Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 377
Filter
Add filters

Document Type
Year range
1.
J Clin Med ; 10(8)2021 Apr 13.
Article in English | MEDLINE | ID: covidwho-1526835

ABSTRACT

BACKGROUND: In coronavirus disease 2019 (COVID-19) patients, increases in high-sensitive cardiac troponin T (hs-cTnT) have been reported to be associated with worse outcomes. In the critically ill, the prognostic value of hs-cTnT, however, remains to be assessed given that most previous studies have involved a case mix of non- and severely ill COVID-19 patients. METHODS: We conducted, from March to May 2020, in three French intensive care units (ICUs), a multicenter retrospective cohort study to assess in-hospital mortality predictability of hs-cTnT levels in COVID-19 patients. RESULTS: 111 laboratory-confirmed COVID-19 patients (68% of male, median age 67 (58-75) years old) were included. At ICU admission, the median Charlson Index, Simplified Acute Physiology Score II, and PaO2/FiO2 were at 3 (2-5), 37 (27-48), and 140 (98-154), respectively, and the median hs-cTnT serum levels were at 16.0 (10.1-31.9) ng/L. Seventy-five patients (68%) were mechanically ventilated, 41 (37%) were treated with norepinephrine, and 17 (15%) underwent renal replacement therapy. In-hospital mortality was 29% (32/111) and was independently associated with lower PaO2/FiO2 and higher hs-cTnT serum levels. CONCLUSIONS: At ICU admission, besides PaO2/FiO2, hs-cTnT levels may allow early risk stratification and triage in critically ill COVID-19 patients.

2.
Clin Transl Immunology ; 10(4): e1271, 2021.
Article in English | MEDLINE | ID: covidwho-1525427

ABSTRACT

Objectives: Emerging evidence of dysregulation of the myeloid cell compartment urges investigations on neutrophil characteristics in coronavirus disease 2019 (COVID-19). We isolated neutrophils from the blood of COVID-19 patients receiving general ward care and from patients hospitalised at intensive care units (ICUs) to explore the kinetics of circulating neutrophils and factors important for neutrophil migration and activation. Methods: Multicolour flow cytometry was exploited for the analysis of neutrophil differentiation and activation markers. Multiplex and ELISA technologies were used for the quantification of protease, protease inhibitor, chemokine and cytokine concentrations in plasma. Neutrophil polarisation responses were evaluated microscopically. Gelatinolytic and metalloproteinase activity in plasma was determined using a fluorogenic substrate. Co-culturing healthy donor neutrophils with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) allowed us to investigate viral replication in neutrophils. Results: Upon ICU admission, patients displayed high plasma concentrations of granulocyte-colony-stimulating factor (G-CSF) and the chemokine CXCL8, accompanied by emergency myelopoiesis as illustrated by high levels of circulating CD10-, immature neutrophils with reduced CXCR2 and C5aR expression. Neutrophil elastase and non-metalloproteinase-derived gelatinolytic activity were increased in plasma from ICU patients. Significantly higher levels of circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) in patients at ICU admission yielded decreased total MMP proteolytic activity in blood. COVID-19 neutrophils were hyper-responsive to CXCL8 and CXCL12 in shape change assays. Finally, SARS-CoV-2 failed to replicate inside human neutrophils. Conclusion: Our study provides detailed insights into the kinetics of neutrophil phenotype and function in severe COVID-19 patients, and supports the concept of an increased neutrophil activation state in the circulation.

3.
Arthritis Rheumatol ; 73(11): 1976-1985, 2021 11.
Article in English | MEDLINE | ID: covidwho-1432359

ABSTRACT

OBJECTIVE: The clinical relevance of antiphospholipid antibodies (aPLs) in COVID-19 is controversial. This study was undertaken to investigate the prevalence and prognostic value of conventional and nonconventional aPLs in patients with COVID-19. METHODS: This was a multicenter, prospective observational study in a French cohort of patients hospitalized with suspected COVID-19. RESULTS: Two hundred forty-nine patients were hospitalized with suspected COVID-19, in whom COVID-19 was confirmed in 154 and not confirmed in 95. We found a significant increase in lupus anticoagulant (LAC) positivity among patients with COVID-19 compared to patients without COVID-19 (60.9% versus 23.7%; P < 0.001), while prevalence of conventional aPLs (IgG and IgM anti-ß2 -glycoprotein I and IgG and IgM anticardiolipin isotypes) and nonconventional aPLs (IgA isotype of anticardiolipin, IgA isotype of anti-ß2 -glycoprotein I, IgG and IgM isotypes of anti-phosphatidylserine/prothrombin, and IgG and IgM isotypes of antiprothrombin) was low in both groups. Patients with COVID-19 who were positive for LAC, as compared to patients with COVID-19 who were negative for LAC, had higher levels of fibrinogen (median 6.0 gm/liter [interquartile range 5.0-7.0] versus 5.3 gm/liter [interquartile range 4.3-6.4]; P = 0.028) and C-reactive protein (CRP) (median 115.5 mg/liter [interquartile range 66.0-204.8] versus 91.8 mg/liter [interquartile range 27.0-155.1]; P = 0.019). Univariate analysis did not show any association between LAC positivity and higher risks of venous thromboembolism (VTE) (odds ratio 1.02 [95% confidence interval 0.44-2.43], P = 0.95) or in-hospital mortality (odds ratio 1.80 [95% confidence interval 0.70-5.05], P = 0.24). With and without adjustment for CRP level, age, and sex, Kaplan-Meier survival curves according to LAC positivity confirmed the absence of an association with VTE or in-hospital mortality (unadjusted P = 0.64 and P = 0.26, respectively; adjusted hazard ratio 1.13 [95% confidence interval 0.48-2.60] and 1.80 [95% confidence interval 0.67-5.01], respectively). CONCLUSION: Patients with COVID-19 have an increased prevalence of LAC positivity associated with biologic markers of inflammation. However, LAC positivity at the time of hospital admission is not associated with VTE risk and/or in-hospital mortality.


Subject(s)
COVID-19/complications , Lupus Coagulation Inhibitor/blood , Venous Thromboembolism/etiology , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/mortality , Female , Hospital Mortality , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Risk Factors , Survival Rate , Venous Thromboembolism/blood
4.
AACE Clin Case Rep ; 7(5): 288-292, 2021.
Article in English | MEDLINE | ID: covidwho-1397116

ABSTRACT

Objective: During the ongoing coronavirus disease 2019 pandemic, procalcitonin (PCT) levels have proven useful in assisting clinicians to diagnose bacterial superinfection. However, in the absence of signs of infection or at the resolution thereof, inappropriately and persistently high PCT levels may suggest and reveal the presence of other pathologies. We report a patient with severe acute respiratory syndrome coronavirus 2 pneumonia with initially elevated PCT levels that persisted during recovery, prompting the diagnosis of medullary thyroid carcinoma (MTC). Methods: A 43-year-old man presented with a 2-day history of fever, sneezing, sore throat, and dry cough. His PCT was 94 ng/mL (normal value, 0.00-0.10 ng/mL), and he was positive for severe acute respiratory syndrome coronavirus 2 RNA. Results: Empirical antibiotic therapy was administered for 7 days, but despite a clinical improvement, serum PCT remained high (84 ng/mL). Serum calcitonin (CTN) was 2120 pg/mL (normal, ≤12 pg/mL). Cytologic examination of thyroid nodules and CTN measurement of the aspiration needle washout confirmed MTC. The patient underwent total thyroidectomy with bilateral cervical lymph node dissection. Lowered CTN (986 pg/mL) and PCT (16 ng/mL) levels were observed 48 hours after surgery. A close follow-up was planned following the results of RET gene analysis. Conclusion: PCT can be a useful biochemical marker of MTC suspicion in patients with inflammatory conditions and persistently elevated PCT, even after resolution. In our case, high levels of PCT in a patient with coronavirus disease 2019 pneumonia without signs of bacterial infection led to MTC diagnosis.

5.
J Med Virol ; 93(9): 5416-5424, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363679

ABSTRACT

The kinetics of IgG antibodies after coronavirus disease 2019 (COVID-19) remain poorly understood. We investigated factors influencing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG antibody levels and time to seronegativation during the follow-up of severe and critically ill patients. We retrospectively reviewed serological evaluations drawn during the follow-up of severe or critical laboratory-proven COVID-19 patients hospitalized at a large academic hospital. Specific IgG titers were measured using a chemiluminescent assay targeting anti-spike and anti-nucleocapsid protein IgG. The influence of time, demographic factors, clinical and paraclinical characteristics, and COVID-19 therapeutics on IgG levels were assessed through linear regression using a mixed-effect model, and delay until IgG negativation through a Weibull regression model. The cohort included 116 patients with a total of 154 IgG measurements drawn at a median of 79 days after diagnosis. IgG antibodies were increased with age (p = 0.005) and decreased significantly over time (p = 0.0002). Using elapsed time and age as covariates, we demonstrated higher IgG levels in patients with a higher body mass index (BMI) (p = 0.0026) and lower IgG levels in immunocompromised patients (p = 0.032). A high BMI was further found to delay and immunodeficiency to hasten significantly seronegativation, whereas no significant effect was observed with corticosteroids. These data highlight the waning over time of IgG antibodies after severe or critical COVID-19. Age, BMI, and immunosuppression also appear to influence the IgG kinetics, while short-term corticotherapy does not. Those data improve the understanding of SARS-CoV-2 serology while further research should determine the determinants of long-term seroprotection.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Immunocompromised Host , Immunoglobulin G/blood , Respiratory Insufficiency/immunology , SARS-CoV-2/immunology , Adrenal Cortex Hormones/therapeutic use , Aged , Body Mass Index , COVID-19/blood , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19 Serological Testing , Convalescence , Female , Humans , Hydroxychloroquine/therapeutic use , Male , Middle Aged , Respiratory Insufficiency/blood , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/drug therapy , Retrospective Studies , Sensitivity and Specificity , Severity of Illness Index , Time Factors
6.
J Headache Pain ; 22(1): 51, 2021 Jun 04.
Article in English | MEDLINE | ID: covidwho-1346199

ABSTRACT

BACKGROUND: The presence of headache during the acute phase of COVID-19 could be associated with the innate response and the cytokine release. We aim to compare the cytokine and interleukin profile in hospitalized COVID-19 patients at the moment of admission with and without headache during the course of the disease. METHODS: An observational analytic study with a case control design was performed. Hospitalized patients from a tertiary hospital with confirmed COVID-19 disease were included. Patients were classified into the headache or the control group depending on whether they presented headache not better accounted for by another headache disorder other than acute headache attributed to systemic viral infection. Several demographic and clinical variables were studies in both groups. We determined the plasmatic levels of 45 different cytokines and interleukins from the first hospitalization plasma extraction in both groups. RESULTS: One hundred and four patients were included in the study, aged 67.4 (12.8), 43.3% female. Among them, 29 (27.9%) had headache. Patients with headache were younger (61.8 vs. 69.5 years, p = 0.005) and had higher frequency of fever (96.6 vs. 78.7%, p = 0.036) and anosmia (48.3% vs. 22.7%, p = 0.016). In the comparison of the crude median values of cytokines, many cytokines were different between both groups. In the comparison of the central and dispersion parameters between the two groups, GROa, IL-10, IL1RA, IL-21, IL-22 remained statistically significant. After adjusting the values for age, sex, baseline situation and COVID-19 severity, IL-10 remained statistically significant (3.3 vs. 2.2 ng/dL, p = 0.042), with a trend towards significance in IL-23 (11.9 vs. 8.6 ng/dL, p = 0.082) and PIGF1 (1621.8 vs. 110.6 ng/dL, p = 0.071). CONCLUSIONS: The higher levels of IL-10 -an anti-inflammatory cytokine- found in our sample in patients with headache may be explained as a counteract of cytokine release, reflecting a more intense immune response in these patients.


Subject(s)
COVID-19 , Cytokines , Case-Control Studies , Female , Headache/complications , Humans , Interleukins , Male , SARS-CoV-2
7.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: covidwho-1341362

ABSTRACT

BACKGROUNDThe fungal cell wall constituent 1,3-ß-d-glucan (BDG) is a pathogen-associated molecular pattern that can stimulate innate immunity. We hypothesized that BDG from colonizing fungi in critically ill patients may translocate into the systemic circulation and be associated with host inflammation and outcomes.METHODSWe enrolled 453 mechanically ventilated patients with acute respiratory failure (ARF) without invasive fungal infection and measured BDG, innate immunity, and epithelial permeability biomarkers in serially collected plasma samples.RESULTSCompared with healthy controls, patients with ARF had significantly higher BDG levels (median [IQR], 26 pg/mL [15-49 pg/mL], P < 0.001), whereas patients with ARF with high BDG levels (≥40 pg/mL, 31%) had higher odds for assignment to the prognostically adverse hyperinflammatory subphenotype (OR [CI], 2.88 [1.83-4.54], P < 0.001). Baseline BDG levels were predictive of fewer ventilator-free days and worse 30-day survival (adjusted P < 0.05). Integrative analyses of fungal colonization and epithelial barrier disruption suggested that BDG may translocate from either the lung or gut compartment. We validated the associations between plasma BDG and host inflammatory responses in 97 hospitalized patients with COVID-19.CONCLUSIONBDG measurements offered prognostic information in critically ill patients without fungal infections. Further research in the mechanisms of translocation and innate immunity recognition and stimulation may offer new therapeutic opportunities in critical illness.FUNDINGUniversity of Pittsburgh Clinical and Translational Science Institute, COVID-19 Pilot Award and NIH grants (K23 HL139987, U01 HL098962, P01 HL114453, R01 HL097376, K24 HL123342, U01 HL137159, R01 LM012087, K08HK144820, F32 HL142172, K23 GM122069).


Subject(s)
COVID-19 , Candida , Immunity, Innate/immunology , Respiration, Artificial , beta-Glucans/blood , Biomarkers/blood , COVID-19/immunology , COVID-19/therapy , Candida/immunology , Candida/isolation & purification , Capillary Permeability/immunology , Critical Illness/therapy , Female , Gastrointestinal Microbiome/immunology , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Respiratory System/immunology , Respiratory System/microbiology , SARS-CoV-2 , Severity of Illness Index , Survival Analysis
8.
Sci Rep ; 11(1): 11886, 2021 06 04.
Article in English | MEDLINE | ID: covidwho-1341009

ABSTRACT

The cholinergic system has been proposed as a potential regulator of COVID-19-induced hypercytokinemia. We investigated whole-blood expression of cholinergic system members and correlated it with COVID-19 severity. Patients with confirmed SARS-CoV-2 infection and healthy aged-matched controls were included in this non-interventional study. A whole blood sample was drawn between 9-11 days after symptoms onset, and peripheral leukocyte phenotyping, cytokines measurement, RNA expression and plasma viral load were determined. Additionally, whole-blood expression of native alpha-7 nicotinic subunit and its negative dominant duplicate (CHRFAM7A), choline acetyltransferase and acetylcholine esterase (AchE) were determined. Thirty-seven patients with COVID-19 (10 moderate, 11 severe and 16 with critical disease) and 14 controls were included. Expression of CHRFAM7A was significantly lower in critical COVID-19 patients compared to controls. COVID-19 patients not expressing CHRFAM7A had higher levels of CRP, more extended pulmonary lesions and displayed more pronounced lymphopenia. COVID-19 patients without CHRFAM7A expression also showed increased TNF pathway expression in whole blood. AchE was also expressed in 30 COVID-19 patients and in all controls. COVID-19-induced hypercytokinemia is associated with decreased expression of the pro-inflammatory dominant negative duplicate CHRFAM7A. Expression of this duplicate might be considered before targeting the cholinergic system in COVID-19 with nicotine.


Subject(s)
Acetylcholine/immunology , COVID-19/immunology , Inflammation/immunology , SARS-CoV-2/immunology , alpha7 Nicotinic Acetylcholine Receptor/immunology , Adult , Aged , COVID-19/genetics , Down-Regulation , Female , Humans , Inflammation/genetics , Male , Middle Aged , alpha7 Nicotinic Acetylcholine Receptor/genetics
9.
Nature ; 588(7837): 315-320, 2020 12.
Article in English | MEDLINE | ID: covidwho-1337122

ABSTRACT

There is increasing evidence that coronavirus disease 2019 (COVID-19) produces more severe symptoms and higher mortality among men than among women1-5. However, whether immune responses against severe acute respiratory syndrome coronavirus (SARS-CoV-2) differ between sexes, and whether such differences correlate with the sex difference in the disease course of COVID-19, is currently unknown. Here we examined sex differences in viral loads, SARS-CoV-2-specific antibody titres, plasma cytokines and blood-cell phenotyping in patients with moderate COVID-19 who had not received immunomodulatory medications. Male patients had higher plasma levels of innate immune cytokines such as IL-8 and IL-18 along with more robust induction of non-classical monocytes. By contrast, female patients had more robust T cell activation than male patients during SARS-CoV-2 infection. Notably, we found that a poor T cell response negatively correlated with patients' age and was associated with worse disease outcome in male patients, but not in female patients. By contrast, higher levels of innate immune cytokines were associated with worse disease progression in female patients, but not in male patients. These findings provide a possible explanation for the observed sex biases in COVID-19, and provide an important basis for the development of a sex-based approach to the treatment and care of male and female patients with COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Immunity, Innate/immunology , SARS-CoV-2/immunology , Sex Characteristics , T-Lymphocytes/immunology , COVID-19/blood , COVID-19/virology , Chemokines/blood , Chemokines/immunology , Cohort Studies , Cytokines/blood , Disease Progression , Female , Humans , Lymphocyte Activation , Male , Monocytes/immunology , Phenotype , Prognosis , RNA, Viral/analysis , SARS-CoV-2/pathogenicity , Viral Load
10.
Curr Rheumatol Rev ; 17(3): 318-326, 2021 Aug 30.
Article in English | MEDLINE | ID: covidwho-1328036

ABSTRACT

BACKGROUND: People with rheumatic disease may be at higher risk for more severe course with COVID- 19, and the adverse effects of drugs used to treat rheumatic diseases is a major concern. OBJECTIVE: We conducted this survey to learn about the real impact of COVID-19 pandemic on patients with rheumatic diseases. METHODS: Participants were asked to complete a questionnaire using a telephonic interview conducted by two rheumatologists. Rheumatic disease characteristics, knowledge and attitude toward COVID-19, and impacts of pandemic on rheumatology care and patient's compliance were assessed. RESULTS: We included 307 patients in the survey, and rheumatoid arthris was the main rheumatic disease. Patients had mostly moderate level of knowledge about COVID-19, and patients with higher level of education were more likely to have better knowledge. Participants respected mainly recommended preventive measures. The pandemic and sanitary containment impacted strongly the rheumatology care. Over quarter of patients noted worsening of their rheumatic disease, two-thirds reported postponed or canceled medical apointments and more than three quarters postponed their laboratory tests. Patients with higher disease activity were more likely to have lack of follow-up. Medication change was noted in more than third of cases. It was mostly stopped, and DMARDs were mainly affected. Patients living in rural areas and who had canceled, or postponed their appointments were more likely to change their treatment. CONCLUSION: Our data are useful to better manage rheumatic patients. Physicians are encouraged to renew contact with their patients to insure medication compliance.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Patient Participation , Physician-Patient Relations , Rheumatic Diseases/diagnosis , Rheumatic Diseases/epidemiology , Adult , Aged , Antirheumatic Agents/therapeutic use , COVID-19/drug therapy , Cross-Sectional Studies , Disease Management , Female , Humans , Male , Middle Aged , Pandemics , Patient Participation/trends , Rheumatic Diseases/drug therapy
11.
Nutrients ; 13(4)2021 Apr 20.
Article in English | MEDLINE | ID: covidwho-1325744

ABSTRACT

Stiff person syndrome (SPS) is a rare autoimmune disease characterised by axial stiffness and episodic painful spasms. It is associated with additional autoimmune diseases and cerebellar ataxia. Most patients with SPS have high levels of glutamic acid decarboxylase (GAD) antibodies. The aetiology of SPS remains unclear but autoimmunity is thought to play a major part. We have previously demonstrated overlap between anti-GAD ataxia and gluten sensitivity. We have also demonstrated the beneficial effect of a gluten-free diet (GFD) in patients with anti-GAD ataxia. Here, we describe our experience in the management of 20 patients with SPS. The mean age at symptom onset was 52 years. Additional autoimmune diseases were seen in 15/20. Nineteen of the 20 patients had serological evidence of gluten sensitivity and 6 had coeliac disease. Fourteen of the 15 patients who had brain imaging had evidence of cerebellar involvement. Twelve patients improved on GFD and in seven GFD alone was the only treatment required long term. Twelve patients had immunosuppression but only three remained on such medication. Gluten sensitivity plays an important part in the pathogenesis of SPS and GFD is an effective therapeutic intervention.


Subject(s)
Food Intolerance/complications , Glutens/adverse effects , Stiff-Person Syndrome/complications , Adult , Aged , Female , Food Intolerance/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Stiff-Person Syndrome/diagnostic imaging
12.
Immunology ; 164(1): 135-147, 2021 09.
Article in English | MEDLINE | ID: covidwho-1295026

ABSTRACT

Detecting antibody responses during and after SARS-CoV-2 infection is essential in determining the seroepidemiology of the virus and the potential role of antibody in disease. Scalable, sensitive and specific serological assays are essential to this process. The detection of antibody in hospitalized patients with severe disease has proven relatively straightforward; detecting responses in subjects with mild disease and asymptomatic infections has proven less reliable. We hypothesized that the suboptimal sensitivity of antibody assays and the compartmentalization of the antibody response may contribute to this effect. We systematically developed an ELISA, optimizing different antigens and amplification steps, in serum and saliva from non-hospitalized SARS-CoV-2-infected subjects. Using trimeric spike glycoprotein, rather than nucleocapsid, enabled detection of responses in individuals with low antibody responses. IgG1 and IgG3 predominate to both antigens, but more anti-spike IgG1 than IgG3 was detectable. All antigens were effective for detecting responses in hospitalized patients. Anti-spike IgG, IgA and IgM antibody responses were readily detectable in saliva from a minority of RT-PCR confirmed, non-hospitalized symptomatic individuals, and these were mostly subjects who had the highest levels of anti-spike serum antibodies. Therefore, detecting antibody responses in both saliva and serum can contribute to determining virus exposure and understanding immune responses after SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antigens, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Saliva
14.
iScience ; 24(7): 102711, 2021 Jul 23.
Article in English | MEDLINE | ID: covidwho-1281437

ABSTRACT

The identification of patients with coronavirus disease 2019 and high risk of severe disease is a challenge in routine care. We performed cell phenotypic, serum, and RNA sequencing gene expression analyses in severe hospitalized patients (n = 61). Relative to healthy donors, results showed abnormalities of 27 cell populations and an elevation of 42 cytokines, neutrophil chemo-attractants, and inflammatory components in patients. Supervised and unsupervised analyses revealed a high abundance of CD177, a specific neutrophil activation marker, contributing to the clustering of severe patients. Gene abundance correlated with high serum levels of CD177 in severe patients. Higher levels were confirmed in a second cohort and in intensive care unit (ICU) than non-ICU patients (P < 0.001). Longitudinal measurements discriminated between patients with the worst prognosis, leading to death, and those who recovered (P = 0.01). These results highlight neutrophil activation as a hallmark of severe disease and CD177 assessment as a reliable prognostic marker for routine care.

15.
Infect Dis Now ; 51(5): 429-434, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1275351

ABSTRACT

INTRODUCTION: The SARS-CoV-2 virus affects many organs, especially the lungs, with widespread inflammation. We aimed to compare the endogenous oxidative damage markers of coenzyme Q10, nicotinamide dinucleotide oxidase 4, malondialdehyde, and ischemia-modified albumin levels in patients with pneumonia caused by SARS-CoV-2 and in an healthy control group. We also aimed to compare these parameters between patients with severe and non-severe pulmonary involvement. METHODS: The study included 58 adult patients with SARS-CoV-2 pneumonia and 30 healthy volunteers. CoQ10 and MDA levels were determined by high-pressure liquid chromatography. NOX4 and IMA levels were determined by ELISA assay and colorimetric method. RESULTS: Higher levels of CoQ10, MDA, NOX4, and IMA and lower levels of COQ10H were observed in patients with SARS-CoV-2 pneumonia than in the control group. MDA, IMA, NOX4, and CoQ10 levels were significantly higher in patients with severe pulmonary involvement than in patients with non-severe pulmonary involvement, but no significant difference was observed in CoQ10H levels. CoQ10 levels were significantly and positively correlated with both ferritin and CRP levels. CONCLUSION: SARS-CoV-2 pneumonia is significantly associated with increased endogenous oxidative damage. Oxidative damage seems to be associated with pulmonary involvement severity.


Subject(s)
COVID-19/blood , COVID-19/metabolism , Oxidative Stress , Pneumonia, Viral/blood , Pneumonia, Viral/metabolism , Adult , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged , Severity of Illness Index
16.
Neurol Neuroimmunol Neuroinflamm ; 8(5)2021 07.
Article in English | MEDLINE | ID: covidwho-1278138

ABSTRACT

OBJECTIVE: Coronavirus disease (COVID-19) has been associated with a large variety of neurologic disorders. However, the mechanisms underlying these neurologic complications remain elusive. In this study, we aimed at determining whether neurologic symptoms were caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) direct infection or by either systemic or local proinflammatory mediators. METHODS: In this cross-sectional study, we checked for SARS-CoV-2 RNA by quantitative reverse transcription PCR, SARS-CoV-2-specific antibodies, and 49 cytokines/chemokines/growth factors (by Luminex) in the CSF +/- sera of a cohort of 22 COVID-19 patients with neurologic presentation and 55 neurologic control patients (inflammatory neurologic disorder [IND], noninflammatory neurologic disorder, and MS). RESULTS: We detected anti-SARS-CoV-2 immunoglobulin G in patients with severe COVID-19 with signs of intrathecal synthesis for some of them. Of the 4 categories of tested patients, the CSF of IND exhibited the highest level of cytokines, chemokines, and growth factors. By contrast, patients with COVID-19 did not present overall upregulation of inflammatory mediators in the CSF. However, patients with severe COVID-19 (intensive care unit patients) exhibited higher concentrations of CCL2, CXCL8, and vascular endothelium growth factor A (VEGF-A) in the CSF than patients with a milder form of COVID-19. In addition, we could show that intrathecal CXCL8 synthesis was linked to an elevated albumin ratio and correlated with the increase of peripheral inflammation (serum hepatocyte growth factor [HGF] and CXCL10). CONCLUSIONS: Our results do not indicate active replication of SARS-CoV-2 in the CSF or signs of massive inflammation in the CSF compartment but highlight a specific impairment of the neurovascular unit linked to intrathecal production of CXCL8.


Subject(s)
Brain Diseases/etiology , COVID-19/complications , Cytokines/cerebrospinal fluid , Inflammation/etiology , Neurovascular Coupling , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , Antibodies, Viral/cerebrospinal fluid , Brain Diseases/cerebrospinal fluid , Brain Diseases/immunology , Brain Diseases/physiopathology , COVID-19/cerebrospinal fluid , COVID-19/immunology , Critical Care , Cross-Sectional Studies , Cytokines/blood , Electroencephalography , Female , Humans , Immunoglobulin G/cerebrospinal fluid , Inflammation/cerebrospinal fluid , Inflammation/immunology , Interleukin-8/cerebrospinal fluid , Male , Middle Aged , Neurovascular Coupling/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Young Adult
17.
J Allergy Clin Immunol ; 147(6): 2098-2107, 2021 06.
Article in English | MEDLINE | ID: covidwho-1269289

ABSTRACT

BACKGROUND: Markedly elevated levels of proinflammatory cytokines and defective type-I interferon responses were reported in patients with coronavirus disease 2019 (COVID-19). OBJECTIVE: We sought to determine whether particular cytokine profiles are associated with COVID-19 severity and mortality. METHODS: Cytokine concentrations and severe acute respiratory syndrome coronavirus 2 antigen were measured at hospital admission in serum of symptomatic patients with COVID-19 (N = 115), classified at hospitalization into 3 respiratory severity groups: no need for mechanical ventilatory support (No-MVS), intermediate severity requiring mechanical ventilatory support (MVS), and critical severity requiring extracorporeal membrane oxygenation (ECMO). Principal-component analysis was used to characterize cytokine profiles associated with severity and mortality. The results were thereafter confirmed in an independent validation cohort (N = 86). RESULTS: At time of hospitalization, ECMO patients presented a dominant proinflammatory response with elevated levels of TNF-α, IL-6, IL-8, and IL-10. In contrast, an elevated type-I interferon response involving IFN-α and IFN-ß was characteristic of No-MVS patients, whereas MVS patients exhibited both profiles. Mortality at 1 month was associated with higher levels of proinflammatory cytokines in ECMO patients, higher levels of type-I interferons in No-MVS patients, and their combination in MVS patients, resulting in a combined mortality prediction accuracy of 88.5% (risk ratio, 24.3; P < .0001). Severe acute respiratory syndrome coronavirus 2 antigen levels correlated with type-I interferon levels and were associated with mortality, but not with proinflammatory response or severity. CONCLUSIONS: Distinct cytokine profiles are observed in association with COVID-19 severity and are differentially predictive of mortality according to oxygen support modalities. These results warrant personalized treatment of COVID-19 patients based on cytokine profiling.


Subject(s)
COVID-19 , Cytokines/immunology , Respiration, Artificial , SARS-CoV-2/immunology , Severity of Illness Index , Adult , Aged , COVID-19/immunology , COVID-19/mortality , COVID-19/therapy , Female , Humans , Male , Middle Aged
18.
Heliyon ; 6(8): e04696, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1269279

ABSTRACT

Obesity is a risk factor for SARS-CoV-2 infected patients to develop respiratory failure. Leptin produced in visceral fat might play a role in the deterioration to mechanical ventilation. A cross sectional study was performed. The mean BMI was 31 kg/m2 (range 24.8-48.4) for the 31 SARS-CoV-2 ventilated patients and 26 kg/m2 (range 22.4-33.5) for 8 critically ill non-infected control patients. SARS-CoV-2 infected patients with a similar BMI as control patients appear to have significantly higher levels of serum leptin. The mean leptin level was 21.2 (6.0-85.2) vs 5.6 (2.4-8.2) ug/L for SARS-CoV-2 and controls respectively (p = 0.0007). With these findings we describe a clinical and biological framework that may explain these clinical observations. The ACE2 utilization by the virus leads to local pulmonary inflammation due to ACE2-ATII disbalance. This might be enhanced by an increase in leptin production induced by SARS-CoV-2 infection of visceral fat. Leptin receptors in the lungs are now more activated to enhance local pulmonary inflammation. This adds to the pre-existent chronic inflammation in obese patients. Visceral fat, lung tissue and leptin production play an interconnecting role. This insight can lead the way to further research and treatment.

19.
Front Neurol ; 12: 644317, 2021.
Article in English | MEDLINE | ID: covidwho-1210488

ABSTRACT

Agitation is a behavioral syndrome characterized by increased, often undirected, motor activity, restlessness, aggressiveness, and emotional distress. According to several observations, agitation prevalence ranges from 30 to 50% in Alzheimer's disease, 30% in dementia with Lewy bodies, 40% in frontotemporal dementia, and 40% in vascular dementia (VaD). With an overall prevalence of about 30%, agitation is the third most common neuropsychiatric symptoms (NPS) in dementia, after apathy and depression, and it is even more frequent (80%) in residents of nursing homes. The pathophysiological mechanism underlying agitation is represented by a frontal lobe dysfunction, mostly involving the anterior cingulate cortex (ACC) and the orbitofrontal cortex (OFC), respectively, meaningful in selecting the salient stimuli and subsequent decision-making and behavioral reactions. Furthermore, increased sensitivity to noradrenergic signaling has been observed, possibly due to a frontal lobe up-regulation of adrenergic receptors, as a reaction to the depletion of noradrenergic neurons within the locus coeruleus (LC). Indeed, LC neurons mainly project toward the OFC and ACC. These observations may explain the abnormal reactivity to weak stimuli and the global arousal found in many patients who have dementia. Furthermore, agitation can be precipitated by several factors, e.g., the sunset or low lighted environments as in the sundown syndrome, hospitalization, the admission to nursing residencies, or changes in pharmacological regimens. In recent days, the global pandemic has increased agitation incidence among dementia patients and generated higher distress levels in patients and caregivers. Hence, given the increasing presence of this condition and its related burden on society and the health system, the present point of view aims at providing an extensive guide to facilitate the identification, prevention, and management of acute and chronic agitation in dementia patients.

20.
J Autoimmun ; 122: 102683, 2021 08.
Article in English | MEDLINE | ID: covidwho-1267726

ABSTRACT

The renin-angiotensin system (RAS) plays a major role in COVID-19. Severity of several inflammation-related diseases has been associated with autoantibodies against RAS, particularly agonistic autoantibodies for angiotensin type-1 receptors (AA-AT1) and autoantibodies against ACE2 (AA-ACE2). Disease severity of COVID-19 patients was defined as mild, moderate or severe following the WHO Clinical Progression Scale and determined at medical discharge. Serum AA-AT1 and AA-ACE2 were measured in COVID-19 patients (n = 119) and non-infected controls (n = 23) using specific solid-phase, sandwich enzyme-linked immunosorbent assays. Serum LIGHT (TNFSF14; tumor necrosis factor ligand superfamily member 14) levels were measured with the corresponding assay kit. At diagnosis, AA-AT1 and AA-ACE2 levels were significantly higher in the COVID-19 group relative to controls, and we observed significant association between disease outcome and serum AA-AT1 and AA-ACE2 levels. Mild disease patients had significantly lower levels of AA-AT1 (p < 0.01) and AA-ACE2 (p < 0.001) than moderate and severe patients. No significant differences were detected between males and females. The increase in autoantibodies was not related to comorbidities potentially affecting COVID-19 severity. There was significant positive correlation between serum levels of AA-AT1 and LIGHT (TNFSF14; rPearson = 0.70, p < 0.001). Both AA-AT1 (by agonistic stimulation of AT1 receptors) and AA-ACE2 (by reducing conversion of Angiotensin II into Angiotensin 1-7) may lead to increase in AT1 receptor activity, enhance proinflammatory responses and severity of COVID-19 outcome. Patients with high levels of autoantibodies require more cautious control after diagnosis. Additionally, the results encourage further studies on the possible protective treatment with AT1 receptor blockers in COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Autoantibodies/blood , Autoantigens/immunology , COVID-19/immunology , Receptor, Angiotensin, Type 1/immunology , Aged , Autoantibodies/immunology , COVID-19/blood , Female , Humans , Male , Middle Aged , Renin-Angiotensin System/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...