following treatment with rfhSP-D (10 µg/ml). These results highlight the therapeutic potential of rfhSP-D in SARS-CoV-2 infection and merit pre-clinical studies in animal models.


Subject(s)
COVID-19/prevention & control , Influenza A virus/physiology , Pulmonary Surfactant-Associated Protein D/metabolism , Respiratory Mucosa/physiology , Respiratory Syncytial Viruses/physiology , Virion/metabolism , Angiotensin-Converting Enzyme 2/metabolism , HEK293 Cells , Humans , Immunity, Innate , Protein Binding , Pulmonary Surfactant-Associated Protein D/genetics , Recombinant Proteins/genetics , Respiratory Mucosa/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
8.
Int J Mol Sci ; 22(11)2021 May 22.
Article in English | MEDLINE | ID: covidwho-1244041

ABSTRACT

The COVID-19 pandemic is caused by SARS-CoV-2. Currently, most of the research efforts towards the development of vaccines and antibodies against SARS-CoV-2 were mainly focused on the spike (S) protein, which mediates virus entry into the host cell by binding to ACE2. As the virus SARS-CoV-2 continues to spread globally, variants have emerged, characterized by multiple mutations of the S glycoprotein. Herein, we employed microsecond-long molecular dynamics simulations to study the impact of the mutations of the S glycoprotein in SARS-CoV-2 Variant of Concern 202012/01 (B.1.1.7), termed the "UK variant", in comparison with the wild type, with the aim to decipher the structural basis of the reported increased infectivity and virulence. The simulations provided insights on the different dynamics of UK and wild-type S glycoprotein, regarding in particular the Receptor Binding Domain (RBD). In addition, we investigated the role of glycans in modulating the conformational transitions of the RBD. The overall results showed that the UK mutant experiences higher flexibility in the RBD with respect to wild type; this behavior might be correlated with the increased transmission reported for this variant. Our work also adds useful structural information on antigenic "hotspots" and epitopes targeted by neutralizing antibodies.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , Binding Sites , Epitopes , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Domains , Protein Interaction Domains and Motifs , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , United Kingdom
9.
Adv Food Nutr Res ; 96: 251-310, 2021.
Article in English | MEDLINE | ID: covidwho-1240122

ABSTRACT

Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid ß and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.


Subject(s)
Autism Spectrum Disorder/metabolism , COVID-19/metabolism , Diabetes Mellitus, Type 2/metabolism , Neurodegenerative Diseases/metabolism , Obesity/metabolism , Reproduction , Zinc/metabolism , Alzheimer Disease/metabolism , Animals , COVID-19/drug therapy , Female , Humans , Male , Neurodevelopmental Disorders/metabolism , Nutritional Status , Parkinson Disease/metabolism , Zinc/deficiency , Zinc/therapeutic use
10.
Front Immunol ; 12: 629102, 2021.
Article in English | MEDLINE | ID: covidwho-1236669

ABSTRACT

The adaptive immune response to severe acute respiratory coronavirus 2 (SARS-CoV-2) is important for vaccine development and in the recovery from coronavirus disease 2019 (COVID-19). Men and cancer patients have been reported to be at higher risks of contracting the virus and developing the more severe forms of COVID-19. Prostate cancer (PCa) may be associated with both of these risks. We show that CD4+ T cells of SARS-CoV-2-unexposed patients with hormone-refractory (HR) metastatic PCa had decreased CD4+ T cell immune responses to antigens from SARS-CoV-2 spike glycoprotein but not from the spiked glycoprotein of the 'common cold'-associated human coronavirus 229E (HCoV-229E) as compared with healthy male volunteers who responded comparably to both HCoV-229E- and SARS-CoV-2-derived antigens. Moreover, the HCoV-229E spike glycoprotein antigen-elicited CD4+ T cell immune responses cross-reacted with the SARS-CoV-2 spiked glycoprotein antigens. PCa patients may have impaired responses to the vaccination, and the cross-reactivity can mediate antibody-dependent enhancement (ADE) of COVID-19. These findings highlight the potential for increased vulnerability of PCa patients to COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Prostatic Neoplasms/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adaptive Immunity , Aged , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , Coronavirus 229E, Human/immunology , Cross Reactions , Cytokines/immunology , Humans , Male , Middle Aged , Prostatic Neoplasms/pathology
11.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1236215

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV-2), a novel coronavirus, has brought an unprecedented pandemic to the world and affected over 64 million people. The virus infects human using its spike glycoprotein mediated by a crucial area, receptor-binding domain (RBD), to bind to the human ACE2 (hACE2) receptor. Mutations on RBD have been observed in different countries and classified into nine types: A435S, D364Y, G476S, N354D/D364Y, R408I, V341I, V367F, V483A and W436R. Employing molecular dynamics (MD) simulation, we investigated dynamics and structures of the complexes of the prototype and mutant types of SARS-CoV-2 spike RBDs and hACE2. We then probed binding free energies of the prototype and mutant types of RBD with hACE2 protein by using an end-point molecular mechanics Poisson Boltzmann surface area (MM-PBSA) method. According to the result of MM-PBSA binding free energy calculations, we found that V367F and N354D/D364Y mutant types showed enhanced binding affinities with hACE2 compared to the prototype. Our computational protocols were validated by the successful prediction of relative binding free energies between prototype and three mutants: N354D/D364Y, V367F and W436R. Thus, this study provides a reliable computational protocol to fast assess the existing and emerging RBD mutations. More importantly, the binding hotspots identified by using the molecular mechanics generalized Born surface area (MM-GBSA) free energy decomposition approach can guide the rational design of small molecule drugs or vaccines free of drug resistance, to interfere with or eradicate spike-hACE2 binding.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , COVID-19/pathology , COVID-19/virology , Computer Simulation , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Protein Binding/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity
12.
PLoS Pathog ; 17(4): e1009487, 2021 04.
Article in English | MEDLINE | ID: covidwho-1231264

ABSTRACT

Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.


Subject(s)
Influenza, Human/immunology , Lipocalin-2/metabolism , Microbiota/immunology , Transcriptome , Animals , Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , Female , Gastrointestinal Microbiome , Homeostasis , Humans , Immunity , Influenza, Human/virology , Lipocalin-2/genetics , Lung/immunology , Lung/virology , Lymphocyte Activation , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Specific Pathogen-Free Organisms
13.
ACS Cent Sci ; 7(4): 586-593, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1225485

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 is the causative pathogen of the COVID-19 pandemic which as of March 29, 2021, has claimed 2 776 175 lives worldwide. Vaccine development efforts focus on the viral trimeric spike glycoprotein as the main target of the humoral immune response. Viral spikes carry glycans that facilitate immune evasion by shielding specific protein epitopes from antibody neutralization, and antigen efficacy is influenced by spike glycoprotein production in vivo. Therefore, immunogen integrity is important for glycoprotein-based vaccine candidates. Here, we show how site-specific glycosylation differs between virus-derived spikes, wild-type, non-stabilized spikes expressed from a plasmid with a CMV promoter and tPA signal sequence, and commonly used recombinant, engineered spike glycoproteins. Furthermore, we show that their distinctive cellular secretion pathways result in different protein glycosylation and secretion patterns, including shedding of spike monomeric subunits for the non-stabilized wild-type spike tested, which may have implications for the resulting immune response and vaccine design.

14.
Nat Microbiol ; 6(7): 899-909, 2021 07.
Article in English | MEDLINE | ID: covidwho-1205445

ABSTRACT

SARS-CoV-2 entry requires sequential cleavage of the spike glycoprotein at the S1/S2 and the S2' cleavage sites to mediate membrane fusion. SARS-CoV-2 has a polybasic insertion (PRRAR) at the S1/S2 cleavage site that can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture-adapted SARS-CoV-2 virus with an S1/S2 deletion, we show that the polybasic insertion endows SARS-CoV-2 with a selective advantage in lung cells and primary human airway epithelial cells, but impairs replication in Vero E6, a cell line used for passaging SARS-CoV-2. Using engineered spike variants and live virus competition assays and by measuring growth kinetics, we find that the selective advantage in lung and primary human airway epithelial cells depends on the expression of the cell surface protease TMPRSS2, which enables endosome-independent virus entry by a route that avoids antiviral IFITM proteins. SARS-CoV-2 virus lacking the S1/S2 furin cleavage site was shed to lower titres from infected ferrets and was not transmitted to cohoused sentinel animals, unlike wild-type virus. Analysis of 100,000 SARS-CoV-2 sequences derived from patients and 24 human postmortem tissues showed low frequencies of naturally occurring mutants that harbour deletions at the polybasic site. Taken together, our findings reveal that the furin cleavage site is an important determinant of SARS-CoV-2 transmission.


Subject(s)
COVID-19/transmission , Furin/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/virology , Cathepsins/metabolism , Chlorocebus aethiops , Endosomes/metabolism , Epithelial Cells , Ferrets , Humans , Immune Evasion , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Respiratory System/cytology , Respiratory System/virology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Viral Genome Packaging , Virus Internalization , Virus Replication , Virus Shedding
15.
Clin Chim Acta ; 519: 26-31, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1176557

ABSTRACT

BACKGROUND AND AIMS: The reduced fucosylation in the spike glycoprotein of SARS-CoV-2 and the IgG antibody has been observed in COVID-19. However, the clinical relevance of α-l-fucosidase, the enzyme for defucosylation has not been discovered. MATERIALS AND METHODS: 585 COVID-19 patients were included to analyze the correlations of α-l-fucosidase activity with the nucleic acid test, IgM/IgG, comorbidities, and disease progression. RESULTS: Among the COVID-19 patients, 5.75% were double-negative for nucleic acid and antibodies. All of them had increased α-l-fucosidase, while only one had abnormal serum amyloid A (SAA) and C-reactive protein (CRP). The abnormal rate of α-l-fucosidase was 81.82% before the presence of IgM, 100% in the presence of IgM, and 66.2% in the presence of IgG. 73.42% of patients with glucometabolic disorders had increased α-l-fucosidase activity and had the highest mortality of 6.33%. The increased α-l-fucosidase was observed in 55.8% of non-severe cases and 72.9% of severe cases, with an odds ratio of 2.118. The α-l-fucosidase mRNA was irrelevant to its serum activity. CONCLUSION: The change in α-l-fucosidase activity in COVID-19 preceded the IgM and SAA and showed a preferable relation with glucometabolic disorders, which may be conducive to virus invasion or invoke an immune response against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunoglobulin M , alpha-L-Fucosidase
16.
Life Sci ; 276: 119376, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1157590

ABSTRACT

The severe forms and worsened outcomes of COVID-19 (coronavirus disease 19) are closely associated with hypertension and cardiovascular disease. Endothelial cells express Angiotensin-Converting Enzyme 2 (ACE2), which is the entrance door for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The hallmarks of severe illness caused by SARS-CoV-2 infection are increased levels of IL-6, C-reactive protein, D-dimer, ferritin, neutrophilia and lymphopenia, pulmonary intravascular coagulopathy and microthrombi of alveolar capillaries. The endothelial glycocalyx, a proteoglycan- and glycoprotein-rich layer covering the luminal side of endothelial cells, contributes to vascular homeostasis. It regulates vascular tonus and permeability, prevents thrombosis, and modulates leukocyte adhesion and inflammatory response. We hypothesized that cytokine production and reactive oxygen species (ROS) generation associated with COVID-19 leads to glycocalyx degradation. A cohort of 20 hospitalized patients with a confirmed COVID-19 diagnosis and healthy subjects were enrolled in this study. Mechanisms associated with glycocalyx degradation in COVID-19 were investigated. Increased plasma concentrations of IL-6 and IL1-ß, as well as increased lipid peroxidation and glycocalyx components were detected in plasma from COVID-19 patients compared to plasma from healthy subjects. Plasma from COVID-19 patients induced glycocalyx shedding in cultured human umbilical vein endothelial cells (HUVECs) and disrupted redox balance. Treatment of HUVECs with low molecular weight heparin inhibited the glycocalyx perturbation. In conclusion, plasma from COVID-19 patients promotes glycocalyx shedding and redox imbalance in endothelial cells, and heparin treatment potentially inhibits glycocalyx disruption.


Subject(s)
COVID-19/blood , COVID-19/pathology , Glycocalyx/pathology , Heparin/pharmacology , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/virology , COVID-19/metabolism , COVID-19 Testing , Case-Control Studies , Cell Adhesion/physiology , Endothelium, Vascular/metabolism , Female , Glycocalyx/metabolism , Glycocalyx/virology , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-1beta/blood , Interleukin-6/blood , Male , Middle Aged , Oxidation-Reduction , SARS-CoV-2 , Thrombosis/metabolism
17.
mBio ; 12(2)2021 03 16.
Article in English | MEDLINE | ID: covidwho-1138303

ABSTRACT

An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP, and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.IMPORTANCE Viral envelope glycoproteins are an important structural component on the surfaces of enveloped viruses that direct virus binding and entry and also serve as targets for the host adaptive immune response. In this study, we investigate the mechanism of action of the MARCH family of cellular proteins that disrupt the trafficking and virion incorporation of viral glycoproteins across several virus families. This research provides novel insights into how host cell factors antagonize viral replication, perhaps opening new avenues for therapeutic intervention in the replication of a diverse group of highly pathogenic enveloped viruses.


Subject(s)
Membrane Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Envelope Proteins/metabolism , Amino Acid Sequence , Cells, Cultured , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Interferons/pharmacology , Intracellular Space/metabolism , Membrane Proteins/genetics , Mutation , RNA Viruses/classification , RNA Viruses/metabolism , Species Specificity , Ubiquitin-Protein Ligases/genetics , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Virion/metabolism , Virus Replication
18.
Int J Biol Macromol ; 179: 1-19, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1116845

ABSTRACT

Three coronaviruses (CoVs) have threatened the world population by causing outbreaks in the last two decades. In late 2019, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged and caused the coronaviruses to disease 2019 (COVID-19), leading to the ongoing global outbreak. The other pandemic coronaviruses, SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV), share a considerable level of similarities at genomic and protein levels. However, the differences between them lead to distinct behaviors. These differences result from the accumulation of mutations in the sequence and structure of spike (S) glycoprotein, which plays an essential role in coronavirus infection, pathogenicity, transmission, and evolution. In this review, we brought together many studies narrating a sequence of events and highlighting the differences among S proteins from SARS-CoV, MERS-CoV, and SARS-CoV-2. It was performed here, analysis of S protein sequences and structures from the three pandemic coronaviruses pointing out the mutations among them and what they come through. Additionally, we investigated the receptor-binding domain (RBD) from all S proteins explaining the mutation and biological importance of all of them. Finally, we discuss the mutation in the S protein from several new isolates of SARS-CoV-2, reporting their difference and importance. This review brings into detail how the variations in S protein that make SARS-CoV-2 more aggressive than its relatives coronaviruses and other differences between coronaviruses.


Subject(s)
COVID-19/virology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Animals , COVID-19/epidemiology , COVID-19/metabolism , Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Middle East Respiratory Syndrome Coronavirus/metabolism , Pandemics , Protein Binding , SARS Virus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
19.
Eur J Med Chem ; 215: 113242, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1086914

ABSTRACT

Currently, SARS-CoV-2 virus is an emerging pathogen that has posed a serious threat to public health worldwide. However, no agents have been approved to treat SARS-CoV-2 infections to date, underscoring the great need for effective and practical therapies for SARS-CoV-2 outbreaks. We reported that a focused screen of OA saponins identified 3-O-ß-chacotriosyl OA benzyl ester 2 as a novel small molecule inhibitor of SARS-CoV-2 virus entry, via binding to SARS-CoV-2 glycoprotein (S). We performed structure-activity relationship profiling of 2 and discovered C-17-COOH of OA was an important modification site that improved both inhibitor potency toward SARS-CoV-2 and selectivity index. Then optimization from hit to lead resulted in a potent fusion inhibitor 12f displaying strong inhibition against infectious SARS-CoV-2 with an IC50 value of 0.97 µM in vitro. Mechanism studies confirmed that inhibition of SARS-CoV-2 viral entry of 12f was mediated by the direct interaction with SARS-CoV-2 S2 subunit to block membrane fusion. These 3-O-ß-chacotriosyl OA amide saponins are suitable for further optimization as SARS-CoV-2 entry inhibitors with the potential to be developed as therapeutic agents for the treatment of SARS-CoV-2 virus infections.


Subject(s)
Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , Saponins/pharmacology , Triterpenes/pharmacology , Virus Internalization/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Chlorocebus aethiops , Drug Discovery , HEK293 Cells , Humans , Microbial Sensitivity Tests , Molecular Structure , Protein Binding , Protein Subunits/metabolism , Saponins/chemical synthesis , Saponins/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Triterpenes/chemical synthesis , Triterpenes/metabolism , Vero Cells
20.
Int Immunopharmacol ; 94: 107439, 2021 May.
Article in English | MEDLINE | ID: covidwho-1077940

ABSTRACT

COVID-19 pandemic has started in December 2019 in China and quickly extended to become a worldwide health and economic emergency issue. It is caused by the novel coronavirus; SARS-CoV-2. COVID-19 patients' clinical presentations vary from asymptomatic infection or flu like symptoms to serious pneumonia which could be associated with multiple organ failure possibly leading to death. It is understood that the immune response to SARS-CoV-2 includes all elements of the immune system which could altogether succeed in viral elimination and complete cure. Meanwhile, this immune response may also lead to disease progression and could be responsible for the patient's death. Many trials have been done recently to create therapies and vaccines against human coronavirus infections such as MERS or SARS, however, till now, there is some controversy about the effectiveness and safety of antiviral drugs and vaccines which have been developed to treat and prevent this disease and its management depends mainly on supportive care. The spike glycoprotein or protein S of SARS-CoV-2 is the main promoter that induces development of neutralizing antibodies; hence, many attempts of vaccines and antiviral drugs development have been designed to be directed specifically against this protein. While some of these attempts have been proved to be efficient in in vitro settings, only few of them have been proceeded to randomized animal trials and human studies which makes COVID-19 prevention an ongoing challenge. This review describes the natural immune response scenario during COVID-19 and the vaccines development trials to create efficient vaccines thus helping to build more effective approaches for prophylaxis and management.


Subject(s)
COVID-19 Vaccines , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Adaptive Immunity , Animals , Cytokines/immunology , Humans , Immunity, Innate , Immunization, Passive
SELECTION OF CITATIONS
SEARCH DETAIL