Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Med Sci Monit ; 26: e922281, 2020 Mar 31.
Article in English | MEDLINE | ID: covidwho-1453382

ABSTRACT

BACKGROUND Acute respiratory distress syndrome (ARDS) is a sudden and serious disease with increasing morbidity and mortality rates. Phosphodiesterase 4 (PDE4) is a novel target for inflammatory disease, and ibudilast (IBU), a PDE4 inhibitor, inhibits inflammatory response. Our study investigated the effect of IBU on the pathogenesis of neonatal ARDS and the underlying mechanism related to it. MATERIAL AND METHODS Western blotting was performed to analyze the expression levels of PDE4, CXCR4, SDF-1, CXCR5, CXCL1, inflammatory cytokines, and proteins related to cell apoptosis. Hematoxylin-eosin staining was performed to observe the pathological morphology of lung tissue. Pulmonary edema score was used to assess the degree of lung water accumulation after pulmonary injury. Enzyme-linked immunosorbent assay (ELISA) was used to assess levels of inflammatory factors (TNF-alpha, IL-1ß, IL-6, and MCP-1) in serum. TUNEL assay was used to detect apoptotic cells. RESULTS Increased expression of PDE4 was observed in an LPS-induced neonatal ARDS mouse model, and IBU ameliorated LPS-induced pathological manifestations and pulmonary edema in lung tissue. In addition, IBU attenuated the secretion of inflammatory cytokines by inactivating the chemokine axis in the LPS-induced neonatal ARDS mouse model. Finally, IBU significantly reduced LPS-induced cell apoptosis in lung tissue. CONCLUSIONS IBU, a PDE4 inhibitor, protected against ARDS by interfering with pulmonary inflammation and apoptosis. Our findings provide a novel and promising strategy to regulate pulmonary inflammation in ARDS.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Inflammation/drug therapy , Phosphodiesterase 4 Inhibitors/pharmacology , Pyridines/pharmacology , Respiratory Distress Syndrome, Newborn/drug therapy , Animals , Animals, Newborn , Apoptosis/drug effects , Apoptosis/immunology , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Humans , Inflammation/diagnosis , Inflammation/immunology , Inflammation/pathology , Injections, Intraperitoneal , Lipopolysaccharides/immunology , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Phosphodiesterase 4 Inhibitors/therapeutic use , Pyridines/therapeutic use , Respiratory Distress Syndrome, Newborn/diagnosis , Respiratory Distress Syndrome, Newborn/immunology , Respiratory Distress Syndrome, Newborn/pathology , Signal Transduction/drug effects , Signal Transduction/immunology
2.
Immunity ; 54(7): 1463-1477.e11, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1263294

ABSTRACT

Acute respiratory distress syndrome (ARDS), an inflammatory condition with high mortality rates, is common in severe COVID-19, whose risk is reduced by metformin rather than other anti-diabetic medications. Detecting of inflammasome assembly in post-mortem COVID-19 lungs, we asked whether and how metformin inhibits inflammasome activation while exerting its anti-inflammatory effect. We show that metformin inhibited NLRP3 inflammasome activation and interleukin (IL)-1ß production in cultured and alveolar macrophages along with inflammasome-independent IL-6 secretion, thus attenuating lipopolysaccharide (LPS)- and SARS-CoV-2-induced ARDS. By targeting electron transport chain complex 1 and independently of AMP-activated protein kinase (AMPK) or NF-κB, metformin blocked LPS-induced and ATP-dependent mitochondrial (mt) DNA synthesis and generation of oxidized mtDNA, an NLRP3 ligand. Myeloid-specific ablation of LPS-induced cytidine monophosphate kinase 2 (CMPK2), which is rate limiting for mtDNA synthesis, reduced ARDS severity without a direct effect on IL-6. Thus, inhibition of ATP and mtDNA synthesis is sufficient for ARDS amelioration.


Subject(s)
Adenosine Triphosphate/metabolism , DNA, Mitochondrial/biosynthesis , Inflammasomes/drug effects , Metformin/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/prevention & control , Animals , COVID-19/metabolism , COVID-19/prevention & control , Cytokines/genetics , Cytokines/metabolism , DNA, Mitochondrial/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/toxicity , Metformin/therapeutic use , Mice , Nucleoside-Phosphate Kinase/metabolism , Pneumonia/metabolism , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/prevention & control , SARS-CoV-2/pathogenicity
3.
J Anesth ; 35(4): 543-554, 2021 08.
Article in English | MEDLINE | ID: covidwho-1248731

ABSTRACT

PURPOSE: The COVID-19 pandemic threatens our current ICU capabilities nationwide. As the number of COVID-19 positive patients across the nation continues to increase, the need for options to address ventilator shortages is inevitable. Multi-patient ventilation (MPV), in which more than one patient can use a single ventilator base unit, has been proposed as a potential solution to this problem. To our knowledge, this option has been discussed but remains untested in live patients with differing severity of lung pathology. METHODS: The objective of this study was to address ventilator shortages and patient stacking limitations by developing and validating a modified breathing circuit for two patients with differing lung compliances using simple, off-the-shelf components. A multi-patient ventilator circuit (MPVC) was simulated with a mathematical model and validated with four animal studies. Each animal study had two human-sized pigs: one healthy and one with lipopolysaccharide (LPS) induced ARDS. LPS was chosen because it lowers lung compliance similar to COVID-19. In a previous study, a control group of four pigs was given ARDS and placed on a single patient ventilation circuit (SPVC). The oxygenation of the MPVC ARDS animals was then compared to the oxygenation of the SPVC animals. RESULTS: Based on the comparisons, similar oxygenation and morbidity rates were observed between the MPVC ARDS animals and the SPVC animals. CONCLUSION: As healthcare systems worldwide deal with inundated ICUs and hospitals from pandemics, they could potentially benefit from this approach by providing more patients with respiratory care.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Animals , Humans , Pandemics , Respiration, Artificial , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Swine , Ventilators, Mechanical
4.
Front Pharmacol ; 12: 624895, 2021.
Article in English | MEDLINE | ID: covidwho-1238878

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a critical illness complication that is associated with high mortality. ARDS is documented in severe cases of COVID-19. No effective pharmacological treatments for ARDS are currently available. Dysfunctional immune responses and pulmonary and systemic inflammation are characteristic features of ARDS pathogenesis. Recent advances in our understanding of the regulation of inflammation point to an important role of the vagus-nerve-mediated inflammatory reflex and neural cholinergic signaling. We examined whether pharmacological cholinergic activation using a clinically approved (for myasthenia gravis) cholinergic drug, the acetylcholinesterase inhibitor pyridostigmine alters pulmonary and systemic inflammation in mice with lipopolysaccharide (LPS)-induced ARDS. Male C57Bl/6 mice received one intratracheal instillation of LPS or were sham manipulated (control). Both groups were treated with either vehicle or pyridostigmine (1.5 mg/kg twice daily, 3 mg/day) administered by oral gavage starting at 1 h post-LPS and euthanized 24 h after LPS administration. Other groups were either sham manipulated or received LPS for 3 days and were treated with vehicle or pyridostigmine and euthanized at 72 h. Pyridostigmine treatment reduced the increased total number of cells and neutrophils in the bronchoalveolar lavage fluid (BALF) in mice with ARDS at 24 and 72 h. Pyridostigmine also reduced the number of macrophages and lymphocytes at 72 h. In addition, pyridostigmine suppressed the levels of TNF, IL-1ß, IL-6, and IFN-γ in BALF and plasma at 24 and 72 h. However, this cholinergic agent did not significantly altered BALF and plasma levels of the anti-inflammatory cytokine IL-10. Neither LPS nor pyridostigmine affected BALF IFN-γ and IL-10 levels at 24 h post-LPS. In conclusion, treatments with the cholinergic agent pyridostigmine ameliorate pulmonary and systemic inflammatory responses in mice with endotoxin-induced ARDS. Considering that pyridostigmine is a clinically approved drug, these findings are of substantial interest for implementing pyridostigmine in therapeutic strategies for ARDS.

5.
Sci Rep ; 11(1): 7777, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-1174704

ABSTRACT

Due to frequent and often severe lung affections caused by COVID-19, murine models of acute respiratory distress syndrome (ARDS) are increasingly used in experimental lung research. The one induced by a single lipopolysaccharide (LPS) exposure is practical. However, whether it is preferable to administer LPS intranasally or intratracheally remains an open question. Herein, female C57Bl/6 J mice were exposed intranasally or intratracheally to one dose of either saline or 3 mg/kg of LPS. They were studied 24 h later. The groups treated with LPS, either intranasally or intratracheally, exhibited a pronounced neutrophilic inflammation, signs of lung tissue damage and protein extravasation into the alveoli, and mild lung dysfunction. The magnitude of the response was generally not different between groups exposed intranasally versus intratracheally. However, the variability of some the responses was smaller in the LPS-treated groups exposed intranasally versus intratracheally. Notably, the saline-treated mice exposed intratracheally demonstrated a mild neutrophilic inflammation and alterations of the airway epithelium. We conclude that an intranasal exposure is as effective as an intratracheal exposure in a murine model of ARDS induced by LPS. Additionally, the groups exposed intranasally demonstrated less variability in the responses to LPS and less complications associated with the sham procedure.


Subject(s)
Inflammation/chemically induced , Lipopolysaccharides/adverse effects , Lung/pathology , Respiratory Distress Syndrome/chemically induced , Administration, Intranasal , Animals , Disease Models, Animal , Female , Inflammation/pathology , Lipopolysaccharides/administration & dosage , Mice , Mice, Inbred C57BL , Proteins/analysis , Respiratory Distress Syndrome/pathology
6.
Int J Pharm ; 601: 120536, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1157426

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life threatening respiratory disease associated with pulmonary edema, alveolar dysfunction, hypoxia, and inflammatory cell accumulation. The most contagious form of COVID-19 associated with ARDS caused by SARS-CoV-2. SARS-CoV-2 majorly produces the cytokine storm and severe lung inflammation and ultimately leads to respiratory failure. ARDS is a complex disease and there is no proper therapeutics for effective therapy. Still, there is a huge scope to identify novel targets to combat respiratory illness. In the current study, we have identified the epigenetic regulating protein BRD4 and developed siRNA based nanomedicine to treat the ARDS. The liposomes were prepared by thin-film hydration method, where BRD4 siRNA complexed with cationic lipid and exhibited 96.24 ± 18.01 nm size and stable even in the presence of RNase. BRD4 siRNA lipoplexes (BRD4-siRNA-LP) inhibited inflammatory cells in lungs and suppressed the lipopolysaccharide (LPS) induced the neutrophil infiltration and mast cell accumulation. Also, BRD4 siRNA based nanomedicine significantly reduced the LPS induced cytokine storm followed by inflammatory signaling pathways. Interestingly, BRD4-siRNA-LP suppressed the LPS-induced p65 and STAT3 nuclear translocation and ameliorated the lung inflammation. Thus, BRD4-siRNA-LP could be a plausible therapeutic option for treating ARDS and might be useful for combating the COVID-19 associated respiratory illness.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Cell Cycle Proteins , Humans , Lipopolysaccharides , Nuclear Proteins , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Transcription Factors/genetics
7.
Stem Cell Res Ther ; 12(1): 72, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-1035054

ABSTRACT

BACKGROUND: One of the most severe complications of the current COVID-19 pandemic is acute respiratory distress syndrome (ARDS). ARDS is caused by increased amounts of pro-inflammatory cytokines, leading to lung damage and loss of lung function. There are currently no effective therapies for combatting ARDS. Mesenchymal stem cells (MSCs) have been suggested as a potential treatment for ARDS due to their significant immunomodulatory properties. MSC small extracellular vesicles (sEVs), including exosomes, modulate the immune response as effectively as MSCs themselves, with the added advantages of increased safety and tissue penetration. METHODS: We isolated sEVs from MSCs induced to secrete increased levels of neurotrophic and immunomodulatory factors, termed Exo MSC-NTF, and compared their ability to treat ARDS, in a lung injury LPS mouse model, to sEVs isolated from naïve MSCs (Exo MSC). Measurments of lung histopathological changes and neutrophil infiltration, blood oxygen saturation, and bronchoalveolar lavge fluid (BALF) proinflammatory cytokines and coagulation related factors were performed. RESULTS: We found that Exo MSC-NTF was superior to Exo MSC in reducing LPS-induced ARDS markers, including physiological lung damage such as alveolar wall thickness, fibrin presence, and neutrophil accumulation, as well as increasing oxygenation levels. Furthermore, Exo MSC-NTF reversed the imbalance in the host immune response, seen as decreased IFN-γ, IL-6, TNF-α, and RANTES levels in the bronchoalveolar lavage fluid. CONCLUSIONS: These positive preclinical results suggest that Exo MSC-NTF may be suitable as a therapy for COVID-19-induced ARDS and are more effective at combatting ARDS physiological, pathological, and biochemical symptoms than sEVs isolated from non-induced MSCs.


Subject(s)
Exosomes/immunology , Mesenchymal Stem Cell Transplantation/methods , Respiratory Distress Syndrome/therapy , Animals , Disease Models, Animal , Female , Humans , Immunomodulation , Lipopolysaccharides/administration & dosage , Mesenchymal Stem Cells/immunology , Mice , Respiratory Distress Syndrome/immunology
8.
Nanomedicine ; 33: 102351, 2021 04.
Article in English | MEDLINE | ID: covidwho-1009771

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a deadly respiratory illness associated with refractory hypoxemia and pulmonary edema. The recent pandemic outbreak of COVID-19 is associated with severe pneumonia and inflammatory cytokine storm in the lungs. The anti-inflammatory phytomedicine nimbolide (NIM) may not be feasible for clinical translation due to poor pharmacokinetic properties and lack of suitable delivery systems. To overcome these barriers, we have developed nimbolide liposomes conjugated with iRGD peptide (iRGD-NIMLip) for targeting lung inflammation. It was observed that iRGD-NIMLip treatment significantly inhibited oxidative stress and cytokine storm compared to nimbolide free-drug (f-NIM), nimbolide liposomes (NIMLip), and exhibited superior activity compared to dexamethasone (DEX). iRGD-NIMLip abrogated the LPS induced p65 NF-κB, Akt, MAPK, Integrin ß3 and ß5, STAT3, and DNMT1 expression. Collectively, our results demonstrate that iRGD-NIMLip could be a promising novel drug delivery system to target severe pathological consequences observed in ARDS and COVID-19 associated cytokine storm.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Limonins/administration & dosage , Liposomes/chemistry , Oligopeptides/chemistry , Respiratory Distress Syndrome/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Cell Line , Drug Delivery Systems , Endotoxins , Humans , Limonins/chemistry , Limonins/therapeutic use , Lung/drug effects , Lung/pathology , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/pathology
9.
Int J Mol Sci ; 21(22)2020 Nov 20.
Article in English | MEDLINE | ID: covidwho-945833

ABSTRACT

At least since March 2020, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic and the multi-organ coronavirus disease 2019 (COVID-19) are keeping a firm grip on the world. Although most cases are mild, older patients and those with co-morbidities are at increased risk of developing a cytokine storm, characterized by a systemic inflammatory response leading to acute respiratory distress syndrome and organ failure. The present paper focuses on the small molecule MP1032, describes its mode of action, and gives rationale why it is a promising option for the prevention/treatment of the SARS-CoV-2-induced cytokine storm. MP1032 is a phase-pure anhydrous polymorph of 5-amino-2,3-dihydro-1,4-phthalazinedione sodium salt that exhibits good stability and bioavailability. The physiological action of MP1032 is based on a multi-target mechanism including localized, self-limiting reactive oxygen species (ROS) scavenging activities that were demonstrated in a model of lipopolysaccharide (LPS)-induced joint inflammation. Furthermore, its immune-regulatory and PARP-1-modulating properties, coupled with antiviral effects against SARS-CoV-2, have been demonstrated in various cell models. Preclinical efficacy was elucidated in LPS-induced endotoxemia, a model with heightened innate immune responses that shares many similarities to COVID-19. So far, during oral clinical development with three-month daily administrations, no serious adverse drug reactions occurred, highlighting the outstanding safety profile of MP1032.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Immunologic Factors/pharmacology , Inflammation/drug therapy , Luminol/analogs & derivatives , Pneumonia, Viral/drug therapy , Amination , Animals , Antiviral Agents/chemistry , Betacoronavirus/immunology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/immunology , Cytokines/immunology , Female , Humans , Immunologic Factors/chemistry , Inflammation/immunology , Luminol/chemistry , Luminol/pharmacology , Male , Mice , Mice, Inbred C57BL , Pandemics , Pneumonia, Viral/immunology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/immunology , Reactive Oxygen Species/immunology , SARS-CoV-2 , Vero Cells
10.
Infect Disord Drug Targets ; 21(6): e170721187996, 2021.
Article in English | MEDLINE | ID: covidwho-927511

ABSTRACT

The high mortality of coronavirus disease 2019 (COVID-19) patients is due to their progression to cytokine-associated organ injuries, primarily the acute respiratory distress syndrome (ARDS). The uncertainties in the molecular mechanisms leading to the switch from the early virus infection to the advanced stage ARDS is a major gridlock in therapeutic development to reduce mortality. Previous studies in our laboratory have identified matrix metalloprotease-3 (MMP3) as an important mediator of bacterial lipopolysaccharide (LPS)-induced ARDS, particularly in the exudative phase. Our studies have also reported elevated plasma MMP3 activity levels in the ARDS patients and that inhibition of MMP3 can reduce the severity of LPS-induced ARDS in mice. Given these observations, targeting MMP3 could be a potential option to treat COVID-19 patients with ARDS, and measurement of MMP3 activity in the plasma may serve as a biomarker for the early detection of ARDS in COVID-19 patients.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Animals , Biomarkers , Humans , Matrix Metalloproteinase 3 , Mice , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2
11.
PLoS One ; 15(10): e0239692, 2020.
Article in English | MEDLINE | ID: covidwho-840912

ABSTRACT

BACKGROUND: SARS-Cov2 infection may trigger lung inflammation and acute-respiratory-distress-syndrome (ARDS) that requires active ventilation and may have fatal outcome. Considering the severity of the disease and the lack of active treatments, 14 patients with Covid-19 and severe lung inflammation received inhaled adenosine in the attempt to therapeutically compensate for the oxygen-related loss of the endogenous adenosine→A2A adenosine receptor (A2AR)-mediated mitigation of the lung-destructing inflammatory damage. This off label-treatment was based on preclinical studies in mice with LPS-induced ARDS, where inhaled adenosine/A2AR agonists protected oxygenated lungs from the deadly inflammatory damage. The treatment was allowed, considering that adenosine has several clinical applications. PATIENTS AND TREATMENT: Fourteen consecutively enrolled patients with Covid19-related interstitial pneumonitis and PaO2/FiO2 ratio<300 received off-label-treatment with 9 mg inhaled adenosine every 12 hours in the first 24 hours and subsequently, every 24 days for the next 4 days. Fifty-two patients with analogue features and hospitalized between February and April 2020, who did not receive adenosine, were considered as a historical control group. Patients monitoring also included hemodynamic/hematochemical studies, CTscans, and SARS-CoV2-tests. RESULTS: The treatment was well tolerated with no hemodynamic change and one case of moderate bronchospasm. A significant increase (> 30%) in the PaO2/FiO2-ratio was reported in 13 out of 14 patients treated with adenosine compared with that observed in 7 out of52 patients in the control within 15 days. Additionally, we recorded a mean PaO2/FiO2-ratio increase (215 ± 45 vs. 464 ± 136, P = 0.0002) in patients receiving adenosine and no change in the control group (210±75 vs. 250±85 at 120 hours, P>0.05). A radiological response was demonstrated in 7 patients who received adenosine, while SARS-CoV-2 RNA load rapidly decreased in 13 cases within 7 days while no changes were recorded in the control group within 15 days. There was one Covid-19 related death in the experimental group and 11in the control group. CONCLUSION: Our short-term analysis suggests the overall safety and beneficial therapeutic effect of inhaled adenosine in patients with Covid-19-inflammatory lung disease suggesting further investigation in controlled clinical trials.


Subject(s)
Adenosine/adverse effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine/administration & dosage , Administration, Inhalation , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Female , Hospitalization , Humans , Lung/pathology , Lung/virology , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/virology , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Retrospective Studies , SARS-CoV-2
12.
Exp Cell Res ; 394(2): 112101, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-633801

ABSTRACT

Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) are common lung disorders characterized by alveolar-capillary barrier disruption and dyspnea, which can cause substantial morbidity and mortality. Currently, a cluster of acute respiratory illnesses, known as novel coronavirus (2019-nCoV)-infected pneumonia (NCIP), which allegedly originally occurred in Wuhan, China, has increased rapidly worldwide. The critically ill patients with ARDS have high mortality in subjects with comorbidities. Previously, the excessive recruitment and activation of neutrophils (polymorphonuclear leukocytes [PMNs]), accompanied by neutrophil extracellular traps (NETs) formation were reported being implicated in the pathogenesis of ALI/ARDS. However, the direct visualization of lung epithelial injuries caused by NETs, and the qualitative and quantitative evaluations of this damage are still lacking. Additionally, those already reported methods are limited for their neglect of the pathological role exerted by NETs and focusing only on the morphological features of NETosis. Therefore, we established a cell-based assay for detecting NETs during lung epithelial cells-neutrophils co-culture using the xCELLigence system, a recognized real-time, dynamic, label-free, sensitive, and high-throughput apparatus. Our results demonstrated that lung epithelial injuries, reflected by declines in cell index (CI) values, could be induced by lipopolysaccharide (LPS)-activated PMNs, or NETs in a time and dose-dependent manner. NETs generation was verified to be the major contributor to the cytotoxicity of activated PMNs; protein components of NETs were the prevailing cytotoxic mediators. Moreover, this cell-based assay identified that PMNs from severe pneumonia patients had a high NETs formative potential. Additionally, acetylsalicylic acid (ASA) and acetaminophen (APAP) were discovered alleviating NETs formation. Thus, this study not only presents a new methodology for detecting the pathophysiologic role of NETs but also lays down a foundation for exploring therapeutic interventions in an effort to cure ALI/ARDS in the clinical setting of severe pneumonia, including the emerging of NCIP.


Subject(s)
Acute Lung Injury/blood , Coronavirus Infections/blood , Extracellular Traps/diagnostic imaging , Neutrophils/metabolism , Pneumonia, Viral/blood , Respiratory Distress Syndrome/blood , Acute Lung Injury/chemically induced , Acute Lung Injury/diagnostic imaging , Acute Lung Injury/virology , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/virology , Epithelial Cells/pathology , Epithelial Cells/virology , Extracellular Traps/virology , Humans , Lipopolysaccharides/toxicity , Lung/diagnostic imaging , Lung/virology , Male , Neutrophils/virology , Pandemics , Pneumonia/blood , Pneumonia/diagnostic imaging , Pneumonia/virology , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL