Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Am J Respir Crit Care Med ; 204(5): 546-556, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1416749

ABSTRACT

Rationale: Early empirical antimicrobial treatment is frequently prescribed to critically ill patients with coronavirus disease (COVID-19) based on Surviving Sepsis Campaign guidelines.Objectives: We aimed to determine the prevalence of early bacterial identification in intubated patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia, as compared with influenza pneumonia, and to characterize its microbiology and impact on outcomes.Methods: A multicenter retrospective European cohort was performed in 36 ICUs. All adult patients receiving invasive mechanical ventilation >48 hours were eligible if they had SARS-CoV-2 or influenza pneumonia at ICU admission. Bacterial identification was defined by a positive bacterial culture within 48 hours after intubation in endotracheal aspirates, BAL, blood cultures, or a positive pneumococcal or legionella urinary antigen test.Measurements and Main Results: A total of 1,050 patients were included (568 in SARS-CoV-2 and 482 in influenza groups). The prevalence of bacterial identification was significantly lower in patients with SARS-CoV-2 pneumonia compared with patients with influenza pneumonia (9.7 vs. 33.6%; unadjusted odds ratio, 0.21; 95% confidence interval [CI], 0.15-0.30; adjusted odds ratio, 0.23; 95% CI, 0.16-0.33; P < 0.0001). Gram-positive cocci were responsible for 58% and 72% of coinfection in patients with SARS-CoV-2 and influenza pneumonia, respectively. Bacterial identification was associated with increased adjusted hazard ratio for 28-day mortality in patients with SARS-CoV-2 pneumonia (1.57; 95% CI, 1.01-2.44; P = 0.043). However, no significant difference was found in the heterogeneity of outcomes related to bacterial identification between the two study groups, suggesting that the impact of coinfection on mortality was not different between patients with SARS-CoV-2 and influenza.Conclusions: Bacterial identification within 48 hours after intubation is significantly less frequent in patients with SARS-CoV-2 pneumonia than patients with influenza pneumonia.Clinical trial registered with www.clinicaltrials.gov (NCT04359693).


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Adult , COVID-19/complications , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Retrospective Studies , SARS-CoV-2
3.
Anaesth Crit Care Pain Med ; 39(5): 553-561, 2020 10.
Article in English | MEDLINE | ID: covidwho-1384795

ABSTRACT

PURPOSE: Community transmission of SARS-CoV-2 was detected in Spain in February 2020, with 216% intensive care unit (ICU) capacity expanded in Vitoria by March 18th, 2020. METHODS: We identified patients from the two public hospitals in Vitoria who were admitted to ICU with confirmed infection by SARS-CoV-2. Data reported here were available in April 6th, 2020. Mortality was assessed in those who completed 15-days of ICU stay. RESULTS: We identified 48 patients (27 males) with confirmed SARS-CoV-2. Median [interquartile range (IQR)] age of patients was 63 [51-75] years. Symptoms began a median of 7 [5-12] days before ICU admission. The most common comorbidities identified were obesity (48%), arterial hypertension (44%) and chronic lung disease (37%). All patients were admitted by hypoxemic respiratory failure and none received non-invasive mechanical ventilation. Forty-five (94%) underwent intubation, 3 (6%) high flow nasal therapy (HFNT), 1 (2%) extracorporeal membrane oxygenation (ECMO) and 22 (46%) required prone position. After 15 days, 14/45 (31%) intubated patients died (13% within one week), 10/45 (22%) were extubated, and 21/45 (47%) underwent mechanical ventilation. Six patients had documented super-infection. Procalcitonin plasma above 0.5µg/L was associated with 16% vs. 19% (p=0.78) risk of death after 7 days. CONCLUSION: This early experience with SARS-CoV-2 in Spain suggests that a strategy of right oxygenation avoiding non-invasive mechanical ventilation was life-saving. Seven-day mortality in SARS-CoV-2 requiring intubation was lower than 15%, with 80% of patients still requiring mechanical ventilation. After 15 days of ICU admission, half of patients remained intubated, whereas one third died.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Hospitals, Public/statistics & numerical data , Intensive Care Units/statistics & numerical data , Pandemics , Pneumonia, Viral/mortality , Adult , Aged , Aged, 80 and over , Antiviral Agents/therapeutic use , COVID-19 , Combined Modality Therapy , Comorbidity , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Disease Outbreaks , Female , Hospital Mortality , Humans , Influenza, Human/epidemiology , Kaplan-Meier Estimate , Length of Stay , Male , Middle Aged , Oxygen Inhalation Therapy , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Procalcitonin/blood , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Spain/epidemiology
4.
Head Neck ; 42(7): 1392-1396, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1384168

