Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Leukoc Biol ; 109(1): 77-90, 2021 01.
Article in English | MEDLINE | ID: covidwho-1188012

ABSTRACT

B cells play a central role in antiviral and antiparasitic immunity, not only as producers of antibodies, but also as APCs and mediators of inflammation. In this study, we used 16-color flow cytometry analysis to investigate the frequency, differentiation, and activation status of peripheral B cells of patients with SARS-CoV-2 infection or acute Plasmodium falciparum malaria compared with the healthy individuals. As a main result, we observed an increase of the frequency of (CD27-, CD21-) atypical memory B cells and (CD19+, CD27+, CD38+) plasmablasts in malaria and COVID-19 patients. Additionally, CD86, PD-1, CXCR3, and CD39 expression was up-regulated, whereas CD73 was down-regulated on plasmablasts of COVID-19 and malaria patients compared with the bulk B cell population. In particular, there was a more pronounced loss of CD73+ B cells in malaria. The frequency of plasmablasts positively correlated with serum levels of CRP, IL-6, and LDH of COVID-19 patients. In the longitudinal course of COVID-19, a rapid normalization of the frequency of atypical memory B cells was observed. The role and function of plasmablasts and atypical memory B cells in COVID-19 and other acute infections remain to be further investigated. The role of B cells as either "driver or passenger" of hyperinflammation during COVID-19 needs to be clarified.


Subject(s)
COVID-19/immunology , Immunologic Memory , Malaria, Falciparum/immunology , Plasma Cells/immunology , Plasmodium falciparum/immunology , SARS-CoV-2/immunology , Adult , Aged , Antigens, CD/immunology , COVID-19/pathology , Female , Humans , Malaria, Falciparum/pathology , Male , Middle Aged , Plasma Cells/pathology
2.
Trop Med Infect Dis ; 6(2)2021 Mar 26.
Article in English | MEDLINE | ID: covidwho-1154500

ABSTRACT

We report a case of Plasmodium falciparum malaria in a patient asymptomatically co-infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the current ongoing coronavirus pandemic, co-infections with unrelated life-threatening febrile conditions may pose a particular challenge to clinicians. The current situation increases the risk for cognitive biases in medical management.

3.
Infect Genet Evol ; 89: 104723, 2021 04.
Article in English | MEDLINE | ID: covidwho-1019369

ABSTRACT

Malaria is a fatal parasitic disease with unelucidated pathogenetic mechanism. Herein, we aimed to uncover genes associated with different clinical aspects of malaria based on the GSE1124 dataset that is publicly accessible by using WGCNA. We obtained 16 co-expression modules and their correlations with clinical features. Using the MCODE tool, we identified THEM4, STYX, VPS36, LCOR, KIAA1143, EEA1, RAPGEF6, LOC439994, ZBTB33, PTPN22, ESCO1, and KLF3 as hub genes positively associated with Plasmodium falciparum infection (ASPF). These hub genes were involved in the biological processes of endosomal transport, regulation of natural killer cell proliferation, and KEGG pathways of endocytosis and fatty acid elongation. For the purple module negatively correlated with ASPF, we identified 19 hub genes that were involved in the biological processes of positive regulation of cellular protein catabolic process and KEGG pathways of other glycan degradation. For the salmon module positively correlated with severe malaria anemia (SMA), we identified 17 hub genes that were among those driving the biological processes of positive regulation of erythrocyte differentiation. For the brown module positively correlated with cerebral malaria (CM), we identified eight hub genes and these genes participated in phagolysosome assembly and positive regulation of exosomal secretion, and animal mitophagy pathway. For the tan module negatively correlated with CM, we identified four hub genes that were involved in CD8-positive, alpha-beta T cell differentiation and notching signaling pathway. These findings may provide new insights into the pathogenesis of malaria and help define new diagnostic and therapeutic approaches for malaria patients.


Subject(s)
Antimalarials/therapeutic use , Computational Biology/methods , Gene Expression Regulation , Malaria, Falciparum/drug therapy , Malaria, Falciparum/genetics , Child , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans
4.
Eur J Case Rep Intern Med ; 7(12): 002007, 2020.
Article in English | MEDLINE | ID: covidwho-976589

ABSTRACT

Coronavirus infection, known as COVID-19, is characterized by clinical, epidemiological and biological features similar to those of malaria. In each case, fever, myalgia, fatigue, headaches and gastrointestinal symptoms may be present. Both diseases can also induce a cytokine storm and pro-coagulant states. An appropriate epidemiological approach and differential diagnosis are very important so that the right clinical intervention can be selected. Malaria remains a serious global public health issue, especially in endemic countries. Elimination campaigns are helping to control the disease, but in many countries these programs are now at risk of failure due to logistic and economic problems caused by COVID-19. The authors describe the case of a patient with co-infection with malaria and COVID-19, reminding us that during this coronavirus pandemic it is critical to consider other diagnoses, particularly in people traveling between countries. LEARNING POINTS: As far as we know, this is one of the first case reports of co-infection with COVID-19 and Plasmodium falciparum malaria.It is important to be aware of the clinical challenges of diagnosing the cause of fever in returned travellers.

5.
Front Immunol ; 11: 1870, 2020.
Article in English | MEDLINE | ID: covidwho-776203

ABSTRACT

Coronavirus disease 2019 (COVID-19) which is caused by the novel SARS-CoV-2 virus is a severe flu-like illness which is associated with hyperinflammation and immune dysfunction. The virus induces a strong T and B cell response but little is known about the immune pathology of this viral infection. Acute Plasmodium falciparum malaria also causes acute clinical illness and is characterized by hyperinflammation due to the strong production of pro-inflammatory cytokines and a massive activation of T cells. In malaria, T cells express a variety of co-inhibitory receptors which might be a consequence of their activation but also might limit their overwhelming function. Thus, T cells are implicated in protection as well as in pathology. The outcome of malaria is thought to be a consequence of the balance between co-activation and co-inhibition of T cells. Following the hypothesis that T cells in COVID-19 might have a similar, dual function, we comprehensively characterized the differentiation (CCR7, CD45RO) and activation status (HLA-DR, CD38, CD69, CD226), the co-expression of co-inhibitory molecules (PD1, TIM-3, LAG-3, BTLA, TIGIT), as well as the expression pattern of the transcription factors T-bet and eomes of CD8+ and CD4+ T cells of PBMC of n = 20 SARS-CoV-2 patients compared to n = 10 P. falciparum infected patients and n = 13 healthy controls. Overall, acute COVID-19 and malaria infection resulted in a comparably elevated activation and altered differentiation status of the CD8+ and CD4+ T cell populations. T effector cells of COVID-19 and malaria patients showed higher frequencies of the inhibitory receptors T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte-activation gene-3 (LAG-3) which was linked to increased activation levels and an upregulation of the transcription factors T-bet and eomes. COVID-19 patients with a more severe disease course showed higher levels of LAG-3 and TIM-3 than patients with a mild disease course. During recovery, a rapid normalization of these inhibitory receptors could be observed. In summary, comparing the expression of different co-inhibitory molecules in CD8+ and CD4+ T cells in COVID-19 vs. malaria, there is a transient increase of the expression of certain inhibitory receptors like LAG-3 and TIM-3 in COVID-19 in the overall context of acute immune activation.


Subject(s)
Antigens, CD/metabolism , Betacoronavirus/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Hepatitis A Virus Cellular Receptor 2/metabolism , Lymphocyte Activation/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/isolation & purification , Pneumonia, Viral/immunology , Receptors, Antigen, T-Cell/metabolism , Acute Disease , Adult , Aged , COVID-19 , Cells, Cultured , Cohort Studies , Coronavirus Infections/virology , Female , Humans , Malaria, Falciparum/parasitology , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2 , Severity of Illness Index
6.
Molecules ; 25(7)2020 Mar 27.
Article in English | MEDLINE | ID: covidwho-326826

ABSTRACT

Malaria is a life-threatening disease and, what is more, the resistance to available antimalarial drugs is a recurring problem. The resistance of Plasmodium falciparum malaria parasites to previous generations of medicines has undermined malaria control efforts and reversed gains in child survival. This paper describes a continuation of our ongoing efforts to investigate the effects against Plasmodium falciparum strains and human microvascular endothelial cells (HMEC-1) of a series of methoxy p-benzyl-substituted thiazinoquinones designed starting from a pointed antimalarial lead candidate. The data obtained from the newly tested compounds expanded the structure-activity relationships (SARs) of the thiazinoquinone scaffold, indicating that antiplasmodial activity is not affected by the inductive effect but rather by the resonance effect of the introduced group at the para position of the benzyl substituent. Indeed, the current survey was based on the evaluation of antiparasitic usefulness as well as the selectivity on mammalian cells of the tested p-benzyl-substituted thiazinoquinones, upgrading the knowledge about the active thiazinoquinone scaffold.


Subject(s)
Antimalarials/pharmacology , Endothelial Cells/drug effects , Malaria/drug therapy , Plasmodium falciparum/drug effects , Quinones/chemistry , Quinones/pharmacology , Endothelial Cells/parasitology , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Quinones/chemical synthesis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL