Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
1.
Exp Physiol ; 2021 May 31.
Article in English | MEDLINE | ID: covidwho-1807292

ABSTRACT

NEW FINDINGS: What is the topic of this review? Lactate is considered an important substrate for mitochondria in the muscles, heart and brain during exercise and is the main gluconeogenetic precursor in the liver and kidneys. In this light, we review the (patho)physiology of lactate metabolism in sepsis and coronavirus disease 2019 (COVID-19). What advances does it highlight? Elevated blood lactate is strongly associated with mortality in septic patients. Lactate seems unrelated to tissue hypoxia but is likely to reflect mitochondrial dysfunction and high adrenergic stimulation. Patients with severe COVID-19 exhibit near-normal blood lactate, indicating preserved mitochondrial function, despite a systemic hyperinflammatory state similar to sepsis. ABSTRACT: In critically ill patients, elevated plasma lactate is often interpreted as a sign of organ hypoperfusion and/or tissue hypoxia. This view on lactate is likely to have been influenced by the pioneering exercise physiologists around 1920. August Krogh identified an oxygen deficit at the onset of exercise that was later related to an oxygen 'debt' and lactate accumulation by A. V. Hill. Lactate is considered to be the main gluconeogenetic precursor in the liver and kidneys during submaximal exercise, but hepatic elimination is attenuated by splanchnic vasoconstriction during high-intensity exercise, causing an exponential increase in blood lactate. With the development of stable isotope tracers, lactate has become established as an important energy source for muscle, brain and heart tissue, where it is used for mitochondrial respiration. Plasma lactate > 4 mM is strongly associated with mortality in septic shock, with no direct link between lactate release and tissue hypoxia. Herein, we provide evidence for mitochondrial dysfunction and adrenergic stimulation as explanations for the sepsis-induced hyperlactataemia. Despite profound hypoxaemia and intense work of breathing, patients with severe coronavirus disease 2019 (COVID-19) rarely exhibit hyperlactataemia (> 2.5 mM), while presenting a systemic hyperinflammatory state much like sepsis. However, lactate dehydrogenase, which controls the formation of lactate, is markedly elevated in plasma and strongly associated with mortality in severe COVID-19. We briefly review the potential mechanisms of the lactate dehydrogenase elevation in COVID-19 and its relationship to lactate metabolism based on mechanisms established in contracting skeletal muscle and the acute respiratory distress syndrome.

2.
Nutrients ; 12(5)2020 May 09.
Article in English | MEDLINE | ID: covidwho-1725875

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), with a clinical outcome ranging from mild to severe, including death. To date, it is unclear why some patients develop severe symptoms. Many authors have suggested the involvement of vitamin D in reducing the risk of infections; thus, we retrospectively investigated the 25-hydroxyvitamin D (25(OH)D) concentrations in plasma obtained from a cohort of patients from Switzerland. In this cohort, significantly lower 25(OH)D levels (p = 0.004) were found in PCR-positive for SARS-CoV-2 (median value 11.1 ng/mL) patients compared with negative patients (24.6 ng/mL); this was also confirmed by stratifying patients according to age >70 years. On the basis of this preliminary observation, vitamin D supplementation might be a useful measure to reduce the risk of infection. Randomized controlled trials and large population studies should be conducted to evaluate these recommendations and to confirm our preliminary observation.


Subject(s)
Coronavirus Infections/blood , Pneumonia, Viral/blood , Vitamin D/analogs & derivatives , Age Factors , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Dietary Supplements , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Polymerase Chain Reaction , Retrospective Studies , SARS-CoV-2 , Switzerland , Vitamin D/administration & dosage , Vitamin D/blood
3.
Analyst ; 145(12): 4173-4180, 2020 Jun 21.
Article in English | MEDLINE | ID: covidwho-1721601

ABSTRACT

Studies have shown that microRNAs, which are small noncoding RNAs, hold tremendous promise as next-generation circulating biomarkers for early cancer detection via liquid biopsies. A novel, solid-state nanoplasmonic sensor capable of assaying circulating microRNAs through a combined surface-enhanced Raman scattering (SERS) and plasmon-enhanced fluorescence (PEF) approach has been developed. Here, the unique localized surface plasmon resonance properties of chemically-synthesized gold triangular nanoprisms (Au TNPs) are utilized to create large SERS and PEF enhancements. With careful modification to the surface of Au TNPs, this sensing approach is capable of quantifying circulating microRNAs at femtogram/microliter concentrations. Uniquely, the multimodal analytical methods mitigate both false positive and false negative responses and demonstrate the high stability of our sensors within bodily fluids. As a proof of concept, microRNA-10b and microRNA-96 were directly assayed from the plasma of six bladder cancer patients. Results show potential for a highly specific liquid biopsy method that could be used in point-of-care clinical diagnostics to increase early cancer detection or any other diseases including SARS-CoV-2 in which RNAs can be used as biomarkers.


Subject(s)
Circulating MicroRNA/blood , Fluorescent Dyes/chemistry , Spectrum Analysis, Raman , Urinary Bladder Neoplasms/diagnosis , Betacoronavirus/isolation & purification , Biomarkers, Tumor/blood , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Coronavirus Infections/virology , Gold/chemistry , Humans , Limit of Detection , Microscopy, Confocal , Nanostructures/chemistry , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Point-of-Care Systems , SARS-CoV-2 , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
4.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1683718

ABSTRACT

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

5.
Clin Infect Dis ; 74(3): 479-489, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684541

ABSTRACT

BACKGROUND: Increased inflammation has been well defined in coronavirus disease 2019 (COVID-19), while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases, and acute respiratory distress syndrome, a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets. METHODS: Blood was obtained serially from critically ill COVID-19 patients for 11 days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis, and cytokine levels were assessed. Lung tissue was obtained immediately postmortem for immunostaining. PubMed searches for neutrophils, lung, and COVID-19 yielded 10 peer-reviewed research articles in English. RESULTS: Elevations in neutrophil-associated cytokines interleukin 8 (IL-8) and interleukin 6, and general inflammatory cytokines IFN-inducible protien-19, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 1ß, interleukin 10, and tumor necrosis factor, were identified both at first measurement and across hospitalization (P < .0001). COVID-19 neutrophils had exaggerated oxidative burst (P < .0001), NETosis (P < .0001), and phagocytosis (P < .0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs available for examination (2 of 5). While elevations in IL-8 and absolute neutrophil count correlated with disease severity, plasma IL-8 levels alone correlated with death. CONCLUSIONS: Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. Importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data show that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.


Subject(s)
COVID-19 , Extracellular Traps , Critical Illness , Humans , Neutrophil Activation , Neutrophils , Phenotype , SARS-CoV-2
6.
Clin Infect Dis ; 74(2): 254-262, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1662114

ABSTRACT

BACKGROUND: Several inflammatory cytokines are upregulated in severe coronavirus disease 2019 (COVID-19). We compared cytokines in COVID-19 versus influenza to define differentiating features of the inflammatory response to these pathogens and their association with severe disease. Because elevated body mass index (BMI) is a known risk factor for severe COVID-19, we examined the relationship of BMI to cytokines associated with severe disease. METHODS: Thirty-seven cytokines and chemokines were measured in plasma from 135 patients with COVID-19, 57 patients with influenza, and 30 healthy controls. Controlling for BMI, age, and sex, differences in cytokines between groups were determined by linear regression and random forest prediction was used to determine the cytokines most important in distinguishing severe COVID-19 and influenza. Mediation analysis was used to identify cytokines that mediate the effect of BMI and age on disease severity. RESULTS: Interleukin-18 (IL-18), IL-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were significantly increased in COVID-19 versus influenza patients, whereas granulocyte macrophage colony-stimulating factor, interferon-γ (IFN-γ), IFN-λ1, IL-10, IL-15, and monocyte chemoattractant protein 2 were significantly elevated in the influenza group. In subgroup analysis based on disease severity, IL-18, IL-6, and TNF-α were elevated in severe COVID-19, but not in severe influenza. Random forest analysis identified high IL-6 and low IFN-λ1 levels as the most distinct between severe COVID-19 and severe influenza. Finally, IL-1RA was identified as a potential mediator of the effects of BMI on COVID-19 severity. CONCLUSIONS: These findings point to activation of fundamentally different innate immune pathways in severe acute respiratory syndrome coronavirus 2 and influenza infection, and emphasize drivers of severe COVID-19 to focus both mechanistic and therapeutic investigations.


Subject(s)
COVID-19 , Influenza, Human , Chemokines , Cytokines , Humans , SARS-CoV-2
7.
Clin Infect Dis ; 74(2): 327-334, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1662105

ABSTRACT

Convalescent plasma (CP) have been used for treatment of coronavirus disease 2019 (COVID-19), but their effectiveness varies significantly. Moreover, the impact of CP treatment on the composition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in COVID-19 patients and antibody markers that differentiate between those who survive and those who succumb to the COVID-19 disease are not well understood. Herein, we performed longitudinal analysis of antibody profile on 115 sequential plasma samples from 16 hospitalized COVID-19 patients treated with either CP or standard of care, only half of them survived. Differential antibody kinetics was observed for antibody binding, immunoglobulin M/immunoglobulin G/immunoglobulin A (IgM/IgG/IgA) distribution, and affinity maturation in "survived" versus "fatal" COVID-19 patients. Surprisingly, CP treatment did not predict survival. Strikingly, marked decline in neutralization titers was observed in the fatal patients prior to death, and convalescent plasma treatment did not reverse this trend. Furthermore, irrespective of CP treatment, higher antibody affinity to the SARS-CoV-2 prefusion spike was associated with survival outcome. Additionally, sustained elevated IgA response was associated with fatal outcome in these COVID-19 patients. These findings propose that treatment of COVID-19 patients with convalescent plasma should be carefully targeted, and effectiveness of treatment may depend on the clinical and immunological status of COVID-19 patients, as well as the quality of the antibodies in the convalescent plasma.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive
8.
SAGE Open Med Case Rep ; 9: 2050313X21989492, 2021.
Article in English | MEDLINE | ID: covidwho-1594346

ABSTRACT

Coronavirus disease-19 (COVID-19) was first identified in Wuhan, China, and spread gradually throughout the world. There are multiple reports of prolonged viral shedding in people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, such findings have not been documented in Bangladesh. Herein, we present a case of metabolic syndrome that remained positive for SARS-CoV-2 RNA over a prolonged period. On clinical and laboratory examination, the patient was diagnosed with obesity, raised blood pressure, dyslipidemia, and uncontrolled glycemia. However, upon taking appropriate measures and controlling the plasma sugar level, he tested negative for SARS-CoV-2 RNA on the 72nd day since illness onset. We observed that COVID-19 patients with several comorbidities, such as metabolic syndrome, may shed the virus over a prolonged period. Therefore, strict public health measures and isolation rules should be followed by a high-risk population.

9.
JTCVS Tech ; 7: 267-268, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1525986
10.
Clin Transl Immunology ; 10(4): e1271, 2021.
Article in English | MEDLINE | ID: covidwho-1525427

ABSTRACT

OBJECTIVES: Emerging evidence of dysregulation of the myeloid cell compartment urges investigations on neutrophil characteristics in coronavirus disease 2019 (COVID-19). We isolated neutrophils from the blood of COVID-19 patients receiving general ward care and from patients hospitalised at intensive care units (ICUs) to explore the kinetics of circulating neutrophils and factors important for neutrophil migration and activation. METHODS: Multicolour flow cytometry was exploited for the analysis of neutrophil differentiation and activation markers. Multiplex and ELISA technologies were used for the quantification of protease, protease inhibitor, chemokine and cytokine concentrations in plasma. Neutrophil polarisation responses were evaluated microscopically. Gelatinolytic and metalloproteinase activity in plasma was determined using a fluorogenic substrate. Co-culturing healthy donor neutrophils with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) allowed us to investigate viral replication in neutrophils. RESULTS: Upon ICU admission, patients displayed high plasma concentrations of granulocyte-colony-stimulating factor (G-CSF) and the chemokine CXCL8, accompanied by emergency myelopoiesis as illustrated by high levels of circulating CD10-, immature neutrophils with reduced CXCR2 and C5aR expression. Neutrophil elastase and non-metalloproteinase-derived gelatinolytic activity were increased in plasma from ICU patients. Significantly higher levels of circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) in patients at ICU admission yielded decreased total MMP proteolytic activity in blood. COVID-19 neutrophils were hyper-responsive to CXCL8 and CXCL12 in shape change assays. Finally, SARS-CoV-2 failed to replicate inside human neutrophils. CONCLUSION: Our study provides detailed insights into the kinetics of neutrophil phenotype and function in severe COVID-19 patients, and supports the concept of an increased neutrophil activation state in the circulation.

11.
Surg Infect (Larchmt) ; 22(9): 948-954, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1522102

ABSTRACT

Background: In trauma, direct pulmonary injury and innate immune response activation primes the lungs for acute respiratory distress syndrome (ARDS). The inflammasome-dependent release of interleukin-18 (IL-18) was recently identified as a key mediator in ARDS pathogenesis, leading us to hypothesize that plasma IL-18 is a diagnostic predictor of ARDS in severe blunt trauma. Patients and Methods: Secondary analysis of the Inflammation and Host Response to Injury database was performed on plasma cytokines collected within 12 hours of severe blunt trauma. Trauma-related cytokines, including IL-18, were compared between patients with and without ARDS and were evaluated for association with ARDS using regression analysis. Threshold cytokine concentrations predictive of ARDS were determined using receiver-operating curve (ROC) analysis. Results: Cytokine analysis of patients without ARDS patients (n = 61) compared with patients with ARDS (n = 19) demonstrated elevated plasma IL-18 concentration in ARDS and IL-18 remained correlated with ARDS on logistic regression after confounder adjustment (p = 0.008). Additionally, ROC analysis revealed IL-18 as a strong ARDS predictor (area under the curve [AUC] = 0.83), with a threshold IL-18 value of 170 pg/mL (Youden index, 0.3). Unlike in patients without ARDS, elevated IL-18 persisted in patients with ARDS during the acute injury phase (p ≤ 0.02). Other trauma-related cytokines did not correlate with ARDS. Conclusions: In severe blunt trauma, IL-18 is a robust predictor of ARDS and remains elevated throughout the acute injury phase. These findings support the use of IL-18 as a key ARDS biomarker, promoting early identification of trauma patients at greater risk of developing ARDS. Timely recognition of ARDS and implementation of advantageous supportive care practices may reduce trauma-related ARDS morbidity and costs.


Subject(s)
Respiratory Distress Syndrome , Wounds, Nonpenetrating , Humans , Interleukin-18 , Logistic Models , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Risk Assessment , Wounds, Nonpenetrating/complications , Wounds, Nonpenetrating/diagnosis
12.
Clin Infect Dis ; 73(9): e2890-e2897, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500985

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global public health problem that has already caused more than 662 000 deaths worldwide. Although the clinical manifestations of COVID-19 are dominated by respiratory symptoms, some patients present other severe damage such as cardiovascular, renal and liver injury, and/or multiple organ failure, suggesting a spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in blood. Recent ultrasensitive polymerase chain reaction (PCR) technology now allows absolute quantification of nucleic acids in plasma. We intend to use the droplet-based digital PCR technology to obtain sensitive detection and precise quantification of plasma SARS-CoV-2 viral load (SARS-CoV-2 RNAemia) in hospitalized COVID-19 patients. METHODS: Fifty-eight consecutive COVID-19 patients with pneumonia 8 to 12 days after onset of symptoms and 12 healthy controls were analyzed. Disease severity was categorized as mild to moderate in 17 patients, severe in 16, and critical in 26. Plasma SARS-CoV-2 RNAemia was quantified by droplet digital Crystal Digital PCR next-generation technology (Stilla Technologies, Villejuif, France). RESULTS: Overall, SARS-CoV-2 RNAemia was detected in 43 (74.1%) patients. Prevalence of positive SARS-CoV-2 RNAemia correlated with disease severity, ranging from 53% in mild-to-moderate patients to 88% in critically ill patients (P = .036). Levels of SARS-CoV-2 RNAemia were associated with severity (P = .035). Among 9 patients who experienced clinical deterioration during follow-up, 8 had positive SARS-CoV-2 RNAemia at baseline, whereas only 1 critical patient with undetectable SARS-CoV-2 RNAemia at the time of analysis died at day 27. CONCLUSION: SARS-CoV-2 RNAemia measured by droplet-based digital PCR constitutes a promising prognosis biomarker in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Illness , Humans , RNA, Viral , Severity of Illness Index
13.
Crit Care Explor ; 2(9): e0194, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1493997

ABSTRACT

OBJECTIVES: Coronavirus disease 2019 is caused by the novel severe acute respiratory syndrome coronavirus 2 virus. Patients admitted to the ICU suffer from microvascular thrombosis, which may contribute to mortality. Our aim was to profile plasma thrombotic factors and endothelial injury markers in critically ill coronavirus disease 2019 ICU patients to help understand their thrombotic mechanisms. DESIGN: Daily blood coagulation and thrombotic factor profiling with immunoassays and in vitro experiments on human pulmonary microvascular endothelial cells. SETTING: Tertiary care ICU and academic laboratory. SUBJECTS: All patients admitted to the ICU suspected of being infected with severe acute respiratory syndrome coronavirus 2, using standardized hospital screening methodologies, had daily blood samples collected until testing was confirmed coronavirus disease 2019 negative on either ICU day 3 or ICU day 7 if the patient was coronavirus disease 2019 positive. INTERVENTIONS: None. MEASUREMENT AND MAIN RESULTS: Age- and sex-matched healthy control subjects and ICU patients that were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well balanced with the exception that coronavirus disease 2019 positive patients were more likely than coronavirus disease 2019 negative patients to suffer bilateral pneumonia. Mortality rate for coronavirus disease 2019 positive ICU patients was 40%. Compared with healthy control subjects, coronavirus disease 2019 positive patients had higher plasma von Willebrand factor (p < 0.001) and glycocalyx-degradation products (chondroitin sulfate and syndecan-1; p < 0.01). When compared with coronavirus disease 2019 negative patients, coronavirus disease 2019 positive patients had persistently higher soluble P-selectin, hyaluronic acid, and syndecan-1 (p < 0.05), particularly on ICU day 3 and thereafter. Thrombosis profiling on ICU days 1-3 predicted coronavirus disease 2019 status with 85% accuracy and patient mortality with 86% accuracy. Surface hyaluronic acid removal from human pulmonary microvascular endothelial cells with hyaluronidase treatment resulted in depressed nitric oxide, an instigating mechanism for platelet adhesion to the microvascular endothelium. CONCLUSIONS: Thrombosis profiling identified endothelial activation and glycocalyx degradation in coronavirus disease 2019 positive patients. Our data suggest that medications to protect and/or restore the endothelial glycocalyx, as well as platelet inhibitors, should be considered for further study.

14.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
15.
PLoS Pathog ; 17(1): e1009161, 2021 01.
Article in English | MEDLINE | ID: covidwho-1388959

ABSTRACT

We report the emergency development and application of a robust serologic test to evaluate acute and convalescent antibody responses to SARS-CoV-2 in Argentina. The assays, COVIDAR IgG and IgM, which were produced and provided for free to health authorities, private and public health institutions and nursing homes, use a combination of a trimer stabilized spike protein and the receptor binding domain (RBD) in a single enzyme-linked immunosorbent assay (ELISA) plate. Over half million tests have already been distributed to detect and quantify antibodies for multiple purposes, including assessment of immune responses in hospitalized patients and large seroprevalence studies in neighborhoods, slums and health care workers, which resulted in a powerful tool for asymptomatic detection and policy making in the country. Analysis of antibody levels and longitudinal studies of symptomatic and asymptomatic SARS-CoV-2 infections in over one thousand patient samples provided insightful information about IgM and IgG seroconversion time and kinetics, and IgM waning profiles. At least 35% of patients showed seroconversion within 7 days, and 95% within 45 days of symptoms onset, with simultaneous or close sequential IgM and IgG detection. Longitudinal studies of asymptomatic cases showed a wide range of antibody responses with median levels below those observed in symptomatic patients. Regarding convalescent plasma applications, a protocol was standardized for the assessment of end point IgG antibody titers with COVIDAR with more than 500 plasma donors. The protocol showed a positive correlation with neutralizing antibody titers, and was used for clinical trials and therapies across the country. Using this protocol, about 80% of convalescent donor plasmas were potentially suitable for therapies. Here, we demonstrate the importance of providing a robust and specific serologic assay for generating new information about antibody kinetics in infected individuals and mitigation policies to cope with pandemic needs.


Subject(s)
COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation , Argentina/epidemiology , COVID-19/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies
16.
Virol J ; 18(1): 1, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1388776

ABSTRACT

BACKGROUND: Virus neutralization by antibodies is an important prognostic factor in many viral diseases. To easily and rapidly measure titers of neutralizing antibodies in serum or plasma, we developed pseudovirion particles composed of the spike glycoprotein of SARS-CoV-2 incorporated onto murine leukemia virus capsids and a modified minimal murine leukemia virus genome encoding firefly luciferase. This assay design is intended for use in laboratories with biocontainment level 2 and therefore circumvents the need for the biocontainment level 3 that would be required for replication-competent SARS-CoV-2 virus. To validate the pseudovirion assay, we set up comparisons with other available antibody tests including those from Abbott, Euroimmun and Siemens, using archived, known samples. RESULTS: 11 out of 12 SARS-CoV-2-infected patient serum samples showed neutralizing activity against SARS-CoV-2-spike pseudotyped MLV viruses, with neutralizing titers-50 (NT50) that ranged from 1:25 to 1:1,417. Five historical samples from patients hospitalized for severe influenza infection in 2016 tested negative in the neutralization assay (NT50 < 25). Three serum samples with high neutralizing activity against SARS-CoV-2/MLV pseudoviruses showed no detectable neutralizing activity (NT50 < 25) against SARS-CoV-1/MLV pseudovirions. We also compared the semiquantitative Siemens SARS-CoV-2 IgG test, which measures binding of IgG to recombinantly expressed receptor binding domain of SARS-CoV-2 spike glycoprotein with the neutralization titers obtained in the pseudovirion assay and the results show high concordance between the two tests (R2 = 0.9344). CONCLUSIONS: SARS-CoV-2 spike/MLV pseudovirions provide a practical means of assessing neutralizing activity of antibodies in serum or plasma from infected patients under laboratory conditions consistent with biocontainment level 2. This assay offers promise also in evaluating immunogenicity of spike glycoprotein-based candidate vaccines in the near future.


Subject(s)
COVID-19/immunology , Leukemia/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Virion/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , HEK293 Cells , Humans , Immunoglobulin G/blood , Mice
17.
Front Microbiol ; 11: 2014, 2020.
Article in English | MEDLINE | ID: covidwho-1389202

ABSTRACT

Electron microscopy is a powerful tool in the field of microbiology. It has played a key role in the rapid diagnosis of viruses in patient samples and has contributed significantly to the clarification of virus structure and function, helping to guide the public health response to emerging viral infections. In the present study, we used scanning electron microscopy (SEM) to study the infectious cycle of SARS-CoV-2 in Vero E6 cells and we controlled some key findings by classical transmission electronic microscopy (TEM). The replication cycle of the virus was followed from 1 to 36 h post-infection. Our results revealed that SARS-CoV-2 infected the cells through membrane fusion. Particles are formed in the peri-nuclear region from a budding of the endoplasmic reticulum-Golgi apparatus complex into morphogenesis matrix vesicae. New SARS-CoV-2 particles were expelled from the cells, through cell lysis or by fusion of virus containing vacuoles with the cell plasma membrane. Overall, this cycle is highly comparable to that of SARS-CoV. By providing a detailed and complete SARS-CoV-2 infectious cycle, SEM proves to be a very rapid and efficient tool compared to classical TEM.

18.
Front Immunol ; 11: 604759, 2020.
Article in English | MEDLINE | ID: covidwho-1389169

ABSTRACT

Objective: To first describe and estimate the potential pathogenic role of Ig4 autoantibodies in complement-mediated thrombotic microangiopathy (TMA) in a patient with IgG4-related disease (IgG4-RD). Methods: This study is a case report presenting a retrospective review of the patient's medical chart. Plasma complement C3 and C4 levels, immunoglobulin isotypes and subclasses were determined by nephelometry, the complement pathways' activity (CH50, AP50, MBL) using WIESLAB® Complement System assays. Human complement factor H levels, anti-complement factor H auto-antibodies were analyzed by ELISA, using HRP-labeled secondary antibodies specific for human IgG, IgG4, and IgA, respectively. Genetic analyses were performed by exome sequencing of 14 gens implicated in complement disorders, as well as multiplex ligation-dependent probe amplification looking specifically for CFH, CFHR1-2-3, and 5. Results: Our brief report presents the first case of IgG4-RD with complement-mediated TMA originating from both pathogenic CFHR 1 and CFHR 4 genes deletions, and inhibitory anti-complement factor H autoantibodies of the IgG4 subclass. Remission was achieved with plasmaphereses, corticosteroids, and cyclophosphamide. Following remission, the patient was diagnosed with lymphocytic meningitis and SARS-CoV-2 pneumonia with an uneventful recovery. Conclusion: IgG4-RD can be associated with pathogenic IgG4 autoantibodies. Genetic predisposition such as CFHR1 and CFHR4 gene deletions enhance the susceptibility to the formation of inhibitory anti-Factor H IgG4 antibodies.


Subject(s)
Apolipoproteins/genetics , Atypical Hemolytic Uremic Syndrome/genetics , Autoantibodies/immunology , Complement C3b Inactivator Proteins/genetics , Complement Factor H/immunology , Immunoglobulin G4-Related Disease/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/pathology , Female , Gene Deletion , Genetic Predisposition to Disease/genetics , Humans , Immunoglobulin G/immunology , Immunoglobulin G4-Related Disease/immunology , Immunoglobulin G4-Related Disease/pathology , Middle Aged , Thrombotic Microangiopathies/immunology , Thrombotic Microangiopathies/pathology
19.
J Infect Dis ; 224(1): 21-30, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1379462

ABSTRACT

The differentiation between influenza and coronavirus disease 2019 (COVID-19) could constitute a diagnostic challenge during the ongoing winter owing to their clinical similitude. Thus, novel biomarkers are required to enable making this distinction. Here, we evaluated whether the surfactant protein D (SP-D), a collectin produced at the alveolar epithelium with known immune properties, was useful to differentiate pandemic influenza A(H1N1) from COVID-19 in critically ill patients. Our results revealed high serum SP-D levels in patients with severe pandemic influenza but not those with COVID-19. This finding was validated in a separate cohort of mechanically ventilated patients with COVID-19 who also showed low plasma SP-D levels. However, plasma SP-D levels did not distinguish seasonal influenza from COVID-19 in mild-to-moderate disease. Finally, we found that high serum SP-D levels were associated with death and renal failure among severe pandemic influenza cases. Thus, our studies have identified SP-D as a unique biomarker expressed during severe pandemic influenza but not COVID-19.


Subject(s)
COVID-19/genetics , Gene Expression , Host-Pathogen Interactions/genetics , Influenza A Virus, H1N1 Subtype , Influenza, Human/genetics , Pulmonary Surfactant-Associated Protein D/genetics , SARS-CoV-2 , Adult , Aged , Biomarkers , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Coinfection , Enzyme-Linked Immunosorbent Assay , Female , Humans , Influenza, Human/diagnosis , Influenza, Human/virology , Male , Middle Aged , Prognosis , Pulmonary Surfactant-Associated Protein D/blood , Severity of Illness Index , Symptom Assessment , Young Adult
20.
Vox Sang ; 116(7): 798-807, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1370878

ABSTRACT

BACKGROUND AND OBJECTIVES: Cytokine release syndrome in COVID-19 is due to a pathological inflammatory response of raised cytokines. Removal of these cytokines by therapeutic plasma exchange (TPE) prior to end-organ damage may improve clinical outcomes. This manuscript is intended to serve as a preliminary guidance document for application of TPE in patients with severe COVID-19. MATERIAL AND METHODS: The available literature pertaining to the role of TPE for treatment of COVID-19 patients was reviewed to guide optimal management. It included indication, contraindication, optimal timing of initiation and termination of TPE, vascular access and anticoagulants, numbers and mode of procedures, outcome measures and adverse events. RESULTS: Out of a total of 78 articles, only 65 were directly related to the topic. From these 65, only 32 were acceptable as primary source, while 33 were used as supporting references. TPE in critically ill COVID-19 patients may be classified under ASFA category III grade 2B. The early initiation of TPE for 1-1·5 patient's plasma volume with fresh frozen plasma, or 4-5% albumin or COVID-19 convalescent plasma as replacement fluids before multiorgan failure, has better chances of recovery. The number of procedures can vary from three to nine depending on patient response. CONCLUSION: TPE in COVID-19 patients may help by removing toxic cytokines, viral particles and/or by correcting coagulopathy or restoring endothelial membrane. Severity score (SOFA & APACHE II) and cytokine levels (IL-6, C-reactive protein) can be used to execute TPE therapy and to monitor response in COVID-19 patients.


Subject(s)
COVID-19 , Plasma Exchange , COVID-19/therapy , Humans , Immunization, Passive , Plasmapheresis , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL