Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Lancet Microbe ; 1(7): e290-e299, 2020 11.
Article in English | MEDLINE | ID: covidwho-1087376

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets multiple organs and causes severe coagulopathy. Histopathological organ changes might not only be attributable to a direct virus-induced effect, but also the immune response. The aims of this study were to assess the duration of viral presence, identify the extent of inflammatory response, and investigate the underlying cause of coagulopathy. METHODS: This prospective autopsy cohort study was done at Amsterdam University Medical Centers (UMC), the Netherlands. With informed consent from relatives, full body autopsy was done on 21 patients with COVID-19 for whom autopsy was requested between March 9 and May 18, 2020. In addition to histopathological evaluation of organ damage, the presence of SARS-CoV-2 nucleocapsid protein and the composition of the immune infiltrate and thrombi were assessed, and all were linked to disease course. FINDINGS: Our cohort (n=21) included 16 (76%) men, and median age was 68 years (range 41-78). Median disease course (time from onset of symptoms to death) was 22 days (range 5-44 days). In 11 patients tested for SARS-CoV-2 tropism, SARS-CoV-2 infected cells were present in multiple organs, most abundantly in the lungs, but presence in the lungs became sporadic with increased disease course. Other SARS-CoV-2-positive organs included the upper respiratory tract, heart, kidneys, and gastrointestinal tract. In histological analyses of organs (sampled from nine to 21 patients per organ), an extensive inflammatory response was present in the lungs, heart, liver, kidneys, and brain. In the brain, extensive inflammation was seen in the olfactory bulbs and medulla oblongata. Thrombi and neutrophilic plugs were present in the lungs, heart, kidneys, liver, spleen, and brain and were most frequently observed late in the disease course (15 patients with thrombi, median disease course 22 days [5-44]; ten patients with neutrophilic plugs, 21 days [5-44]). Neutrophilic plugs were observed in two forms: solely composed of neutrophils with neutrophil extracellular traps (NETs), or as aggregates of NETs and platelets.. INTERPRETATION: In patients with lethal COVID-19, an extensive systemic inflammatory response was present, with a continued presence of neutrophils and NETs. However, SARS-CoV-2-infected cells were only sporadically present at late stages of COVID-19. This suggests a maladaptive immune response and substantiates the evidence for immunomodulation as a target in the treatment of severe COVID-19. FUNDING: Amsterdam UMC Corona Research Fund.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Thrombosis , Adult , Aged , Autopsy , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2
2.
Autoimmun Rev ; 20(4): 102792, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1086776

ABSTRACT

Autoimmunity may be generated by a variety of factors by creating a hyper-stimulated state of the immune system. It had been established long ago that viruses are a substantial component of environmental factors that contribute to the production of autoimmune antibodies, as well as autoimmune diseases. Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) are viruses that withhold these autoimmune abilities. In a similar manner, SARS-CoV-2 may be counted to similar manifestations, as numerous records demonstrating the likelihood of COVID-19 patients to develop multiple types of autoantibodies and autoimmune diseases. In this review, we focused on the association between COVID-19 and the immune system concerning the tendency of patients to develop over 15 separate types of autoantibodies and above 10 distinct autoimmune diseases. An additional autoimmunity manifestation may be one of the common initial symptoms in COVID-19 patients, anosmia, the complete loss of the ability to sense smell, and other olfactory alterations. We summarize current knowledge on principal mechanisms that may contribute to the development of autoimmunity in the disease: the ability of SARS-CoV-2 to hyper-stimulate the immune system, induce excessive neutrophil extracellular traps formation with neutrophil-associated cytokine responses and the molecular resemblance between self-components of the host and the virus. Additionally, we will examine COVID-19 potential risk on the new-onsets of autoimmune diseases, such as antiphospholipid syndrome, Guillain-Barré syndrome, Kawasaki disease and numerous others. It is of great importance to recognize those autoimmune manifestations of COVID-19 in order to properly cope with their outcomes in the ongoing pandemic and the long-term post-pandemic period. Lastly, an effective vaccine against SARS-CoV-2 may be the best solution in dealing with the ongoing pandemic. We will discuss the new messenger RNA vaccination strategy with an emphasis on autoimmunity implications.


Subject(s)
Autoimmune Diseases , COVID-19 , Epstein-Barr Virus Infections , Autoimmunity , COVID-19 Vaccines , Herpesvirus 4, Human , Humans , SARS-CoV-2
3.
Cells ; 9(12)2020 12 12.
Article in English | MEDLINE | ID: covidwho-971834

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to an adaptive immune response in the host and the formation of anti-SARS-CoV-2 specific antibodies. While IgG responses against SARS-CoV-2 have been characterized quite well, less is known about IgA. IgA2 activates immune cells and induces inflammation and neutrophil extracellular trap (NET) formation which may contribute to organ injury and fatal outcome in SARS-CoV-2-infected patients. SARS-CoV-2 spike protein specific antibody levels were measured in plasma samples of 15 noninfected controls and 82 SARS-CoV-2-infected patients with no or mild symptoms, moderate symptoms (hospitalization) or severe disease (intensive care unit, ICU). Antibody levels were compared to levels of C-reactive protein (CRP) and circulating extracellular DNA (ecDNA) as markers for general inflammation and NET formation, respectively. While levels of SARS-CoV-2-specific IgG were similar in all patient groups, IgA2 antibodies were restricted to severe disease and showed the strongest discrimination between nonfatal and fatal outcome in patients with severe SARS-CoV-2 infection. While anti-SARS-CoV-2 IgG and IgA2 levels correlated with CRP levels in severely diseased patients, only anti-SARS-CoV-2 IgA2 correlated with ecDNA. These data suggest that the formation of anti-SARS-CoV-2 IgA2 during SARS-CoV-2 infection is a marker for more severe disease related to NET formation and poor outcome.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Extracellular Traps/immunology , Immunoglobulin A/blood , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Biomarkers/blood , C-Reactive Protein/immunology , COVID-19/epidemiology , Case-Control Studies , Cell-Free Nucleic Acids/blood , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index , Young Adult
4.
J Clin Med ; 9(9)2020 Sep 11.
Article in English | MEDLINE | ID: covidwho-892446

ABSTRACT

Understanding of the pathogenesis of the coronavirus disease-2019 (COVID-19) remains incomplete, particularly in respect to the multi-organ dysfunction it may cause. We were the first to report the analogous biological and physiological features of COVID-19 pathogenesis and the harmful amplification loop between inflammation and tissue damage induced by the dysregulation of neutrophil extracellular traps (NETs) formation. Given the rapid evolution of this disease, the nature of its symptoms, and its potential lethality, we hypothesize that COVID-19 progresses under just such an amplifier loop, leading to a massive, uncontrolled inflammation process. Here, we describe in-depth the correlations of COVID-19 symptoms and biological features with those where uncontrolled NET formation is implicated in various sterile or infectious diseases. General clinical conditions, as well as numerous pathological and biological features, are analogous with NETs deleterious effects. Among NETs by-products implicated in COVID-19 pathogenesis, one of the most significant appears to be elastase, in accelerating virus entry and inducing hypertension, thrombosis and vasculitis. We postulate that severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) may evade innate immune response, causing uncontrolled NETs formation and multi-organ failure. In addition, we point to indicators that NETS-associated diseases are COVID-19 risk factors. Acknowledging that neutrophils are the principal origin of extracellular and circulating DNA release, we nonetheless, explain why targeting NETs rather than neutrophils themselves may in practice be a better strategy. This paper also offers an in-depth review of NET formation, function and pathogenic dysregulation, as well as of current and prospective future therapies to control NETopathies. As such, it enables us also to suggest new therapeutic strategies to fight COVID-19. In combination with or independent of the latest tested approaches, we propose the evaluation, in the short term, of treatments with DNase-1, with the anti-diabetic Metformin, or with drugs targeting elastase (i.e., Silvelestat). With a longer perspective, we also advocate a significant increase in research on the development of toll-like receptors (TLR) and C-type lectin-like receptors (CLEC) inhibitors, NET-inhibitory peptides, and on anti-IL-26 therapies.

SELECTION OF CITATIONS
SEARCH DETAIL