Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 370
Filter
1.
J Am Coll Emerg Physicians Open ; 1(6): 1357-1363, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1898686

ABSTRACT

Coronavirus disease 2019 (COVID-19) has created unprecedented disruption for global healthcare systems. Offices and emergency departments (EDs) were the first responders to the pandemic, followed by medical wards and intensive care unit (ICUs). Worldwide efforts sprouted to coordinate proper response by increasing surge capacity and optimizing diagnosis and containment. Within the complex scenario of the outbreak, the medical community shared scientific research and implemented best-guess imaging strategies in order to save time and additional staff exposures. Early publications showed agreement between chest computed tomography (CT) and lung sonography: widespread ground-glass findings resembling acute respiratory distress syndrome (ARDS) on CT of COVID-19 patients matched lung ultrasound signs and patterns. Well-established accuracy of bedside sonography for lung conditions and its advantages (such as no ionizing radiation; low-cost, real-time bedside imaging; and easier disinfection steps) prompted a wider adoption of lung ultrasound for daily assessment and monitoring of COVID-19 patients. Growing literature, webinars, online materials, and international networks are promoting lung ultrasound for the same purpose. We propose 11 lung ultrasound roles for different medical settings during the pandemic, starting from the out-of-hospital setting, where lung ultrasound has ergonomic and infection control advantages. Then we describe how medical wards and ICUs can safely integrate lung ultrasound into COVID-19 care pathways. Finally, we present outpatient use of lung ultrasound to aid follow-up of positive case contacts and of those discharged from the hospital.

2.
J Am Coll Emerg Physicians Open ; 1(4): 375-378, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1898670

ABSTRACT

COVID-19 is proving to be a devastating pandemic with both tragic economic and health consequences worldwide. Point-of-care ultrasound (POCUS) of the lungs has been thrust into the forefront of resources that could be used in the management of COVID-19 acute care patients. However, relatively little attention has been paid to POCUS utility in assessing the heart in COVID-19 patients. Anecdotal reports suggest encounters of likely COVID-19 induced pericardial effusions and myocardial electrical dysfunction. This article presents 2 cases of generally healthy patients who were noted to have classic COVID-19 bilateral pneumonia findings on lung ultrasound and incidentally discovered to have unsuspected left ventricular dysfunction likely resulting from myocarditis. POCUS videos are presented as illustrations of this potentially overlooked complication.

3.
Med Clin (Engl Ed) ; 156(10): 477-484, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1804816

ABSTRACT

BACKGROUND: There is growing evidence regarding the imaging findings of coronavirus disease 2019 (COVID-19) in chest X-rays and computed tomography scans; however, their availability during this pandemic outbreak might be compromised. Currently, the role of point-of-care ultrasonography (POCUS) has yet to be explored. OBJECTIVES: To describe the POCUS findings of COVID-19 in patients with the disease admitted to the emergency department (ED), correlating them with vital signs, laboratory and radiologic results, therapeutic decisions, and the prognosis. METHODS: Prospective study performed in the ED of 2 academic hospitals. Patients with highly suspected or confirmed COVID-19 underwent a lung ultrasonography (lung POCUS), focused cardiac ultrasound (FOCUS), and inferior vena cava (IVC) exam. RESULTS: Between March and April 2020, 96 patients were enrolled. The mean age was 68.2 years (SD 17.5). The most common findings in the lung POCUS were an irregular pleural line (63.2%), bilateral confluence (55.2%), and isolated B-lines (53.1%), which were associated with a positive RT-PCR (odds ratio 4.327; 95% CI 1.216-15.401; p < .001), and correlated with IL-6 levels (rho = 0.622; p = .002). The IVC negatively correlated with levels of expiratory pO2 (rho = -0.539; p = .014) and inspiratory pO2 (rho = -0.527; p = 0.017), and expiratory diameter positively correlated with troponin I (rho = 0.509; p = .03). After the POCUS exam, almost 20% of the patients had an associated condition that required a change in their treatment or management. CONCLUSIONS: POCUS parameters have the potential to impact the diagnosis, management, and prognosis of patients with confirmed or suspected COVID-19.


ANTECEDENTES: Existe una evidencia creciente con respecto a los hallazgos por imagen de la COVID-19, tanto en radiografías de tórax como en tomografía computarizada; sin embargo, la disponibilidad de estas técnicas durante la pandemia podría verse comprometida. OBJETIVOS: Describir los hallazgos en la ecografía en el punto de atención (POCUS) en pacientes con COVID-19 que consultaron en el servicio de urgencias (SU), correlacionándolos con signos vitales, resultados analíticos y radiológicos, decisiones terapéuticas y pronóstico. MÉTODOS: Estudio prospectivo realizado en los SU de dos hospitales académicos. Los pacientes con COVID-19 con alta sospecha o confirmada se sometieron a una ecografía pulmonar (POCUS pulmonar), una ecocardioscopia y una ecografía de la vena cava inferior (VCI). RESULTADOS: Entre marzo y abril del 2020, se reclutaron 96 pacientes. La edad media fue de 68,2 años (DE 17,5). Los hallazgos más comunes en el POCUS pulmonar fueron la línea pleural irregular (63,2%), las líneas B confluyentes bilateral (55,2%) y aisladas (53,1%), que se vincularon con una RT-PCR (odds ratio 4,327; IC 95% 1,216 a 15,401; p < 0,001), y se asoció con los niveles de interleucina-6 (IL-6) (ρ = 0,622; p = 0,002). La VCI se correlacionó negativamente con los niveles de pO2 espiratorio (ρ = − 0,539; p = 0,014) y pO2 inspiratorio (ρ = − 0,527; p = 0,017), y el diámetro espiratorio se relacionó positivamente con la troponina I (ρ = 0,509; p = 0, 03). Después del examen POCUS, casi el 20% de los pacientes tenían una condición asociada que requería un cambio en el tratamiento o manejo previo. CONCLUSIONES: Los parámetros POCUS tienen el potencial de afectar el diagnóstico, manejo y pronóstico de pacientes con sospecha o confirmación de COVID-19.

4.
Can J Anaesth ; 67(10): 1393-1404, 2020 10.
Article in English | MEDLINE | ID: covidwho-1777843

ABSTRACT

Pulmonary complications are the most common clinical manifestations of coronavirus disease (COVID-19). From recent clinical observation, two phenotypes have emerged: a low elastance or L-type and a high elastance or H-type. Clinical presentation, pathophysiology, pulmonary mechanics, radiological and ultrasound findings of these two phenotypes are different. Consequently, the therapeutic approach also varies between the two. We propose a management algorithm that combines the respiratory rate and oxygenation index with bedside lung ultrasound examination and monitoring that could help determine earlier the requirement for intubation and other surveillance of COVID-19 patients with respiratory failure.


RéSUMé: Les complications pulmonaires du coronavirus (COVID-19) constituent ses manifestations cliniques les plus fréquentes. De récentes observations cliniques ont fait émerger deux phénotypes : le phénotype à élastance faible ou type L (low), et le phénotype à élastance élevée, ou type H (high). La présentation clinique, la physiopathologie, les mécanismes pulmonaires, ainsi que les observations radiologiques et échographiques de ces deux différents phénotypes sont différents. L'approche thérapeutique variera par conséquent selon le phénotype des patients atteints de COVID-19 souffrant d'insuffisance respiratoire.


Subject(s)
Coronavirus Infections/complications , Lung/diagnostic imaging , Pneumonia, Viral/complications , Respiratory Insufficiency/diagnostic imaging , Ultrasonography , Acute Disease , Algorithms , COVID-19 , Coronavirus Infections/diagnostic imaging , Humans , Lung/physiopathology , Lung/virology , Oxygen/metabolism , Pandemics , Phenotype , Pneumonia, Viral/diagnostic imaging , Point-of-Care Systems , Respiratory Insufficiency/virology , Respiratory Rate/physiology
5.
J Ultrasound Med ; 41(1): 89-96, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1574799

ABSTRACT

OBJECTIVES: Lung ultrasound (LUS) can accurately diagnose several pulmonary diseases, including pneumothorax, effusion, and pneumonia. LUS may be useful in the diagnosis and management of COVID-19. METHODS: This study was conducted at two United States hospitals from 3/21/2020 to 6/01/2020. Our inclusion criteria included hospitalized adults with COVID-19 (based on symptomatology and a confirmatory RT-PCR for SARS-CoV-2) who received a LUS. Providers used a 12-zone LUS scanning protocol. The images were interpreted by the researchers based on a pre-developed consensus document. Patients were stratified by clinical deterioration (defined as either ICU admission, invasive mechanical ventilation, or death within 28 days from the initial symptom onset) and time from symptom onset to their scan. RESULTS: N = 22 patients (N = 36 scans) were included. Eleven (50%) patients experienced clinical deterioration. Among N = 36 scans, only 3 (8%) were classified as normal. The remaining scans demonstrated B-lines (89%), consolidations (56%), pleural thickening (47%), and pleural effusion (11%). Scans from patients with clinical deterioration demonstrated higher percentages of bilateral consolidations (50 versus 15%; P = .033), anterior consolidations (47 versus 11%; P = .047), lateral consolidations (71 versus 29%; P = .030), pleural thickening (69 versus 30%; P = .045), but not B-lines (100 versus 80%; P = .11). Abnormal findings had similar prevalences between scans collected 0-6 days and 14-28 days from symptom onset. DISCUSSION: Certain LUS findings may be common in hospitalized COVID-19 patients, especially for those that experience clinical deterioration. These findings may occur anytime throughout the first 28 days of illness. Future efforts should investigate the predictive utility of these findings on clinical outcomes.


Subject(s)
COVID-19 , Pneumonia , Adult , Humans , Lung/diagnostic imaging , SARS-CoV-2 , Ultrasonography
7.
Clin Infect Dis ; 73(11): e4189-e4196, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1562059

ABSTRACT

BACKGROUND: Lung ultrasonography (LUS) is a promising pragmatic risk-stratification tool in coronavirus disease 2019 (COVID-19). This study describes and compares LUS characteristics between patients with different clinical outcomes. METHODS: Prospective observational study of polymerase chain reaction-confirmed adults with COVID-19 with symptoms of lower respiratory tract infection in the emergency department (ED) of Lausanne University Hospital. A trained physician recorded LUS images using a standardized protocol. Two experts reviewed images blinded to patient outcome. We describe and compare early LUS findings (≤24 hours of ED presentation) between patient groups based on their 7-day outcome (1) outpatients, (2) hospitalized, and (3) intubated/dead. Normalized LUS score was used to discriminate between groups. RESULTS: Between 6 March and 3 April 2020, we included 80 patients (17 outpatients, 42 hospitalized, and 21 intubated/dead). Seventy-three patients (91%) had abnormal LUS (70% outpatients, 95% hospitalized, and 100% intubated/dead; P = .003). The proportion of involved zones was lower in outpatients compared with other groups (median [IQR], 30% [0-40%], 44% [31-70%], 70% [50-88%]; P < .001). Predominant abnormal patterns were bilateral and there was multifocal spread thickening of the pleura with pleural line irregularities (70%), confluent B lines (60%), and pathologic B lines (50%). Posterior inferior zones were more often affected. Median normalized LUS score had a good level of discrimination between outpatients and others with area under the ROC of .80 (95% CI, .68-.92). CONCLUSIONS: Systematic LUS has potential as a reliable, cheap, and easy-to-use triage tool for the early risk stratification in patients with COVID-19 presenting to EDs.


Subject(s)
COVID-19 , Adult , Humans , Lung/diagnostic imaging , Prospective Studies , Risk Assessment , SARS-CoV-2 , Ultrasonography
8.
IEEE Rev Biomed Eng ; 14: 16-29, 2021.
Article in English | MEDLINE | ID: covidwho-1501334

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading rapidly around the world, resulting in a massive death toll. Lung infection or pneumonia is the common complication of COVID-19, and imaging techniques, especially computed tomography (CT), have played an important role in diagnosis and treatment assessment of the disease. Herein, we review the imaging characteristics and computing models that have been applied for the management of COVID-19. CT, positron emission tomography - CT (PET/CT), lung ultrasound, and magnetic resonance imaging (MRI) have been used for detection, treatment, and follow-up. The quantitative analysis of imaging data using artificial intelligence (AI) is also explored. Our findings indicate that typical imaging characteristics and their changes can play crucial roles in the detection and management of COVID-19. In addition, AI or other quantitative image analysis methods are urgently needed to maximize the value of imaging in the management of COVID-19.


Subject(s)
COVID-19/diagnosis , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Lung/virology , Positron Emission Tomography Computed Tomography/methods , SARS-CoV-2/pathogenicity , Tomography, X-Ray Computed/methods , Ultrasonography/methods
9.
Eur Respir J ; 58(3)2021 09.
Article in English | MEDLINE | ID: covidwho-1403208

ABSTRACT

BACKGROUND: Lung ultrasound is feasible for assessing lung injury caused by coronavirus disease 2019 (COVID-19). However, the prognostic meaning and time-line changes of lung injury assessed by lung ultrasound in COVID-19 hospitalised patients are unknown. METHODS: Prospective cohort study designed to analyse prognostic value of lung ultrasound in COVID-19 patients by using a quantitative scale (lung ultrasound Zaragoza (LUZ)-score) during the first 72 h after admission. The primary end-point was in-hospital death and/or admission to the intensive care unit. Total length of hospital stay, increase of oxygen flow and escalation of medical treatment during the first 72 h were secondary end-points. RESULTS: 130 patients were included in the final analysis; mean±sd age was 56.7±13.5 years. Median (interquartile range) time from the beginning of symptoms to admission was 6 (4-9) days. Lung injury assessed by LUZ-score did not differ during the first 72 h (21 (16-26) points at admission versus 20 (16-27) points at 72 h; p=0.183). In univariable logistic regression analysis, estimated arterial oxygen tension/inspiratory oxygen fraction ratio (PAFI) (hazard ratio 0.99, 95% CI 0.98-0.99; p=0.027) and LUZ-score >22 points (5.45, 1.42-20.90; p=0.013) were predictors for the primary end-point. CONCLUSIONS: LUZ-score is an easy, simple and fast point-of-care ultrasound tool to identify patients with severe lung injury due to COVID-19, upon admission. Baseline score is predictive of severity along the whole period of hospitalisation. The score facilitates early implementation or intensification of treatment for COVID-19 infection. LUZ-score may be combined with clinical variables (as estimated by PAFI) to further refine risk stratification.


Subject(s)
COVID-19 , Point-of-Care Systems , Adult , Aged , Hospital Mortality , Humans , Lung/diagnostic imaging , Middle Aged , Prospective Studies , Risk Assessment , SARS-CoV-2
10.
AACE Clin Case Rep ; 7(5): 288-292, 2021.
Article in English | MEDLINE | ID: covidwho-1397116

ABSTRACT

OBJECTIVE: During the ongoing coronavirus disease 2019 pandemic, procalcitonin (PCT) levels have proven useful in assisting clinicians to diagnose bacterial superinfection. However, in the absence of signs of infection or at the resolution thereof, inappropriately and persistently high PCT levels may suggest and reveal the presence of other pathologies. We report a patient with severe acute respiratory syndrome coronavirus 2 pneumonia with initially elevated PCT levels that persisted during recovery, prompting the diagnosis of medullary thyroid carcinoma (MTC). METHODS: A 43-year-old man presented with a 2-day history of fever, sneezing, sore throat, and dry cough. His PCT was 94 ng/mL (normal value, 0.00-0.10 ng/mL), and he was positive for severe acute respiratory syndrome coronavirus 2 RNA. RESULTS: Empirical antibiotic therapy was administered for 7 days, but despite a clinical improvement, serum PCT remained high (84 ng/mL). Serum calcitonin (CTN) was 2120 pg/mL (normal, ≤12 pg/mL). Cytologic examination of thyroid nodules and CTN measurement of the aspiration needle washout confirmed MTC. The patient underwent total thyroidectomy with bilateral cervical lymph node dissection. Lowered CTN (986 pg/mL) and PCT (16 ng/mL) levels were observed 48 hours after surgery. A close follow-up was planned following the results of RET gene analysis. CONCLUSION: PCT can be a useful biochemical marker of MTC suspicion in patients with inflammatory conditions and persistently elevated PCT, even after resolution. In our case, high levels of PCT in a patient with coronavirus disease 2019 pneumonia without signs of bacterial infection led to MTC diagnosis.

13.
Int J Infect Dis ; 108: 603-609, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1351708

ABSTRACT

OBJECTIVES: The coronavirus disease 2019 (COVID-19) pandemic has rapidly spread all over the world. Lung ultrasound (LUS) has emerged as a useful tool for diagnosing many respiratory diseases. The prognostic role of LUS in COVID-19 patients has not yet been established. METHODS: Several databases were searched on 09 April 2021. The difference in LUS score between the death and survival groups, and the relationship between LUS score and COVID-19 severity were both assessed. RESULTS: The LUS score was significantly higher in the death group compared with the survival group (weighted mean difference (WMD) = 8.21, 95% CI: 4.74-11.67, P < 0.001), which was confirmed by trial sequential analysis. Those with mild/moderate, severe and critical COVID-19 had a progressively higher LUS score (critical vs. severe: WMD = 8.78, 95% CI: 4.17-13.38; P < 0.001; critical vs. mild/moderate/severe: WMD = 10.00, 95% CI: 6.83-13.17, P < 0.001; severe vs. moderate: WMD = 5.96, 95% CI: 3.48-8.44, P < 0.001; severe vs. mild/moderate: WMD = 7.31, 95% CI: 4.45-10.17, P < 0.001). CONCLUSIONS: The LUS score was associated with mortality and severity of COVID-19. The LUS score might be a risk stratification tool for COVID-19 patients.


Subject(s)
COVID-19 , Humans , Lung/diagnostic imaging , Pandemics , SARS-CoV-2 , Ultrasonography
14.
Shock ; 56(2): 200-205, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1316852

ABSTRACT

PURPOSE: We used lung ultrasonography to identify features of COVID-19 pneumonia and to evaluate the prognostic value. PATIENTS AND METHODS: We performed lung ultrasonography on 48 COVID-19 patients in an intensive care unit (ICU) (Wuhan, China) using a 12-zone method. The associations between lung ultrasonography score, PaO2/FiO2, APACHE II, SOFA, and PaCO2 with 28-day mortality were analyzed and the receiver operator characteristic curve was plotted. RESULTS: 25.9% areas in all scanning zones presented with B7 lines and 23.5% with B3 lines (B-pattern) on lung ultrasonography; 13% areas with confluent B lines (B-pattern), 24.9% in areas with consolidations, and 9.9% in areas with A lines. Pleural effusion was observed in 2.8% of areas. Lung ultrasonography score was negatively correlated with PaO2/FiO2 (n = 48, r = -0.498, P < 0.05) and positively correlated with APACHE II (n = 48, r = 0.435, P < 0.05). Lung ultrasonography score was independently associated with 28-day mortality. The areas under receiver operator characteristic curves of lung ultrasonography score were 0.735 (95% CI: 0.586-0.844). The sensitivity, specificity, and cutoff values were 0.833, 0.722, and 22.5, respectively. CONCLUSIONS: Lung ultrasonography could be used to assess the severity of COVID-19 pneumonia, and it could also reveal the pathological signs of the disease. The lung ultrasonography score on ICU admission was independently related to the ICU 28-day mortality.


Subject(s)
COVID-19/diagnosis , Lung/diagnostic imaging , Ultrasonography/methods , Aged , COVID-19/epidemiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pandemics , Prognosis , Prospective Studies , ROC Curve , SARS-CoV-2
15.
J Thromb Thrombolysis ; 52(1): 76-84, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1310591

ABSTRACT

Subpleural consolidations have been found in lung ultrasound in patients with COVID-19, possibly deriving from pulmonary embolism (PE). The diagnostic utility of impact of lung ultrasound in critical-ill patients with COVID-19 for PE diagnostics however is unclear. We retrospectively evaluated all SARS-CoV2-associated ARDS patients admitted to our ICU between March 8th and May 31th 2020. They were enrolled in this study, when a lung ultrasound and a computed tomography pulmonary angiography (CTPA) were documented. In addition, wells score was calculated to estimate the probability of PE. The CTPA was used as the gold standard for the detection of PE. Twenty out of 25 patients met the inclusion criteria. In 12/20 patients (60%) (sub-) segmental PE were detected by CT-angiography. Lung ultrasound found subpleural consolidations in 90% of patients. PE-typical large supleural consolidations with a size ≥ 1 cm were detectable in 65% of patients and were significant more frequent in patients with PE compared to those without (p = 0.035). Large consolidations predicted PE with a sensitivity of 77% and a specificity of 71%. The Wells score was significantly higher in patients with PE compared to those without (2.7 ± 0.8 and 1.7 ± 0.5, respectively, p = 0.042) and predicted PE with an AUC of 0.81. When combining the two modalities, comparing patients with considered/probable PE using LUS plus a Wells score ≥ 2 to patients with possible/unlikely PE in LUS plus a Wells score < 2, PE could be predicted with a sensitivity of 100% and a specificity of 80%. Large consolidations detected in lung ultrasound were found frequently in COVID-19 ARDS patients with pulmonary embolism. In combination with a Wells score > 2, this might indicate a high-risk for PE in COVID-19.


Subject(s)
COVID-19/complications , Clinical Decision Rules , Computed Tomography Angiography , Lung/diagnostic imaging , Pulmonary Artery/diagnostic imaging , Pulmonary Embolism/diagnostic imaging , Ultrasonography , Aged , COVID-19/diagnosis , Critical Illness , Female , Humans , Male , Middle Aged , Multimodal Imaging , Predictive Value of Tests , Pulmonary Embolism/etiology , Registries , Reproducibility of Results , Retrospective Studies , Risk Assessment , Risk Factors
16.
IEEE Trans Ultrason Ferroelectr Freq Control ; 68(7): 2507-2515, 2021 07.
Article in English | MEDLINE | ID: covidwho-1288239

ABSTRACT

As being radiation-free, portable, and capable of repetitive use, ultrasonography is playing an important role in diagnosing and evaluating the COVID-19 Pneumonia (PN) in this epidemic. By virtue of lung ultrasound scores (LUSS), lung ultrasound (LUS) was used to estimate the excessive lung fluid that is an important clinical manifestation of COVID-19 PN, with high sensitivity and specificity. However, as a qualitative method, LUSS suffered from large interobserver variations and requirement for experienced clinicians. Considering this limitation, we developed a quantitative and automatic lung ultrasound scoring system for evaluating the COVID-19 PN. A total of 1527 ultrasound images prospectively collected from 31 COVID-19 PN patients with different clinical conditions were evaluated and scored with LUSS by experienced clinicians. All images were processed via a series of computer-aided analysis, including curve-to-linear conversion, pleural line detection, region-of-interest (ROI) selection, and feature extraction. A collection of 28 features extracted from the ROI was specifically defined for mimicking the LUSS. Multilayer fully connected neural networks, support vector machines, and decision trees were developed for scoring LUS images using the fivefold cross validation. The model with 128×256 two fully connected layers gave the best accuracy of 87%. It is concluded that the proposed method could assess the ultrasound images by assigning LUSS automatically with high accuracy, potentially applicable to the clinics.


Subject(s)
COVID-19/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Lung/diagnostic imaging , Neural Networks, Computer , Ultrasonography/methods , Adult , Aged , Female , Humans , Male , Middle Aged , SARS-CoV-2
17.
Ultrasound Med Biol ; 47(8): 1997-2005, 2021 08.
Article in English | MEDLINE | ID: covidwho-1286382

ABSTRACT

The goal of this review was to systematize the evidence on pulmonary ultrasound (PU) use in diagnosis, monitorization or hospital discharge criteria for patients with coronavirus disease 2019 (COVID-19). Evidence on the use of PU for diagnosis and monitorization of or as hospital discharge criteria for COVID-19 patients confirmed to have COVID-19 by reverse transcription polymerase chain reaction (RT-PCR) between December 1, 2019 and July 5, 2020 was compared with evidence obtained with thoracic radiography (TR), chest computed tomography (CT) and RT-PCR. The type of study, motives for use of PU, population, type of transducer and protocol, results of PU and quantitative or qualitative correlation with TR and/or chest CT and/or RT-PCR were evaluated. A total of 28 articles comprising 418 patients were involved. The average age was 50 y (standard deviation: 25.1 y), and there were 395 adults and 23 children. One hundred forty-three were women, 13 of whom were pregnant. The most frequent result was diffuse, coalescent and confluent B-lines. The plural line was irregular, interrupted or thickened. The presence of subpleural consolidation was noduliform, lobar or multilobar. There was good qualitative correlation between TR and chest CT and a quantitative correlation with chest CT of r = 0.65 (p < 0.001). Forty-four patients were evaluated only with PU. PU is a useful tool for diagnosis and monitorization and as criteria for hospital discharge for patients with COVID-19.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Lung/diagnostic imaging , Ultrasonography/methods , Humans , SARS-CoV-2
18.
IEEE Trans Ultrason Ferroelectr Freq Control ; 67(11): 2258-2264, 2020 11.
Article in English | MEDLINE | ID: covidwho-1284995

ABSTRACT

Lung ultrasound (LUS) is a practical tool for lung diagnosis when computer tomography (CT) is not available. Recent findings suggest that LUS diagnosis is highly advantageous because of its mobility and correlation with radiological findings for viral pneumonia. Simple models for both educational evaluation and technical evaluation are needed. Therefore, this work investigates the usability of a large animal model under aspects of LUS features of viral pneumonia using saline one lung flooding. Six pigs were intubated with a double-lumen tube, and the left lung was instilled with saline. During the instillation of up to 12.5 ml/kg, the sonographic features were assessed. All features present during viral pneumonia were found, such as B-lines, white lung syndrome, pleural thickening, and the formation of pleural consolidations. Sonographic findings correlate well with current LUS scores for COVID19. The scores of 1, 2, and 3 were dominantly present at 1-4-, 4-8-, and 8-12-ml/kg saline instillation, respectively. The noninfective animal model can be used for further investigation of the LUS features and can serve in education, by helping with the appropriate handling of LUS in clinical practice during management of viral pneumonia.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Lung , Pneumonia, Viral , Ultrasonography/methods , Animals , COVID-19 , Female , Lung/diagnostic imaging , Lung/pathology , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/pathology , Swine
19.
World J Radiol ; 13(5): 122-136, 2021 May 28.
Article in English | MEDLINE | ID: covidwho-1278642

ABSTRACT

Coronavirus disease 2019 (COVID-19), a global emergency, is caused by severe acute respiratory syndrome coronavirus 2. The gold standard for its diagnosis is the reverse transcription polymerase chain reaction, but considering the high number of infected people, the low availability of this diagnostic tool in some contexts, and the limitations of the test, other tools that aid in the identification of the disease are necessary. In this scenario, imaging exams such as chest X-ray (CXR) and computed tomography (CT) have played important roles. CXR is useful for assessing disease progression because it allows the detection of extensive consolidations, besides being a fast and cheap method. On the other hand, CT is more sensitive for detecting lung changes in the early stages of the disease and is also useful for assessing disease progression. Of note, ground-glass opacities are the main COVID-19-related CT findings. Positron emission tomography combined with CT can be used to evaluate chronic and substantial damage to the lungs and other organs; however, it is an expensive test. Lung ultrasound (LUS) has been shown to be a promising technique in that context as well, being useful in the screening and monitoring of patients, disease classification, and management related to mechanical ventilation. Moreover, LUS is an inexpensive alternative available at the bedside. Finally, magnetic resonance imaging, although not usually requested, allows the detection of pulmonary, cardiovascular, and neurological abnormalities associated with COVID-19. Furthermore, it is important to consider the challenges faced in the radiology field in the adoption of control measures to prevent infection and in the follow-up of post-COVID-19 patients.

20.
Insights Imaging ; 12(1): 81, 2021 Jun 19.
Article in English | MEDLINE | ID: covidwho-1277969

ABSTRACT

This statement summarises basic settings in lung ultrasonography and best practice recommendations for lung ultrasonography in COVID-19, representing the agreed consensus of experts from the Ultrasound Subcommittee of the European Society of Radiology (ESR). Standard lung settings and artefacts in lung ultrasonography are explained for education and training, equipment settings, documentation and self-protection.

SELECTION OF CITATIONS
SEARCH DETAIL