ABSTRACT

The severe acute respiratory syndrome (SARS)-CoV-2 pandemic continues to produce a large number of patients with chronic respiratory failure and ventilator dependence. As such, surgeons will be called upon to perform tracheotomy for a subset of these chronically intubated patients. As seen during the SARS and the SARS-CoV-2 outbreaks, aerosol-generating procedures (AGP) have been associated with higher rates of infection of medical personnel and potential acceleration of viral dissemination throughout the medical center. Therefore, a thoughtful approach to tracheotomy (and other AGPs) is imperative and maintaining traditional management norms may be unsuitable or even potentially harmful. We sought to review the existing evidence informing best practices and then develop straightforward guidelines for tracheotomy during the SARS-CoV-2 pandemic. This communication is the product of those efforts and is based on national and international experience with the current SARS-CoV-2 pandemic and the SARS epidemic of 2002/2003.


Subject(s)
Clinical Decision-Making , Coronavirus Infections/epidemiology , Hospital Mortality/trends , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/therapy , Tracheotomy/methods , COVID-19 , Coronavirus Infections/prevention & control , Critical Care/methods , Elective Surgical Procedures/methods , Elective Surgical Procedures/statistics & numerical data , Emergencies , Female , Follow-Up Studies , Humans , Intensive Care Units/statistics & numerical data , Internationality , Intubation, Intratracheal , Male , Occupational Health , Pandemics/prevention & control , Patient Safety , Pneumonia, Viral/prevention & control , Respiration, Artificial/methods , Risk Assessment , SARS Virus/pathogenicity , Survival Rate , Time Factors , Treatment Outcome , United States/epidemiology , Ventilator Weaning/methods
5.
Anaesthesist ; 70(8): 649-654, 2021 Aug.
Article in German | MEDLINE | ID: covidwho-1345098

ABSTRACT

If noninvasive ventilation (NIV or high-flow CPAP) fails in severe cases of COVID-19, escalation of treatment with orotracheal intubation and intermitted prone positioning is provided as standard care. The present case reports show two COVID-19 patients with severe refractory hypoxemia despite NIV treatment during the first wave (first half year 2020) and the resulting influence on the treatment regimen during the second wave (since October 2020) of the pandemic. Both patients (aged 63 years and 77 years) voluntarily positioned themselves on the side or in a prone position without prior sedation and oral intubation. Positional treatment promptly improved the arterial oxygenation level. The oxygenation index improved in the following days with continued NIV and intermittent prone and side position. The recovered patients were transferred from the intensive care unit at days 5 and 14, respectively after admission. The case reports, along with other reports, show that prone or lateral positioning may be important in the treatment of SARS-CoV­2 pneumonia in awake and not yet intubated patients.


Subject(s)
COVID-19 , Noninvasive Ventilation , Patient Positioning , Respiratory Insufficiency , Aged , COVID-19/therapy , Humans , Middle Aged , Prone Position
6.
Am J Respir Crit Care Med ; 204(1): 34-43, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1311194

ABSTRACT

Rationale: The role of and needs for extracorporeal membrane oxygenation (ECMO) at a population level during the coronavirus disease (COVID-19) pandemic have not been completely established. Objectives: To identify the cumulative incidence of ECMO use in the first pandemic wave and to describe the Nationwide Chilean cohort of ECMO-supported patients with COVID-19. Methods: We conducted a population-based study from March 3 to August 31, 2020, using linked data from national agencies. The cumulative incidence of ECMO use and mortality risk of ECMO-supported patients were calculated and age standardized. In addition, a retrospective cohort analysis was performed. Outcomes were 90-day mortality after ECMO initiation, ECMO-associated complications, and hospital length of stay. Cox regression models were used to explore risk factors for mortality in a time-to-event analysis. Measurements and Main Results: Ninety-four patients with COVID-19 were supported with ECMO (0.42 per population of 100,000, 14.89 per 100,000 positive cases, and 1.2% of intubated patients with COVID-19); 85 were included in the cohort analysis, and the median age was 48 (interquartile range [IQR], 41-55) years, 83.5% were men, and 42.4% had obesity. The median number of pre-ECMO intubation days was 4 (IQR, 2-7), the median PaO2/FiO2 ratio was 86.8 (IQR, 64-99) mm Hg, 91.8% of patients were prone positioned, and 14 patients had refractory respiratory acidosis. Main complications were infections (70.6%), bleeding (38.8%), and thromboembolism (22.4%); 52 patients were discharged home, and 33 died. The hospital length of stay was a median of 50 (IQR, 24-69) days. Lower respiratory system compliance and higher driving pressure before ECMO initiation were associated with increased mortality. A duration of pre-ECMO intubation ≥10 days was not associated with mortality. Conclusions: Documenting nationwide ECMO needs may help in planning ECMO provision for future COVID-19 pandemic waves. The 90-day mortality of the Chilean cohort of ECMO-supported patients with COVID-19 (38.8%) is comparable to that of previous reports.


Subject(s)
COVID-19/therapy , Extracorporeal Membrane Oxygenation/statistics & numerical data , Respiratory Distress Syndrome/therapy , Adult , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , Chile/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Needs Assessment , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/virology , Retrospective Studies , Severity of Illness Index , Treatment Outcome
7.
PLoS One ; 16(1): e0244532, 2021.
Article in English | MEDLINE | ID: covidwho-1301936

ABSTRACT

BACKGROUND: The first cases of coronavirus disease (COVID-19) in Brazil were diagnosed in February 2020. Our Emergency Department (ED) was designated as a COVID-19 exclusive service. We report our first 500 confirmed COVID-19 pneumonia patients. METHODS: From 14 March to 16 May 2020, we enrolled all patients admitted to our ED that had a diagnosis of COVID-19 pneumonia. Infection was confirmed via nasopharyngeal swabs or tracheal aspirate PCR. The outcomes included hospital discharge, invasive mechanical ventilation, and in-hospital death, among others. RESULTS: From 2219 patients received in the ED, we included 506 with confirmed COVID-19 pneumonia. We found that 333 patients were discharged home (65.9%), 153 died (30.2%), and 20 (3.9%) remained in the hospital. A total of 300 patients (59.3%) required ICU admission, and 227 (44.9%) needed invasive ventilation. The multivariate analysis found age, number of comorbidities, extension of ground glass opacities on chest CT and troponin with a direct relationship with all-cause mortality, whereas dysgeusia, use of angiotensin converting enzyme inhibitor or angiotensin-ii receptor blocker and number of lymphocytes with an inverse relationship with all-cause mortality. CONCLUSIONS: This was a sample of severe patients with COVID-19, with 59.2% admitted to the ICU and 41.5% requiring mechanical ventilator support. We were able to ascertain the outcome in majority (96%) of patients. While the overall mortality was 30.2%, mortality for intubated patients was 55.9%. Multivariate analysis agreed with data found in other studies although the use of angiotensin converting enzyme inhibitor or angiotensin-ii receptor blocker as a protective factor could be promising but would need further studies. TRIAL REGISTRATION: The study was registered in the Brazilian registry of clinical trials: RBR-5d4dj5.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Aged , Brazil/epidemiology , COVID-19/epidemiology , Cohort Studies , Emergency Service, Hospital , Female , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Seasons
8.
Trials ; 22(1): 323, 2021 May 04.
Article in English | MEDLINE | ID: covidwho-1273249

ABSTRACT

BACKGROUND: Convalescent plasma has been used for numerous viral diseases including influenza, severe acute respiratory syndrome, Middle East respiratory syndrome and Ebola virus; however, evidence to support its use is weak. SARS-CoV-2 is a novel coronavirus responsible for the 2019 global pandemic of COVID-19 community acquired pneumonia. We have undertaken a randomized controlled trial to assess the efficacy and safety of COVID-19 convalescent plasma (CCP) in patients with SARS-CoV-2 infection. METHODS: CONCOR-1 is an open-label, multicentre, randomized trial. Inclusion criteria include the following: patients > 16 years, admitted to hospital with COVID-19 infection, receiving supplemental oxygen for respiratory complications of COVID-19, and availability of blood group compatible CCP. Exclusion criteria are : onset of respiratory symptoms more than 12 days prior to randomization, intubated or imminent plan for intubation, and previous severe reactions to plasma. Consenting patients are randomized 2:1 to receive either approximately 500 mL of CCP or standard of care. CCP is collected from donors who have recovered from COVID-19 and who have detectable anti-SARS-CoV-2 antibodies quantified serologically. The primary outcome is intubation or death at day 30. Secondary outcomes include ventilator-free days, length of stay in intensive care or hospital, transfusion reactions, serious adverse events, and reduction in SARS-CoV-2 viral load. Exploratory analyses include patients who received CCP containing high titre antibodies. A sample size of 1200 patients gives 80% power to detect a 25% relative risk reduction assuming a 30% baseline risk of intubation or death at 30 days (two-sided test; α = 0.05). An interim analysis and sample size re-estimation will be done by an unblinded independent biostatistician after primary outcome data are available for 50% of the target recruitment (n = 600). DISCUSSION: This trial will determine whether CCP will reduce intubation or death non-intubated adults with COVID-19. The trial will also provide information on the role of and thresholds for SARS-CoV-2 antibody titres and neutralization assays for donor qualification. TRIAL REGISTRATION: Clinicaltrials.gov NCT04348656 . Registered on 16 April 2020.


Subject(s)
COVID-19 , Coronavirus Infections , Adult , Bisoprolol , COVID-19/therapy , Humans , Immunization, Passive , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
9.
Clin Nutr ; 2021 May 25.
Article in English | MEDLINE | ID: covidwho-1270588

ABSTRACT

BACKGROUND & AIMS: ESPEN guidelines advocate that energy needs of critically ill patients with COVID 19 should be assessed using indirect calorimetry, if safely available. This study described energy needs of intubated patients with COVID-19 and explores whether neuromuscular blockade administration (NMBAs) is associated with altered energy expenditure. METHODS: Resting energy expenditure (REE) and respiratory exchange rate (RER) evaluated among critically ill intubated COVID-19 patients until 28th day of intensive care unit stay (ICU-S) by indirect calorimetry. Paralysed patients were defined as those with drug induced paralysis using cicatracurium, for at least 3 days during their ICU-S. RESULTS: 34 adult COVID 19 patients (59.8% male, 35.2% obese) requiring mechanical ventilation were assessed prospectively. REE measurements suggest a gradual increase of energy needs post 3rd day of ICU-S in both patients without obesity (non ob) ((from 17.8 kcal/kgr up to 29.3 kcal/kgr actual body weight (AcBW) during 28th day of ICU-S, p = 0.011)) and patients with obesity (ob) ((from 18.1 kcal/kgr up to 30.1 kcal/kgr adjusted body weight (AjBW) during 28th day of ICU-S, p = 0.021)). NMBAs use was accompanied by a significant drop in REE, especially during first 7 days of hospitalization, both in non ob (22.9 vs 17.9 kcal/kgr AcBW, p = 0.014) and ob patients (22.5 vs 19.5 kcal/kgr ABW, p = 0.027). CONCLUSION: We identified the energy needs of COVID-19 intubated patients and highlighted a significant increase beyond the 1st week in the ICU. Administration of NMBAs should be considered, as it may impact resting energy expenditure.

10.
Front Med (Lausanne) ; 8: 592336, 2021.
Article in English | MEDLINE | ID: covidwho-1238867

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious virus with overwhelming demand on healthcare systems, which require advanced predictive analytics to strategize COVID-19 management in a more effective and efficient manner. We analyzed clinical data of 2017 COVID-19 cases reported in the Dubai health authority and developed predictive models to predict the patient's length of hospital stay and risk of death. A decision tree (DT) model to predict COVID-19 length of stay was developed based on patient clinical information. The model showed very good performance with a coefficient of determination R 2 of 49.8% and a median absolute deviation of 2.85 days. Furthermore, another DT-based model was constructed to predict COVID-19 risk of death. The model showed excellent performance with sensitivity and specificity of 96.5 and 87.8%, respectively, and overall prediction accuracy of 96%. Further validation using unsupervised learning methods showed similar separation patterns, and a receiver operator characteristic approach suggested stable and robust DT model performance. The results show that a high risk of death of 78.2% is indicated for intubated COVID-19 patients who have not used anticoagulant medications. Fortunately, intubated patients who are using anticoagulant and dexamethasone medications with an international normalized ratio of <1.69 have zero risk of death from COVID-19. In conclusion, we constructed artificial intelligence-based models to accurately predict the length of hospital stay and risk of death in COVID-19 cases. These smart models will arm physicians on the front line to enhance management strategies to save lives.

11.
BMC Anesthesiol ; 21(1): 155, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1238704

ABSTRACT

BACKGROUND: The surge of critically ill patients due to the coronavirus disease-2019 (COVID-19) overwhelmed critical care capacity in areas of northern Italy. Anesthesia machines have been used as alternatives to traditional ICU mechanical ventilators. However, the outcomes for patients with COVID-19 respiratory failure cared for with Anesthesia Machines is currently unknow. We hypothesized that COVID-19 patients receiving care with Anesthesia Machines would have worse outcomes compared to standard practice. METHODS: We designed a retrospective study of patients admitted with a confirmed COVID-19 diagnosis at a large tertiary urban hospital in northern Italy. Two care units were included: a 27-bed standard ICU and a 15-bed temporary unit emergently opened in an operating room setting. Intubated patients assigned to Anesthesia Machines (AM group) were compared to a control cohort treated with standard mechanical ventilators (ICU-VENT group). Outcomes were assessed at 60-day follow-up. A multivariable Cox regression analysis of risk factors between survivors and non-survivors was conducted to determine the adjusted risk of death for patients assigned to AM group. RESULTS: Complete daily data from 89 mechanically ventilated patients consecutively admitted to the two units were analyzed. Seventeen patients were included in the AM group, whereas 72 were in the ICU-VENT group. Disease severity and intensity of treatment were comparable between the two groups. The 60-day mortality was significantly higher in the AM group compared to the ICU-vent group (12/17 vs. 27/72, 70.6% vs. 37.5%, respectively, p = 0.016). Allocation to AM group was associated with a significantly increased risk of death after adjusting for covariates (HR 4.05, 95% CI: 1.75-9.33, p = 0.001). Several incidents and complications were reported with Anesthesia Machine care, raising safety concerns. CONCLUSIONS: Our results support the hypothesis that care associated with the use of Anesthesia Machines is inadequate to provide long-term critical care to patients with COVID-19. Added safety risks must be considered if no other option is available to treat severely ill patients during the ongoing pandemic. CLINICAL TRIAL NUMBER: Not applicable.


Subject(s)
Anesthesiology/instrumentation , COVID-19/epidemiology , COVID-19/therapy , Critical Illness/epidemiology , Critical Illness/therapy , Respiration, Artificial/instrumentation , Aged , Female , Humans , Italy/epidemiology , Male , Middle Aged , Respiration, Artificial/methods , Retrospective Studies
12.
Rheumatology (Oxford) ; 60(12): 5527-5537, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1231045

ABSTRACT

OBJECTIVES: Acute respiratory distress syndrome and cytokine release syndrome are the major complications of coronavirus disease 2019 (COVID-19) associated with increased mortality risk. We performed a meta-analysis to assess the efficacy and safety of anakinra in adult hospitalized non-intubated patients with COVID-19. METHODS: Relevant trials were identified by searching literature until 24 April 2021 using the following terms: anakinra, IL-1, coronavirus, COVID-19, SARS-CoV-2. Trials evaluating the effect of anakinra on the need for invasive mechanical ventilation and mortality in hospitalized non-intubated patients with COVID-19 were included. RESULTS: Nine studies (n = 1119) were eligible for inclusion in the present meta-analysis. Their bias risk with reference to the assessed parameters was high. In pooled analyses, anakinra reduced the need for invasive mechanical ventilation (odds ratio (OR): 0.38, 95% CI: 0.17-0.85, P = 0.02, I2 = 67%; six studies, n = 587) and mortality risk (OR: 0.32, 95% CI: 0.23-0.45, P < 0.00001, I2 = 0%; nine studies, n = 1119) compared with standard of care therapy. There were no differences regarding the risk of adverse events, including liver dysfunction (OR: 0.75, 95% CI: 0.48-1.16, P > 0.05, I2 = 28%; five studies, n = 591) and bacteraemia (OR: 1.07, 95% CI: 0.42-2.73, P > 0.05, I2 = 71%; six studies, n = 727). CONCLUSIONS: Available evidence shows that treatment with anakinra reduces both the need for invasive mechanical ventilation and mortality risk of hospitalized non-intubated patients with COVID-19 without increasing the risk of adverse events. Confirmation of efficacy and safety requires randomized placebo-controlled trials.


Subject(s)
COVID-19/drug therapy , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Receptors, Interleukin-1/antagonists & inhibitors , Humans , Treatment Outcome
13.
Anaesthesist ; 70(8): 649-654, 2021 Aug.
Article in German | MEDLINE | ID: covidwho-1219964

ABSTRACT

If noninvasive ventilation (NIV or high-flow CPAP) fails in severe cases of COVID-19, escalation of treatment with orotracheal intubation and intermitted prone positioning is provided as standard care. The present case reports show two COVID-19 patients with severe refractory hypoxemia despite NIV treatment during the first wave (first half year 2020) and the resulting influence on the treatment regimen during the second wave (since October 2020) of the pandemic. Both patients (aged 63 years and 77 years) voluntarily positioned themselves on the side or in a prone position without prior sedation and oral intubation. Positional treatment promptly improved the arterial oxygenation level. The oxygenation index improved in the following days with continued NIV and intermittent prone and side position. The recovered patients were transferred from the intensive care unit at days 5 and 14, respectively after admission. The case reports, along with other reports, show that prone or lateral positioning may be important in the treatment of SARS-CoV­2 pneumonia in awake and not yet intubated patients.


Subject(s)
COVID-19 , Noninvasive Ventilation , Patient Positioning , Respiratory Insufficiency , Aged , COVID-19/therapy , Humans , Middle Aged , Prone Position
14.
Int J Emerg Med ; 14(1): 30, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1219078

ABSTRACT

Sabah in Malaysian Borneo is among the Malaysian states which reported a high number of detected COVID-19 cases during the current pandemic. Due to geographical challenges and limited resources, clinicians developed novel strategies for managing patients. The use of a dual oxygen concentrator system for mechanical ventilation is one of the innovations developed by retrieval team members from the Emergency Department (ED) of the Sabah Women and Children's Hospital. Due to conditions requiring isolation of patients suspected of or positive for COVID-19, high-risk patients were treated in an ED extension area that lacked central wall oxygen. Direct access to oxygen tanks became the only viable option, but ensuring a continuous supply was laborious. The novel setup described within this paper has been used on intubated patients in the ED extension area with moderate to high ventilator settings successfully. This simple setup, designed to meet the limited resources within a pandemic environment, needed only a turbine-driven ventilator, two oxygen concentrators, a 3-way connector, and three oxygen tubing. The application of this setup could potentially save more critically ill patients who are being managed in resource-limited conditions such as in smaller district hospitals or out in the field.

15.
Eur Respir Rev ; 30(160)2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1218291

ABSTRACT

Prone positioning reduces mortality in the management of intubated patients with moderate-to-severe acute respiratory distress syndrome. It allows improvement in oxygenation by improving ventilation/perfusion ratio mismatching.Because of its positive physiological effects, prone positioning has also been tested in non-intubated, spontaneously breathing patients, or "awake" prone positioning. This review provides an update on awake prone positioning for hypoxaemic respiratory failure, in both coronavirus disease 2019 (COVID-19) and non-COVID-19 patients. In non-COVID-19 acute respiratory failure, studies are limited to a few small nonrandomised studies and involved patients with different diseases. However, results have been appealing with regard to oxygenation improvement, especially when combined with noninvasive ventilation or high-flow nasal cannula.The recent COVID-19 pandemic has led to a major increase in hospitalisations for acute respiratory failure. Awake prone positioning has been used with the aim to prevent intensive care unit admission and mechanical ventilation. Prone positioning in conscious, non-intubated COVID-19 patients is used in emergency departments, medical wards and intensive care units.Several trials reported an improvement in oxygenation and respiratory rate during prone positioning, but impacts on clinical outcomes, particularly on intubation rates and survival, remain unclear. Tolerance of prolonged prone positioning is an issue. Larger controlled, randomised studies are underway to provide results concerning clinical benefit and define optimised prone positioning regimens.


Subject(s)
COVID-19/therapy , Lung/physiopathology , Patient Positioning , Prone Position , Respiratory Insufficiency/therapy , Wakefulness , COVID-19/physiopathology , COVID-19/virology , Humans , Lung/virology , Recovery of Function , Respiration , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/virology , Treatment Outcome
16.
Trials ; 22(1): 323, 2021 May 04.
Article in English | MEDLINE | ID: covidwho-1216923

ABSTRACT

BACKGROUND: Convalescent plasma has been used for numerous viral diseases including influenza, severe acute respiratory syndrome, Middle East respiratory syndrome and Ebola virus; however, evidence to support its use is weak. SARS-CoV-2 is a novel coronavirus responsible for the 2019 global pandemic of COVID-19 community acquired pneumonia. We have undertaken a randomized controlled trial to assess the efficacy and safety of COVID-19 convalescent plasma (CCP) in patients with SARS-CoV-2 infection. METHODS: CONCOR-1 is an open-label, multicentre, randomized trial. Inclusion criteria include the following: patients > 16 years, admitted to hospital with COVID-19 infection, receiving supplemental oxygen for respiratory complications of COVID-19, and availability of blood group compatible CCP. Exclusion criteria are : onset of respiratory symptoms more than 12 days prior to randomization, intubated or imminent plan for intubation, and previous severe reactions to plasma. Consenting patients are randomized 2:1 to receive either approximately 500 mL of CCP or standard of care. CCP is collected from donors who have recovered from COVID-19 and who have detectable anti-SARS-CoV-2 antibodies quantified serologically. The primary outcome is intubation or death at day 30. Secondary outcomes include ventilator-free days, length of stay in intensive care or hospital, transfusion reactions, serious adverse events, and reduction in SARS-CoV-2 viral load. Exploratory analyses include patients who received CCP containing high titre antibodies. A sample size of 1200 patients gives 80% power to detect a 25% relative risk reduction assuming a 30% baseline risk of intubation or death at 30 days (two-sided test; α = 0.05). An interim analysis and sample size re-estimation will be done by an unblinded independent biostatistician after primary outcome data are available for 50% of the target recruitment (n = 600). DISCUSSION: This trial will determine whether CCP will reduce intubation or death non-intubated adults with COVID-19. The trial will also provide information on the role of and thresholds for SARS-CoV-2 antibody titres and neutralization assays for donor qualification. TRIAL REGISTRATION: Clinicaltrials.gov NCT04348656 . Registered on 16 April 2020.


Subject(s)
COVID-19 , Coronavirus Infections , Adult , Bisoprolol , COVID-19/therapy , Humans , Immunization, Passive , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
17.
Indian J Otolaryngol Head Neck Surg ; : 1-12, 2021 Apr 29.
Article in English | MEDLINE | ID: covidwho-1212929

ABSTRACT

World is under threat of COVID-19 pandemic, associated with many numbers of critically ill patients. To manage these intubated patients there are need of more ventilators but world is not prepared for this type of situation and there are lacunae of such arrangements in most of the countries. As we know patients cannot be intubated for long time and they should be given preference to alternative airway in the form of tracheostomy. COVID-19 is aerosol transmitted disease which lead to indeed challenge to health care providers to safely perform tracheostomy and provide post tracheostomy care to these patients with minimising risks of nosocomial transmission to themselves and accompanying nursing staff. There are so many guidelines and recommendations for the timing, desired place of tracheostomy, change in tracheostomy steps related to conventional method and the subsequent management of patients. So, the aim of this systematic review is to give a brief review of available data on COVID-19 related to the timing, personal protections, operative steps modifications, and subsequent post tracheostomy care during this pandemic.

18.
J Gastrointest Surg ; 26(1): 181-190, 2022 01.
Article in English | MEDLINE | ID: covidwho-1202825

ABSTRACT

BACKGROUND: Although acute gastrointestinal injury (AGI) and feeding intolerance (FI) are known independent determinants of worse outcomes and high mortality in intensive care unit (ICU) patients, the incidence of AGI and FI in critically ill COVID-19 patients and their prognostic importance have not been thoroughly studied. METHODS: We reviewed 218 intubated patients at Stony Brook University Hospital and stratified them into three groups based on AGI severity, according to data collected in the first 10 days of ICU course. We used chi-square test to compare categorical variables such as age and sex and two-sample t-test or Mann-Whitney U-tests for continuous variables, including important laboratory values. Cox proportional hazards regression models were utilized to determine whether AGI score was an independent predictor of survival, and multivariable analysis was performed to compare risk factors that were deemed significant in the univariable analysis. We performed Kaplan-Meier survival analysis based on the AGI score and the presence of FI. RESULTS: The overall incidence of AGI was 95% (45% AGI I/II, 50% AGI III/IV), and FI incidence was 63%. Patients with AGI III/IV were more likely to have prolonged mechanical ventilation (22 days vs 16 days, P-value <0.002) and higher mortality rate (58% vs 28%, P-value <0.001) compared to patients with AGI 0/I/II. This was confirmed with multivariable analysis which showed that AGI score III/IV was an independent predictor of higher mortality (AGI III/IV vs AGI 0/I/II hazard ratio (HR), 2.68; 95% confidence interval (CI), 1.69-4.25; P-value <0.0001). Kaplan-Meier survival analysis showed that both AGI III/IV and FI (P-value <0.001) were associated with worse outcomes. Patients with AGI III/IV had higher daily and mean D-dimer and CRP levels compared to AGI 0/I/II (P-value <0.0001). CONCLUSIONS: The prevalence of AGI and FI among critically ill COVID-19 patients was high. AGI grades III/IV were associated with higher risk for prolonged mechanical ventilation and mortality compared to AGI 0/I/II, while it also correlated with higher D-dimer and C-reactive protein (CRP) levels. FI was independently associated with higher mortality. The development of high-grade AGI and FI during the first days of ICU stay can serve as prognostic tools to predict outcomes in critically ill COVID-19 patients.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Critical Illness , Humans , Infant, Newborn , Intensive Care Units , Prognosis , SARS-CoV-2
19.
Front Neurol ; 12: 642912, 2021.
Article in English | MEDLINE | ID: covidwho-1202073

ABSTRACT

Objectives: Patients with comorbidities are at increased risk for poor outcomes in COVID-19, yet data on patients with prior neurological disease remains limited. Our objective was to determine the odds of critical illness and duration of mechanical ventilation in patients with prior cerebrovascular disease and COVID-19. Methods: A observational study of 1,128 consecutive adult patients admitted to an academic center in Boston, Massachusetts, and diagnosed with laboratory-confirmed COVID-19. We tested the association between prior cerebrovascular disease and critical illness, defined as mechanical ventilation (MV) or death by day 28, using logistic regression with inverse probability weighting of the propensity score. Among intubated patients, we estimated the cumulative incidence of successful extubation without death over 45 days using competing risk analysis. Results: Of the 1,128 adults with COVID-19, 350 (36%) were critically ill by day 28. The median age of patients was 59 years (SD: 18 years) and 640 (57%) were men. As of June 2nd, 2020, 127 (11%) patients had died. A total of 177 patients (16%) had a prior cerebrovascular disease. Prior cerebrovascular disease was significantly associated with critical illness (OR = 1.54, 95% CI = 1.14-2.07), lower rate of successful extubation (cause-specific HR = 0.57, 95% CI = 0.33-0.98), and increased duration of intubation (restricted mean time difference = 4.02 days, 95% CI = 0.34-10.92) compared to patients without cerebrovascular disease. Interpretation: Prior cerebrovascular disease adversely affects COVID-19 outcomes in hospitalized patients. Further study is required to determine if this subpopulation requires closer monitoring for disease progression during COVID-19.

20.
J Crit Care ; 64: 219-225, 2021 08.
Article in English | MEDLINE | ID: covidwho-1198876

ABSTRACT

BACKGROUND: Prolonged viral RNA detection in respiratory samples from patients with COVID-19 has been described, but the clinical relevance remains unclear. We studied the dynamics of SARS-CoV-2 on a group and individual level in intubated ICU patients. METHODS: In a cohort of 86 patients, we analysed SARS-CoV-2 RT-PCR results on nasopharyngeal and sputum samples (obtained as part of clinical care twice a week) according to time after intubation. Subsequently, we performed survival analyses. RESULTS: 870 samples were tested by RT-PCR. Overall viral load was highest in the first week (median nasopharynx 3.5, IQR 1.5-4.3; median sputum 4.3, IQR 3.3-5.6) and decreased over time. In 20% of patients a relapsing pattern was observed. Nasopharyngeal and sputum PCR status on day 14 was not significantly associated with survival up to day 60 in this small cohort. CONCLUSION: In general SARS-CoV-2 RNA levels in respiratory samples in patients with severe COVID-19 decrease after the first week after intubation, but individual SARS-CoV-2 RNA levels can show a relapsing pattern. Larger studies are needed to address the association of clearance of SARS-CoV-2 RNA from respiratory samples with survival, because we observed a trend towards better survival in patients with early clearance from sputum.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , COVID-19/virology , RNA, Viral , SARS-CoV-2 , Viral Load , Aged , Female , Humans , Intensive Care Units , Intubation , Male , Middle Aged , Nasopharynx/virology , Netherlands/epidemiology , Sputum/virology , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL