Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nat Commun ; 12(1): 502, 2021 01 21.
Article in English | MEDLINE | ID: covidwho-1387327

ABSTRACT

The multifunctional nucleocapsid (N) protein in SARS-CoV-2 binds the ~30 kb viral RNA genome to aid its packaging into the 80-90 nm membrane-enveloped virion. The N protein is composed of N-terminal RNA-binding and C-terminal dimerization domains that are flanked by three intrinsically disordered regions. Here we demonstrate that the N protein's central disordered domain drives phase separation with RNA, and that phosphorylation of an adjacent serine/arginine rich region modulates the physical properties of the resulting condensates. In cells, N forms condensates that recruit the stress granule protein G3BP1, highlighting a potential role for N in G3BP1 sequestration and stress granule inhibition. The SARS-CoV-2 membrane (M) protein independently induces N protein phase separation, and three-component mixtures of N + M + RNA form condensates with mutually exclusive compartments containing N + M or N + RNA, including annular structures in which the M protein coats the outside of an N + RNA condensate. These findings support a model in which phase separation of the SARS-CoV-2 N protein contributes both to suppression of the G3BP1-dependent host immune response and to packaging genomic RNA during virion assembly.


Subject(s)
COVID-19/virology , Coronavirus Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Viral Matrix Proteins/metabolism , COVID-19/genetics , COVID-19/metabolism , Cell Membrane/virology , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , Humans , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Binding , Protein Domains , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics
2.
J Biomol Struct Dyn ; 39(12): 4243-4255, 2021 08.
Article in English | MEDLINE | ID: covidwho-1317834

ABSTRACT

Recent outbreak of novel Coronavirus disease () pandemic around the world is associated with severe acute respiratory syndrome. The death toll associated with the pandemic is increasing day by day. SARS-CoV-2 is an enveloped virus and its N terminal domain (NTD) of Nucleocapsid protein (N protein) binds to the viral (+) sense RNA and results in virus ribonucleoprotien complex, essential for the virus replication. The N protein is composed of a serine-rich linker region sandwiched between NTD and C terminal (CTD). These terminals play a role in viral entry and its processing post entry. The NTD of SARS-CoV-2 N protein forms orthorhombic crystals and binds to the viral genome. Therefore, there is always a quest to target RNA binding domain of nucleocapsid phosphoprotein (NTD-N-protein which in turn may help in controlling diseases caused by SARS-CoV-2 in humans. The role of Chloroquine and Hydroxychloroquine as potential treatments for is still under debate globally because of some side effects associated with it. This study involves the In silico interactions of Chloroquine and Hydroxychloroquine with the NTD-N-protein of SARS-CoV-2. With the help of various computational methods, we have explored the potential role of both of these antiviral drugs for the treatment of patients by comparing the efficacy of both of the drugs to bind to NTD-N-protein. In our research Hydroxychloroquine exhibited potential inhibitory effects of NTD-N-protein with binding energy -7.28 kcal/mol than Chloroquine (-6.30 kcal/mol) at SARS-CoV-2 receptor recognition of susceptible cells. The outcomes of this research strongly appeal for in vivo trials of Hydroxychloroquine for the patients infected with . Furthermore, the recommended doses of Hydroxychloroquine may reduce the chances of catching to the healthcare workers and staff who are in contact with or delivering direct care to coronavirus patients as long as they have not been diagnosed with . We further hypothesize that the comparative NTD-N-protein -drug docking interactions may help to understand the comparative efficacy of other candidate repurposing drugs until discovery of a proper vaccine.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Hydroxychloroquine , Antiviral Agents/pharmacology , COVID-19/drug therapy , Chloroquine/pharmacology , Computer Simulation , Drug Repositioning , Humans , Hydroxychloroquine/pharmacology , Nucleocapsid , Nucleocapsid Proteins , RNA-Binding Motifs , SARS-CoV-2
3.
J Med Virol ; 93(4): 2406-2419, 2021 04.
Article in English | MEDLINE | ID: covidwho-1227754

ABSTRACT

The analyses of 2325 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genomes revealed 107, 162, and 65 nucleotide substitutions in the coding region of SARS-CoV-2 from the three continents America, Europe, and Asia, respectively. Of these nucleotide substitutions 58, 94, and 37 were nonsynonymous types mostly present in the Nsp2, Nsp3, Spike, and ORF9. A continent-specific phylogram analyses clustered the SARS-CoV-2 in the different group based on the frequency of nucleotide substitutions. Detailed analyses about the continent-specific amino acid changes and their effectiveness by SNAP2 software was investigated. We found 11 common nonsynonymous mutations; among them, two novel effective mutations were identified in ORF9 (S194L and S202N). Intriguingly, ORF9 encodes nucleocapsid phosphoprotein possessing many effective mutations across continents and could be a potential candidate after the spike protein for studying the role of mutation in viral assembly and pathogenesis. Among the two forms of certain frequent mutation, one form is more prevalent in Europe continents (Nsp12:L314, Nsp13:P504, Nsp13:Y541, Spike:G614, and ORF8:L84) while other forms are more prevalent in American (Nsp12:P314, Nsp13:L504, Nsp13:C541, Spike:D614, and ORF8:L84) and Asian continents (Spike:D614), indicating the spatial and temporal dynamics of SARS-CoV-2. We identified highly conserved 38 regions and among these regions, 11 siRNAs were predicted on stringent criteria that can be used to suppress the expression of viral genes and the corresponding reduction of human viral infections. The present investigation provides information on different mutations and will pave the way for differentiating strains based on virulence and their use in the development of better antiviral therapy.


Subject(s)
COVID-19/virology , Mutation , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Asia/epidemiology , COVID-19/drug therapy , COVID-19/epidemiology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Papain-Like Proteases/genetics , Europe/epidemiology , Gene Silencing , Genes, Viral , Genome, Viral , Humans , Open Reading Frames , Phosphoproteins/genetics , Phylogeny , RNA, Small Interfering/genetics , SARS-CoV-2/classification , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics
4.
Pathogens ; 10(3)2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1154465

ABSTRACT

Here we describe the first molecular test developed in the early stage of the pandemic to diagnose the first cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Sardinian patients in February-March 2020, when diagnostic certified methodology had not yet been adopted by clinical microbiology laboratories. The "Caterina assay" is a SYBR®Green real-time reverse-transcription polymerase chain reaction (rRT-PCR), designed to detect the nucleocapsid phosphoprotein (N) gene that exhibits high discriminative variation RNA sequence among bat and human coronaviruses. The molecular method was applied to detect SARS-CoV-2 in nasal swabs collected from 2110 suspected cases. The study article describes the first molecular test developed in the early stage of the declared pandemic to identify the coronavirus disease 2019 (COVID-19) in Sardinian patients in February-March 2020, when a diagnostic certified methodology had not yet been adopted by clinical microbiology laboratories. The assay presented high specificity and sensitivity (with a detection limit ≥50 viral genomes/µL). No false-positives were detected, as confirmed by the comparison with two certified commercial kits. Although other validated molecular methods are currently in use, the Caterina assay still represents a valid and low-cost detection procedure that could be applied in countries with limited economic resources.

5.
Pathogens ; 10(3)2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1125099

ABSTRACT

Here we describe the first molecular test developed in the early stage of the pandemic to diagnose the first cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Sardinian patients in February-March 2020, when diagnostic certified methodology had not yet been adopted by clinical microbiology laboratories. The "Caterina assay" is a SYBR®Green real-time reverse-transcription polymerase chain reaction (rRT-PCR), designed to detect the nucleocapsid phosphoprotein (N) gene that exhibits high discriminative variation RNA sequence among bat and human coronaviruses. The molecular method was applied to detect SARS-CoV-2 in nasal swabs collected from 2110 suspected cases. The study article describes the first molecular test developed in the early stage of the declared pandemic to identify the coronavirus disease 2019 (COVID-19) in Sardinian patients in February-March 2020, when a diagnostic certified methodology had not yet been adopted by clinical microbiology laboratories. The assay presented high specificity and sensitivity (with a detection limit ≥50 viral genomes/µL). No false-positives were detected, as confirmed by the comparison with two certified commercial kits. Although other validated molecular methods are currently in use, the Caterina assay still represents a valid and low-cost detection procedure that could be applied in countries with limited economic resources.

6.
J Biomol Struct Dyn ; : 1-26, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-1081511

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the most cryptic pandemic outbreak of the 21st century, has gripped more than 1.8 million people to death and infected almost eighty six million. As it is a new variant of SARS, there is no approved drug or vaccine available against this virus. This study aims to predict some promising cytotoxic T lymphocyte epitopes in the SARS-CoV-2 proteome utilizing immunoinformatic approaches. Firstly, we identified 21 epitopes from 7 different proteins of SARS-CoV-2 inducing immune response and checked for allergenicity and conservancy. Based on these factors, we selected the top three epitopes, namely KAYNVTQAF, ATSRTLSYY, and LTALRLCAY showing functional interactions with the maximum number of MHC alleles and no allergenicity. Secondly, the 3D model of selected epitopes and HLA-A*29:02 were built and Molecular Docking simulation was performed. Most interestingly, the best two epitopes predicted by docking are part of two different structural proteins of SARS-CoV-2, namely Membrane Glycoprotein (ATSRTLSYY) and Nucleocapsid Phosphoprotein (KAYNVTQAF), which are generally target of choice for vaccine designing. Upon Molecular Docking, interactions between selected epitopes and HLA-A*29:02 were further validated by 50 ns Molecular Dynamics (MD) simulation. Analysis of RMSD, Rg, SASA, number of hydrogen bonds, RMSF, MM-PBSA, PCA, and DCCM from MD suggested that ATSRTLSYY is the most stable and promising epitope than KAYNVTQAF epitope. Moreover, we also identified B-cell epitopes for each of the antigenic proteins of SARS CoV-2. Findings of our work will be a good resource for wet lab experiments and will lessen the timeline for vaccine construction.Communicated by Ramaswamy H. Sarma.

7.
Arch Microbiol ; 203(1): 59-66, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1064447

ABSTRACT

Severe acute respiratory syndrome virus 2 (SARS-CoV-2) belongs to the single-stranded positive-sense RNA family. The virus contains a large genome that encodes four structural proteins, small envelope (E), matrix (M), nucleocapsid phosphoprotein (N), spike (S), and 16 nonstructural proteins (nsp1-16) that together, ensure replication of the virus in the host cell. Among these proteins, the interactions of N and Nsp3 are essential that links the viral genome for processing. The N proteins reside at CoV RNA synthesis sites known as the replication-transcription complexes (RTCs). The N-terminal of N has RNA-binding domain (N-NTD), capturing the RNA genome while the C-terminal domain (N-CTD) anchors the viral Nsp3, a component of RTCs. Although the structural information has been recently released, the residues involved in contacts between N-CTD with Nsp3 are still unknown. To find the residues involved in interactions between two proteins, three-dimensional structures of both proteins were retrieved and docked using HADDOCK. Residues at N-CTD were detected in interaction with L499, R500, K501, V502, P503, T504, D505, N506, Y507, I508, T509, K529, K530K532, S533 of Nsp3 and N-NTD to synthesize SARS-CoV-2 RNA. The interaction between Nsp3 and CTD of N protein may be a potential drug target. The current study provides information for better understanding the interaction between N protein and Nsp3 that could be a possible target for future inhibitors.


Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Papain-Like Proteases/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , COVID-19/drug therapy , Computer Simulation , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Papain-Like Proteases/genetics , Crystallography, X-Ray , Drug Design , Genome, Viral , Humans , Molecular Docking Simulation , Nucleocapsid/metabolism , Protein Binding/physiology , RNA-Binding Proteins/metabolism , Viral Nonstructural Proteins/genetics
8.
Gene Rep ; 21: 100886, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023577

ABSTRACT

Since December 2019, a severe pandemic of pneumonia, COVID-19 associated with a novel coronavirus (SARS-CoV-2), have emerged in Wuhan, China and spreading throughout the world. As RNA viruses have a high mutation rate therefore we wanted to identify whether this virus is also prone to mutations. For this reason we selected four major structural (Spike protein (S), Envelope protein (E), Membrane glycoprotein (M), Nucleocapsid phosphoprotein (N)) and ORF8 protein of 100 different SARS-CoV-2 isolates of fifteen countries from NCBI database and compared these to the reference sequence, Wuhan NC_045512.2, which was the first isolate of SARS-CoV-2 that was sequenced. By multiple sequence alignment of amino acids, we observed substitutions and deletion in S protein at 13 different sites in the isolates of five countries (China, USA, Finland, India and Australia) as compared to the reference sequence. Similarly, alignment of N protein revealed substitutions at three different sites in isolates of China, Spain and Japan. M protein exhibits substitution only in one isolates from USA, however, no mutation was observed in E protein of any isolate. Interestingly, in ORF8 substitution of Leucine, a nonpolar to Serine a polar amino acid at same position (aa84 L to S) in 23 isolates of five countries i.e. China, USA, Spain, Taiwan and India were observed, which may affect the conformation of peptides. Thus, we observed several mutations in the isolates thereafter the first sequencing of SARS-CoV-2 isolate, NC_045512.2, which suggested that this virus might be a threat to the whole world and therefore further studies are needed to characterize how these mutations in different proteins affect the functionality and pathogenesis of SARS-CoV-2.

9.
PeerJ ; 9: e10666, 2021.
Article in English | MEDLINE | ID: covidwho-1006829

ABSTRACT

SARS-CoV-2 genome encodes four structural proteins that include the spike glycoprotein, membrane protein, envelope protein and nucleocapsid phosphoprotein (N-protein). The N-protein interacts with viral genomic RNA and helps in packaging. As SARS-CoV-2 spread to almost all countries worldwide within 2-3 months, it also acquired mutations in its RNA genome. Therefore, this study was conducted with an aim to identify the variations present in N-protein of SARS-CoV-2. Here, we analysed 4,163 reported sequence of N-protein from United States of America (USA) and compared them with the first reported sequence from Wuhan, China. Our study identified 107 mutations that reside all over the N-protein. Further, we show the high rate of mutations in intrinsically disordered regions (IDRs) of N-protein. Our study show 45% residues of IDR2 harbour mutations. The RNA-binding domain (RBD) and dimerization domain of N-protein also have mutations at key residues. We further measured the effect of these mutations on N-protein stability and dynamicity and our data reveals that multiple mutations can cause considerable alterations. Altogether, our data strongly suggests that N-protein is one of the mutational hotspot proteins of SARS-CoV-2 that is changing rapidly and these mutations can potentially interferes with various aspects of N-protein functions including its interaction with RNA, oligomerization and signalling events.

10.
Exp Eye Res ; 203: 108433, 2021 02.
Article in English | MEDLINE | ID: covidwho-1002524

ABSTRACT

Although severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection have emerged globally, findings related to ocular involvement and reported cases are quite limited. Immune reactions against viral infections are closely related to viral and host proteins sequence similarity. Molecular Mimicry has been described for many different viruses; sequence similarities of viral and human tissue proteins may trigger autoimmune reactions after viral infections due to similarities between viral and human structures. With this study, we aimed to investigate the protein sequence similarity of SARS CoV-2 with retinal proteins and retinal pigment epithelium (RPE) surface proteins. Retinal proteins involved in autoimmune retinopathy and retinal pigment epithelium surface transport proteins were analyzed in order to infer their structural similarity to surface glycoprotein (S), nucleocapsid phosphoprotein (N), membrane glycoprotein (M), envelope protein (E), ORF1ab polyprotein (orf1ab) proteins of SARS CoV-2. Protein similarity comparisons, 3D protein structure prediction, T cell epitopes-MHC binding prediction, B cell epitopes-MHC binding prediction and the evaluation of the antigenicity of peptides assessments were performed. The protein sequence analysis was made using the Pairwise Sequence Alignment and the LALIGN program. 3D protein structure estimates were made using Swiss Model with default settings and analyzed with TM-align web server. T-cell epitope identification was performed using the Immune Epitope Database and Analysis (IEDB) resource Tepitool. B cell epitopes based on sequence characteristics of the antigen was performed using amino acid scales and HMMs with the BepiPred 2.0 web server. The predicted peptides/epitopes in terms of antigenicity were examined using the default settings with the VaxiJen v2.0 server. Analyses showed that, there is a meaningful similarities between 6 retinal pigment epithelium surface transport proteins (MRP-4, MRP-5, RFC1, SNAT7, TAUT and MATE) and the SARS CoV-2 E protein. Immunoreactive epitopic sites of these proteins which are similar to protein E epitope can create an immune stimulation on T cytotoxic and T helper cells and 6 of these 9 epitopic sites are also vaxiJen. These result imply that autoimmune cross-reaction is likely between the studied RPE proteins and SARS CoV-2 E protein. The structure of SARS CoV-2, its proteins and immunologic reactions against these proteins remain largely unknown. Understanding the structure of SARS CoV-2 proteins and demonstration of similarity with human proteins are crucial to predict an autoimmune response associated with immunity against host proteins and its clinical manifestations as well as possible adverse effects of vaccination.


Subject(s)
Amino Acid Sequence , Autoimmune Diseases/virology , Eye Proteins/chemistry , Retinal Diseases/virology , SARS-CoV-2/chemistry , Sequence Homology , Viral Proteins/chemistry , COVID-19/epidemiology , Computational Biology , Coronavirus Envelope Proteins/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Eye Infections, Viral/virology , Humans , Membrane Glycoproteins/chemistry , Phosphoproteins/chemistry , Polyproteins/chemistry , Retinal Pigment Epithelium/chemistry , Viral Matrix Proteins/chemistry
11.
Genomics ; 113(1 Pt 1): 331-343, 2021 01.
Article in English | MEDLINE | ID: covidwho-972544

ABSTRACT

An outbreak, caused by an RNA virus, SARS-CoV-2 named COVID-19 has become pandemic with a magnitude which is daunting to all public health institutions in the absence of specific antiviral treatment. Surface glycoprotein and nucleocapsid phosphoprotein are two important proteins of this virus facilitating its entry into host cell and genome replication. Small interfering RNA (siRNA) is a prospective tool of the RNA interference (RNAi) pathway for the control of human viral infections by suppressing viral gene expression through hybridization and neutralization of target complementary mRNA. So, in this study, the power of RNA interference technology was harnessed to develop siRNA molecules against specific target genes namely, nucleocapsid phosphoprotein gene and surface glycoprotein gene. Conserved sequence from 139 SARS-CoV-2 strains from around the globe was collected to construct 78 siRNA that can inactivate nucleocapsid phosphoprotein and surface glycoprotein genes. Finally, based on GC content, free energy of folding, free energy of binding, melting temperature, efficacy prediction and molecular docking analysis, 8 siRNA molecules were selected which are proposed to exert the best action. These predicted siRNAs should effectively silence the genes of SARS-CoV-2 during siRNA mediated treatment assisting in the response against SARS-CoV-2.


Subject(s)
COVID-19/therapy , Computational Chemistry , Coronavirus Nucleocapsid Proteins/genetics , Drug Design , Genetic Therapy/methods , Molecular Docking Simulation , RNA Interference , RNA, Messenger/antagonists & inhibitors , RNA, Small Interfering/chemistry , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Base Composition , COVID-19/drug therapy , COVID-19/virology , Evolution, Molecular , Gene Expression Regulation, Viral/drug effects , Humans , Pandemics , Phosphoproteins/genetics , Phylogeny , RNA Folding , RNA, Guide/chemistry , RNA, Guide/genetics , RNA, Messenger/genetics , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , RNA, Viral/genetics , SARS-CoV-2/drug effects , Sequence Alignment , Thermodynamics
12.
J Proteome Res ; 19(11): 4393-4397, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960279

ABSTRACT

The detection of viral RNA by polymerase chain reaction (PCR) is currently the main diagnostic tool for COVID-19 ( Eurosurveillance 2019, 25 (3), 1). The PCR-based test, however, shows limited sensitivity, especially in the early and late stages of disease development ( Nature 2020, 581, 465-469; J. Formosan Med. Assoc. 2020, 119 (6) 1123), and is relatively time-consuming. Fast and reliable complementary methods for detecting the viral infection would be of help in the current pandemic conditions. Mass spectrometry is one of such possibilities. We have developed a mass-spectrometry-based method for the detection of the SARS CoV-2 virus in nasopharynx epithelial swabs based on the detection of the viral nucleocapsid N protein. Our approach shows confident identification of the N protein in patient samples, even those with the lowest viral loads, and a much simpler preparation procedure. Our main protocol consists of virus inactivation by heating and the addition of isopropanol and tryptic digestion of the proteins sedimented from the swabs followed by MS analysis. A set of unique peptides, produced as a result of proteolysis of the nucleocapsid phosphoprotein of SARS-CoV-2, is detected. The obtained results can further be used to create fast parallel mass-spectrometric approaches for the detection of the virus in the nasopharyngeal mucosa, saliva, sputum and other physiological fluids.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Mass Spectrometry/methods , Nasopharynx/virology , Nucleocapsid Proteins/analysis , Pneumonia, Viral/diagnosis , Betacoronavirus/chemistry , COVID-19 , COVID-19 Testing , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Humans , Nasal Mucosa/virology , Pandemics , Peptide Fragments/analysis , Peptide Fragments/chemistry , Phosphoproteins , Pneumonia, Viral/virology , Proteomics , SARS-CoV-2 , Viral Load
13.
ACS Nano ; 2020 Oct 20.
Article in English | MEDLINE | ID: covidwho-880666

ABSTRACT

A large-scale diagnosis of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is essential to downregulate its spread within as well as across communities and mitigate the current outbreak of the pandemic novel coronavirus disease 2019 (COVID-19). Herein, we report the development of a rapid (less than 5 min), low-cost, easy-to-implement, and quantitative paper-based electrochemical sensor chip to enable the digital detection of SARS-CoV-2 genetic material. The biosensor uses gold nanoparticles (AuNPs), capped with highly specific antisense oligonucleotides (ssDNA) targeting viral nucleocapsid phosphoprotein (N-gene). The sensing probes are immobilized on a paper-based electrochemical platform to yield a nucleic-acid-testing device with a readout that can be recorded with a simple hand-held reader. The biosensor chip has been tested using samples collected from Vero cells infected with SARS-CoV-2 virus and clinical samples. The sensor provides a significant improvement in output signal only in the presence of its target-SARS-CoV-2 RNA-within less than 5 min of incubation time, with a sensitivity of 231 (copies µL-1)-1 and limit of detection of 6.9 copies/µL without the need for any further amplification. The sensor chip performance has been tested using clinical samples from 22 COVID-19 positive patients and 26 healthy asymptomatic subjects confirmed using the FDA-approved RT-PCR COVID-19 diagnostic kit. The sensor successfully distinguishes the positive COVID-19 samples from the negative ones with almost 100% accuracy, sensitivity, and specificity and exhibits an insignificant change in output signal for the samples lacking a SARS-CoV-2 viral target segment (e.g., SARS-CoV, MERS-CoV, or negative COVID-19 samples collected from healthy subjects). The feasibility of the sensor even during the genomic mutation of the virus is also ensured from the design of the ssDNA-conjugated AuNPs that simultaneously target two separate regions of the same SARS-CoV-2 N-gene.

14.
J Biomol Struct Dyn ; 39(18): 7017-7034, 2021 11.
Article in English | MEDLINE | ID: covidwho-733453

ABSTRACT

Currently, there is no specific treatment to cure COVID-19. Many medicinal plants have antiviral, antioxidant, antibacterial, antifungal, anticancer, wound healing etc. Therefore, the aim of the current study was to screen for potent inhibitors of N-terminal domain (NTD) of nucleocapsid phosphoprotein of SARS-CoV-2. The structure of NTD of RNA binding domain of nucleocapsid phosphoprotein of SARS coronavirus 2 was retrieved from the Protein Data Bank (PDB 6VYO) and the structures of 100 different phytocompounds were retrieved from Pubchem. The receptor protein and ligands were prepared using Schrodinger's Protein Preparation Wizard. Molecular docking was done by using the Schrodinger's maestro 12.0 software. Drug likeness and toxicity of active phytocompounds was predicted by using Swiss adme, admetSAR and protox II online servers. Molecular dynamic simulation of the best three protein- ligand complexes (alizarin, aloe-emodin and anthrarufin) was performed to study the interaction stability. We have identified three potential active sites (named as A, B, C) on receptor protein for efficient binding of the phytocompounds. We found that, among 100 phytocompounds, emodin, aloe-emodin, anthrarufin, alizarine, and dantron of Rheum emodi showed good binding affinity at all the three active sites of RNA binding domain of nucleocapsid phosphoprotein of COVID-19.The binding energies of emodin, aloe-emodin, anthrarufin, alizarine, and dantron were -8.299, -8.508, -8.456, -8.441, and -8.322 Kcal mol-1 respectively (site A), -7.714, -6.433, -6.354, -6.598, and -6.99 Kcal mol-1 respectively (site B), and -8.299, 8.508, 8.538, 8.841, and 8.322 Kcal mol-1 respectively (site C). All the active phytocompounds follows the drug likeness properties, non-carcinogenic, and non-toxic. Theses phytocompounds (alone or in combination) could be developed into effective therapy against COVID-19. From MD simulation data, we found that all three complexes of 6VYO with alizarin, aloe-emodin and anthrarufin were stable up to 50 ns. These phytocompounds can be tested further for in vitro or in vivo and used as a potential drug to cure SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Plants, Medicinal , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphoproteins
15.
ACS Nano ; 14(6): 7617-7627, 2020 06 23.
Article in English | MEDLINE | ID: covidwho-647565

ABSTRACT

The current outbreak of the pandemic coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) demands its rapid, convenient, and large-scale diagnosis to downregulate its spread within as well as across the communities. But the reliability, reproducibility, and selectivity of majority of such diagnostic tests fail when they are tested either to a viral load at its early representation or to a viral gene mutated during its current spread. In this regard, a selective "naked-eye" detection of SARS-CoV-2 is highly desirable, which can be tested without accessing any advanced instrumental techniques. We herein report the development of a colorimetric assay based on gold nanoparticles (AuNPs), when capped with suitably designed thiol-modified antisense oligonucleotides (ASOs) specific for N-gene (nucleocapsid phosphoprotein) of SARS-CoV-2, could be used for diagnosing positive COVID-19 cases within 10 min from the isolated RNA samples. The thiol-modified ASO-capped AuNPs agglomerate selectively in the presence of its target RNA sequence of SARS-CoV-2 and demonstrate a change in its surface plasmon resonance. Further, the addition of RNaseH cleaves the RNA strand from the RNA-DNA hybrid leading to a visually detectable precipitate from the solution mediated by the additional agglomeration among the AuNPs. The selectivity of the assay has been monitored in the presence of MERS-CoV viral RNA with a limit of detection of 0.18 ng/µL of RNA having SARS-CoV-2 viral load. Thus, the current study reports a selective and visual "naked-eye" detection of COVID-19 causative virus, SARS-CoV-2, without the requirement of any sophisticated instrumental techniques.


Subject(s)
Betacoronavirus/genetics , Biosensing Techniques/methods , Coronavirus Infections/diagnosis , Metal Nanoparticles , Nucleocapsid Proteins/genetics , Oligonucleotides, Antisense/genetics , Pneumonia, Viral/diagnosis , Base Sequence , Betacoronavirus/isolation & purification , COVID-19 , Colorimetry/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Genes, Viral , Gold , Humans , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Nanotechnology/methods , Pandemics , Phosphoproteins , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , RNA Caps/genetics , RNA, Viral/genetics , SARS-CoV-2 , Surface Plasmon Resonance/methods
16.
Med Hypotheses ; 144: 110030, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-612684

ABSTRACT

Novel Coronavirus (SARS CoV-2), the etiological agent for the highly contagious Corona virus disease-2019 (COVID-19) pandemic has threatened global health and economy infecting around 5.8 million people and causing over 359,200 deaths (as of 28th May 2020, https://www.worldometers.info/coronavirus/). The clinical manifestations of infected patients generally range from asymptomatic or mild to severe illness, or even death. The ability of the virus to evade the host immune response have been major reasons for high morbidity and mortality. One of the important clinical observations under conditions of critical illness show increased risk of developing disseminated intravascular coagulation. Molecular mechanisms of how SARS CoV-2 induces such conditions still remain unclear. This report describes the presence of two unique motifs in the SARS CoV-2 nucleocapsid phosphoprotein (N-protein) that can potentially interact with fibrinogen and possibly prothrombin. This is based on an established function of secretory proteins in Staphylococcus aureus (S. aureus)-coagulase, Efb (Extracellular fibrinogen binding) and vWBP (von Willebrand factor Binding Protein), which are known to regulate the blood clotting cascade and the functions of host immune response. It is hypothesized that having protein interaction motifs that are homologous to these S. aureus proteins, the N-protein of this virus can mimic their functions, which may in turn play a crucial role in formation of blood clots in the host and help the virus evade host immune response. However, this hypothesis needs to be tested in vitro. Considering the overwhelming increase in the incidence of SARS CoV-2 infection globally, this information may be useful for further investigation and could help in deducing new therapeutic strategies to combat advanced stages of this disease.


Subject(s)
Bacterial Proteins/chemistry , COVID-19/virology , Coronavirus Nucleocapsid Proteins/chemistry , Fibrinogen/chemistry , Host-Pathogen Interactions/immunology , SARS-CoV-2 , Amino Acid Motifs , COVID-19/metabolism , Humans , Immune System , Models, Theoretical , Peptides/chemistry , Phosphoproteins/chemistry , Protein Binding , Protein Domains , Staphylococcus aureus/enzymology , von Willebrand Factor/chemistry
17.
Arch Med Sci ; 16(3): 497-507, 2020.
Article in English | MEDLINE | ID: covidwho-251207

ABSTRACT

INTRODUCTION: The SARS-CoV-2 (previously 2019-nCoV) outbreak in Wuhan, China and other parts of the world affects people and spreads coronavirus disease 2019 (COVID-19) through human-to-human contact, with a mortality rate of > 2%. There are no approved drugs or vaccines yet available against SARS-CoV-2. MATERIAL AND METHODS: State-of-the-art tools based on in-silico methods are a cost-effective initial approach for identifying appropriate ligands against SARS-CoV-2. The present study developed the 3D structure of the envelope and nucleocapsid phosphoprotein of SARS-CoV-2, and molecular docking analysis was done against various ligands. RESULTS: The highest log octanol/water partition coefficient, high number of hydrogen bond donors and acceptors, lowest non-bonded interaction energy between the receptor and the ligand, and high binding affinity were considered for the best ligand for the envelope (mycophenolic acid: log P = 3.00; DG = -10.2567 kcal/mol; pKi = 7.713 µM) and nucleocapsid phosphoprotein (1-[(2,4-dichlorophenyl)methyl]pyrazole-3,5-dicarboxylic acid: log P = 2.901; DG = -12.2112 kcal/mol; pKi = 7.885 µM) of SARS-CoV-2. CONCLUSIONS: The study identifies the most potent compounds against the SARS-CoV-2 envelope and nucleocapsid phosphoprotein through state-of-the-art tools based on an in-silico approach. A combination of these two ligands could be the best option to consider for further detailed studies to develop a drug for treating patients infected with SARS-CoV-2, COVID-19.

18.
Anal Chem ; 92(10): 7226-7231, 2020 05 19.
Article in English | MEDLINE | ID: covidwho-108785

ABSTRACT

The outbreak of 2019 coronavirus disease (COVID-19) has been a challenge for hospital laboratories because of the huge number of samples that must be tested for the presence of the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Simple and rapid immunodiagnostic methods are urgently needed to identify positive cases. Here we report the development of a rapid and sensitive lateral flow immunoassay (LFIA) that uses lanthanide-doped polysterene nanoparticles (LNPs) to detect anti-SARV-CoV-2 IgG in human serum. A recombinant nucleocapsid phosphoprotein of SARS-CoV-2 was dispensed onto a nitrocellulose membrane to capture specific IgG. Mouse anti-human IgG antibody was labeled with self-assembled LNPs that served as a fluorescent reporter. A 100-µL aliquot of serum samples (1:1000 dilution) was used for this assay and the whole detection process took 10 min. The results of the validation experiment met the requirements for clinical diagnostic reagents. A value of 0.0666 was defined as the cutoff value by assaying 51 normal samples. We tested 7 samples that were positive by reverse-transcription (RT-)PCR and 12 that were negative but clinically suspicious for the presence of anti-SARS-CoV-2 IgG. One of the negative samples was determined to be SARS-CoV-2 IgG positive, while the results for the other samples were consistent with those obtained by RT-PCR. Thus, this assay can achieve rapid and sensitive detection of anti-SARS-CoV-2 IgG in human serum and allow positive identification in suspicious cases; it can also be useful for monitoring the progression COVID-19 and evaluating patients' response to treatment.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Immunoassay/methods , Immunoglobulin G/blood , Lanthanoid Series Elements/chemistry , Metal Nanoparticles/chemistry , Pneumonia, Viral/diagnosis , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/blood , Humans , Nanoparticles , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL