Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Transbound Emerg Dis ; 68(4): 1850-1867, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-884556


The current COVID-19 global pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of probable bat origin, has highlighted the ongoing need for a One Health response to emerging zoonotic disease events. Understanding the human-animal interface and its relevance to disease transmission remains a critical control point for many emerging zoonoses. Determination of the susceptibility of various animal species to infection with SARS-CoV-2 and the role of animals in the epidemiology of the disease will be critical to informing appropriate human and veterinary public health responses to this pandemic. A scoping literature review was conducted to collect, evaluate and present the available research evidence regarding SARS-CoV-2 infections in animals. Experimental studies have successfully demonstrated SARS-CoV-2 infection and transmission in cats, ferrets, hamsters, bats and non-human primates under experimental settings. Dogs appear to have limited susceptibility to SARS-CoV-2, while other domestic species including pigs and poultry do not appear susceptible. Naturally occurring SARS-CoV-2 infections in animals appear uncommon, with 14 pets, 8 captive big cats and an unreported number of farmed mink testing positive at the time of writing (early July 2020). Infections typically appear asymptomatic in dogs, while clinical signs of respiratory and/or gastrointestinal disease tend to be mild to moderate in felines, and severe to fatal in mink. Most animals are presumed to have been infected by close contact with COVID-19 patients. In domestic settings, viral transmission is self-limiting; however in high-density animal environments, there can be sustained between-animal transmission. To date, two potential cases of animal-to-human transmission are being investigated, on infected mink farms. Given the millions of COVID-19 cases worldwide and ongoing potential for further zoonotic and anthroponotic viral transmission, further research and surveillance activities are needed to definitively determine the role of animals in community transmission of SARS-CoV-2.

COVID-19 , Cat Diseases , Dog Diseases , Swine Diseases , Animals , COVID-19/veterinary , Cat Diseases/virology , Cats , Dog Diseases/virology , Dogs , Ferrets , Humans , Pandemics , SARS-CoV-2 , Swine , Swine Diseases/virology , Zoonoses
ACS Sens ; 5(9): 2747-2752, 2020 09 25.
Article in English | MEDLINE | ID: covidwho-740029


With the current intense need for rapid and accurate detection of viruses due to COVID-19, we report on a platform technology that is well suited for this purpose, using intact measles virus for a demonstration. Cases of infection due to the measles virus are rapidly increasing, yet current diagnostic tools used to monitor for the virus rely on slow (>1 h) technologies. Here, we demonstrate the first biosensor capable of detecting the measles virus in minutes with no preprocessing steps. The key sensing element is an electrode coated with a self-assembled monolayer containing the measles antibody, immobilized through an N-heterocyclic carbene (NHC). The intact virus is detected by changes in resistance, giving a linear response to 10-100 µg/mL of the intact measles virus without the need to label or process the sample. The limit of detection is 6 µg/mL, which is at the lower limit of concentrations that can cause infections in primates. The NHC-based biosensors are shown to be superior to thiol-based systems, producing an approximately 10× larger response and significantly greater stability toward repeated measurements and long-term storage. This NHC-based biosensor thus represents an important development for both the rapid detection of the measles virus and as a platform technology for the detection of other biological targets of interest.

Antibodies, Immobilized/immunology , Benzimidazoles/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Measles virus/isolation & purification , Antibodies, Immobilized/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Gold/chemistry , Limit of Detection , Measles virus/immunology