Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
1.
Klin Lab Diagn ; 65(11): 688-692, 2020 Dec 04.
Article in English | MEDLINE | ID: covidwho-1780383

ABSTRACT

The study presents the results of the creation and evaluation of the diagnostic characteristics of the rapid immunochromatographic test for the qualitative detection and differentiation of IgM/IgG antibodies to SARS-CoV-2 in human serum, plasma, and whole blood "ИХА-COVID-19-IgM / IgG". Have been tested some samples without antibodies to SARS-CoV-2 and a samples with two and one type of specific antibodies. The coincidence of the results of immunochromatographic analysis with the results of the immunochemiluminescent method was 87.2%. Test kit can be use as the rapid diagnostic test in the context of the COVID-19 pandemic and to assess the immune status of convalescents.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing , COVID-19/diagnosis , Immunoassay , Immunoglobulin G/analysis , Immunoglobulin M/analysis , Humans
2.
Analyst ; 145(12): 4173-4180, 2020 Jun 21.
Article in English | MEDLINE | ID: covidwho-1721601

ABSTRACT

Studies have shown that microRNAs, which are small noncoding RNAs, hold tremendous promise as next-generation circulating biomarkers for early cancer detection via liquid biopsies. A novel, solid-state nanoplasmonic sensor capable of assaying circulating microRNAs through a combined surface-enhanced Raman scattering (SERS) and plasmon-enhanced fluorescence (PEF) approach has been developed. Here, the unique localized surface plasmon resonance properties of chemically-synthesized gold triangular nanoprisms (Au TNPs) are utilized to create large SERS and PEF enhancements. With careful modification to the surface of Au TNPs, this sensing approach is capable of quantifying circulating microRNAs at femtogram/microliter concentrations. Uniquely, the multimodal analytical methods mitigate both false positive and false negative responses and demonstrate the high stability of our sensors within bodily fluids. As a proof of concept, microRNA-10b and microRNA-96 were directly assayed from the plasma of six bladder cancer patients. Results show potential for a highly specific liquid biopsy method that could be used in point-of-care clinical diagnostics to increase early cancer detection or any other diseases including SARS-CoV-2 in which RNAs can be used as biomarkers.


Subject(s)
Circulating MicroRNA/blood , Fluorescent Dyes/chemistry , Spectrum Analysis, Raman , Urinary Bladder Neoplasms/diagnosis , Betacoronavirus/isolation & purification , Biomarkers, Tumor/blood , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Coronavirus Infections/virology , Gold/chemistry , Humans , Limit of Detection , Microscopy, Confocal , Nanostructures/chemistry , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Point-of-Care Systems , SARS-CoV-2 , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
3.
Clin Infect Dis ; 74(4): 715-718, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1702854

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins were measured in longitudinal plasma samples collected from 13 participants who received two doses of mRNA-1273 vaccine. Eleven of 13 participants showed detectable levels of SARS-CoV-2 protein as early as day 1 after first vaccine injection. Clearance of detectable SARS-CoV-2 protein correlated with production of immunoglobulin G (IgG) and immunoglobulin A (IgA).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin A , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/genetics
4.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1683718

ABSTRACT

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

5.
Clin Infect Dis ; 74(3): 479-489, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684541

ABSTRACT

BACKGROUND: Increased inflammation has been well defined in coronavirus disease 2019 (COVID-19), while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases, and acute respiratory distress syndrome, a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets. METHODS: Blood was obtained serially from critically ill COVID-19 patients for 11 days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis, and cytokine levels were assessed. Lung tissue was obtained immediately postmortem for immunostaining. PubMed searches for neutrophils, lung, and COVID-19 yielded 10 peer-reviewed research articles in English. RESULTS: Elevations in neutrophil-associated cytokines interleukin 8 (IL-8) and interleukin 6, and general inflammatory cytokines IFN-inducible protien-19, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 1ß, interleukin 10, and tumor necrosis factor, were identified both at first measurement and across hospitalization (P < .0001). COVID-19 neutrophils had exaggerated oxidative burst (P < .0001), NETosis (P < .0001), and phagocytosis (P < .0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs available for examination (2 of 5). While elevations in IL-8 and absolute neutrophil count correlated with disease severity, plasma IL-8 levels alone correlated with death. CONCLUSIONS: Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. Importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data show that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.


Subject(s)
COVID-19 , Extracellular Traps , Critical Illness , Humans , Neutrophil Activation , Neutrophils , Phenotype , SARS-CoV-2
6.
Clin Infect Dis ; 74(2): 327-334, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1662105

ABSTRACT

Convalescent plasma (CP) have been used for treatment of coronavirus disease 2019 (COVID-19), but their effectiveness varies significantly. Moreover, the impact of CP treatment on the composition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in COVID-19 patients and antibody markers that differentiate between those who survive and those who succumb to the COVID-19 disease are not well understood. Herein, we performed longitudinal analysis of antibody profile on 115 sequential plasma samples from 16 hospitalized COVID-19 patients treated with either CP or standard of care, only half of them survived. Differential antibody kinetics was observed for antibody binding, immunoglobulin M/immunoglobulin G/immunoglobulin A (IgM/IgG/IgA) distribution, and affinity maturation in "survived" versus "fatal" COVID-19 patients. Surprisingly, CP treatment did not predict survival. Strikingly, marked decline in neutralization titers was observed in the fatal patients prior to death, and convalescent plasma treatment did not reverse this trend. Furthermore, irrespective of CP treatment, higher antibody affinity to the SARS-CoV-2 prefusion spike was associated with survival outcome. Additionally, sustained elevated IgA response was associated with fatal outcome in these COVID-19 patients. These findings propose that treatment of COVID-19 patients with convalescent plasma should be carefully targeted, and effectiveness of treatment may depend on the clinical and immunological status of COVID-19 patients, as well as the quality of the antibodies in the convalescent plasma.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive
7.
Biophys J ; 120(14): 2914-2926, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1605082

ABSTRACT

Infection of human cells by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) relies on its binding to a specific receptor and subsequent fusion of the viral and host cell membranes. The fusion peptide (FP), a short peptide segment in the spike protein, plays a central role in the initial penetration of the virus into the host cell membrane, followed by the fusion of the two membranes. Here, we use an array of molecular dynamics simulations that take advantage of the highly mobile membrane mimetic model to investigate the interaction of the SARS-CoV2 FP with a lipid bilayer representing mammalian cellular membranes at an atomic level and to characterize the membrane-bound form of the peptide. Six independent systems were generated by changing the initial positioning and orientation of the FP with respect to the membrane, and each system was simulated in five independent replicas, each for 300 ns. In 73% of the simulations, the FP reaches a stable, membrane-bound configuration, in which the peptide deeply penetrated into the membrane. Clustering of the results reveals three major membrane-binding modes (binding modes 1-3), in which binding mode 1 populates over half of the data points. Taking into account the sequence conservation among the viral FPs and the results of mutagenesis studies establishing the role of specific residues in the helical portion of the FP in membrane association, the significant depth of penetration of the whole peptide, and the dense population of the respective cluster, we propose that the most deeply inserted membrane-bound form (binding mode 1) represents more closely the biologically relevant form. Analysis of FP-lipid interactions shows the involvement of specific residues, previously described as the "fusion-active core residues," in membrane binding. Taken together, the results shed light on a key step involved in SARS-CoV2 infection, with potential implications in designing novel inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Amino Acid Sequence , Animals , Cell Membrane , Humans , Membrane Fusion , Peptides , RNA, Viral , Spike Glycoprotein, Coronavirus , Virus Internalization
8.
Clin Infect Dis ; 73(12): 2228-2239, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1599322

ABSTRACT

BACKGROUND: Elucidation of the molecular mechanisms involved in the pathogenesis of coronavirus disease 2019 (COVID-19) may help to discover therapeutic targets. METHODS: To determine the metabolomic profile of circulating plasma from COVID-19 survivors with pulmonary sequelae 3 months after discharge, a random, outcome-stratified case-control sample was analyzed. We enrolled 103 recovered COVID-19 patients as well as 27 healthy donors, and performed pulmonary function tests, computerized tomography (CT) scans, laboratory examinations, and liquid chromatography-mass spectrometry. RESULTS: Plasma metabolite profiles of COVID-19 survivors with abnormal pulmonary function were different from those of healthy donors or subjects with normal pulmonary function. These alterations were associated with disease severity and mainly involved amino acid and glycerophospholipid metabolic pathways. Furthermore, increased levels of triacylglycerols, phosphatidylcholines, prostaglandin E2, arginine, and decreased levels of betain and adenosine were associated with pulmonary CO diffusing capacity and total lung capacity. The global plasma metabolomic profile differed between subjects with abnormal and normal pulmonary function. CONCLUSIONS: Further metabolite-based analysis may help to identify the mechanisms underlying pulmonary dysfunction in COVID-19 survivors, and provide potential therapeutic targets in the future.


Subject(s)
COVID-19 , Humans , Metabolomics , Patient Discharge , SARS-CoV-2 , Survivors
9.
Clin Transl Immunology ; 10(4): e1271, 2021.
Article in English | MEDLINE | ID: covidwho-1525427

ABSTRACT

OBJECTIVES: Emerging evidence of dysregulation of the myeloid cell compartment urges investigations on neutrophil characteristics in coronavirus disease 2019 (COVID-19). We isolated neutrophils from the blood of COVID-19 patients receiving general ward care and from patients hospitalised at intensive care units (ICUs) to explore the kinetics of circulating neutrophils and factors important for neutrophil migration and activation. METHODS: Multicolour flow cytometry was exploited for the analysis of neutrophil differentiation and activation markers. Multiplex and ELISA technologies were used for the quantification of protease, protease inhibitor, chemokine and cytokine concentrations in plasma. Neutrophil polarisation responses were evaluated microscopically. Gelatinolytic and metalloproteinase activity in plasma was determined using a fluorogenic substrate. Co-culturing healthy donor neutrophils with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) allowed us to investigate viral replication in neutrophils. RESULTS: Upon ICU admission, patients displayed high plasma concentrations of granulocyte-colony-stimulating factor (G-CSF) and the chemokine CXCL8, accompanied by emergency myelopoiesis as illustrated by high levels of circulating CD10-, immature neutrophils with reduced CXCR2 and C5aR expression. Neutrophil elastase and non-metalloproteinase-derived gelatinolytic activity were increased in plasma from ICU patients. Significantly higher levels of circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) in patients at ICU admission yielded decreased total MMP proteolytic activity in blood. COVID-19 neutrophils were hyper-responsive to CXCL8 and CXCL12 in shape change assays. Finally, SARS-CoV-2 failed to replicate inside human neutrophils. CONCLUSION: Our study provides detailed insights into the kinetics of neutrophil phenotype and function in severe COVID-19 patients, and supports the concept of an increased neutrophil activation state in the circulation.

10.
Vox Sang ; 116(10): 1076-1083, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1515248

ABSTRACT

BACKGROUND AND OBJECTIVES: Convalescent plasma (CP) has been embraced as a safe therapeutic option for coronavirus disease 2019 (COVID-19), while other treatments are developed. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not transmissible by transfusion, but bloodborne pathogens remain a risk in regions with high endemic prevalence of disease. Pathogen reduction can mitigate this risk; thus, the objective of this study was to evaluate the effect of riboflavin and ultraviolet light (R + UV) pathogen reduction technology on the functional properties of COVID-19 CP (CCP). MATERIALS AND METHODS: COVID-19 convalescent plasma units (n = 6) from recovered COVID-19 research donors were treated with R + UV. Pre- and post-treatment samples were tested for coagulation factor and immunoglobulin retention. Antibody binding to spike protein receptor-binding domain (RBD), S1 and S2 epitopes of SARS-CoV-2 was assessed by ELISA. Neutralizing antibody (nAb) function was assessed by pseudovirus reporter viral particle neutralization (RVPN) assay and plaque reduction neutralization test (PRNT). RESULTS: Mean retention of coagulation factors was ≥70%, while retention of immunoglobulins was 100%. Starting nAb titres were low, but PRNT50 titres did not differ between pre- and post-treatment samples. No statistically significant differences were detected in levels of IgG (P ≥ 0·3665) and IgM (P ≥ 0·1208) antibodies to RBD, S1 and S2 proteins before and after treatment. CONCLUSION: R + UV PRT effects on coagulation factors were similar to previous reports, but no significant effects were observed on immunoglobulin concentration and antibody function. SARS-CoV-2 nAb function in CCP is conserved following R + UV PRT treatment.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Riboflavin , SARS-CoV-2 , Technology , Ultraviolet Rays
11.
Crit Care Med ; 49(7): 1149-1158, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1494026

ABSTRACT

OBJECTIVES: Circulating nucleosomes and their component histones have been implicated as pathogenic in sepsis and acute respiratory distress syndrome in adults. However, their role in pediatric acute respiratory distress syndrome is unknown. DESIGN: We performed a prospective cohort study in children with acute respiratory distress syndrome, with plasma collection within 24 hours of acute respiratory distress syndrome onset. We associated nucleosome levels with severity of acute respiratory distress syndrome and with nonpulmonary organ failures and tested for association of nucleosomes with PICU mortality and ventilator-free days at 28 days in univariate and multivariable analyses. We also performed proteomics of DNA-bound plasma proteins in a matched case-control study of septic children with and without acute respiratory distress syndrome in order to identify specific histone proteins elevated in acute respiratory distress syndrome. SETTING: Large academic tertiary-care PICU. PATIENTS: Intubated children meeting Berlin criteria for acute respiratory distress syndrome. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We enrolled 333 children with acute respiratory distress syndrome, with 69 nonsurvivors (21%). Plasma nucleosomes were correlated with acute respiratory distress syndrome severity and with the number of nonpulmonary organ failures at acute respiratory distress syndrome onset. Nucleosomes were higher (p < 0.001) in nonsurvivors (0.40 [interquartile range, 0.20-0.71] arbitrary units) relative to survivors (0.10 [interquartile range, 0.04-0.25] arbitrary units). Nucleosomes were associated with PICU mortality in multivariable analysis (adjusted odds ratio 1.84 per 1 sd increase; 95% CI, 1.38-2.45; p < 0.001). Nucleosomes were also associated with a lower probability of being extubated alive by day 28 after multivariable adjustment (adjusted subdistribution hazard ratio, 0.74; 95% CI, 0.63-0.88; p = 0.001). Proteomic analysis demonstrated higher levels of the core nucleosome histones H2A, H2B, H3, and H4 in septic children with acute respiratory distress syndrome, relative to septic children without acute respiratory distress syndrome. CONCLUSIONS: Plasma nucleosomes are associated with acute respiratory distress syndrome severity, nonpulmonary organ failures, and worse outcomes in pediatric acute respiratory distress syndrome.


Subject(s)
Histones/blood , Nucleosomes/metabolism , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/mortality , Adolescent , Airway Extubation , Case-Control Studies , Child , Child, Preschool , DNA/blood , Female , Hospital Mortality , Humans , Intensive Care Units, Pediatric , Male , Multiple Organ Failure/mortality , Prognosis , Prospective Studies , Proteomics , Respiration, Artificial , Respiratory Distress Syndrome/complications , Sepsis/blood , Sepsis/complications , Severity of Illness Index , Survival Rate
12.
Crit Care Explor ; 2(9): e0194, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1493997

ABSTRACT

OBJECTIVES: Coronavirus disease 2019 is caused by the novel severe acute respiratory syndrome coronavirus 2 virus. Patients admitted to the ICU suffer from microvascular thrombosis, which may contribute to mortality. Our aim was to profile plasma thrombotic factors and endothelial injury markers in critically ill coronavirus disease 2019 ICU patients to help understand their thrombotic mechanisms. DESIGN: Daily blood coagulation and thrombotic factor profiling with immunoassays and in vitro experiments on human pulmonary microvascular endothelial cells. SETTING: Tertiary care ICU and academic laboratory. SUBJECTS: All patients admitted to the ICU suspected of being infected with severe acute respiratory syndrome coronavirus 2, using standardized hospital screening methodologies, had daily blood samples collected until testing was confirmed coronavirus disease 2019 negative on either ICU day 3 or ICU day 7 if the patient was coronavirus disease 2019 positive. INTERVENTIONS: None. MEASUREMENT AND MAIN RESULTS: Age- and sex-matched healthy control subjects and ICU patients that were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well balanced with the exception that coronavirus disease 2019 positive patients were more likely than coronavirus disease 2019 negative patients to suffer bilateral pneumonia. Mortality rate for coronavirus disease 2019 positive ICU patients was 40%. Compared with healthy control subjects, coronavirus disease 2019 positive patients had higher plasma von Willebrand factor (p < 0.001) and glycocalyx-degradation products (chondroitin sulfate and syndecan-1; p < 0.01). When compared with coronavirus disease 2019 negative patients, coronavirus disease 2019 positive patients had persistently higher soluble P-selectin, hyaluronic acid, and syndecan-1 (p < 0.05), particularly on ICU day 3 and thereafter. Thrombosis profiling on ICU days 1-3 predicted coronavirus disease 2019 status with 85% accuracy and patient mortality with 86% accuracy. Surface hyaluronic acid removal from human pulmonary microvascular endothelial cells with hyaluronidase treatment resulted in depressed nitric oxide, an instigating mechanism for platelet adhesion to the microvascular endothelium. CONCLUSIONS: Thrombosis profiling identified endothelial activation and glycocalyx degradation in coronavirus disease 2019 positive patients. Our data suggest that medications to protect and/or restore the endothelial glycocalyx, as well as platelet inhibitors, should be considered for further study.

13.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
14.
Eur Neuropsychopharmacol ; 45: 39-51, 2021 04.
Article in English | MEDLINE | ID: covidwho-1390226

ABSTRACT

Cinazepam C19H14BrClN2O5, ("LevanaⓇ ІC") a partial GABAA receptor agonist, and its active metabolite 3-hydroxyphenazepam C15H10BrClN2O2 were comparatively assessed in vitro using nerve terminals isolated from rat cortex (synaptosomes). At the presynaptic site, cinazepam (100 and 200 µM) facilitated synaptosomal transporter-mediated [3H]GABA uptake by enhancing both the initial rate and accumulation, and decreased the ambient level and transporter-mediated release of [3H]GABA. Whereas, 3-hydroxyphenazepam decreased the uptake and did not change the ambient synaptosomal level and transporter-mediated release of [3H]GABA. To exclude GABA transporter influence, NO-711, the transporter blocker, was applied and it was found that exocytotic release of [3H]GABA decreased, whereas tonic release of [3H]GABA was not changed in the presence of both cinazepam or 3-hydroxyphenazepam after treatment of synaptosomes with NO-711. In fluorimetric studies using potential- and pH-sensitive dyes rhodamine 6G and acridine orange, respectively, it was found that cinazepam hyperpolarized the synaptosomal plasma membrane, and increased synaptic vesicle acidification, whereas, 3-hydroxyphenazepam demonstrated opposite effects on these parameters. Therefore, action of cinazepam and its active metabolite 3-hydroxyphenazepam on GABAergic neurotransmission was different. Therapeutic effects of cinazepam can be associated with its ability to hyperpolarize the plasma membrane, to increase synaptic vesicle acidification and capacity of its active metabolite 3-hydroxyphenazepam to inhibit GABA transporter functioning.


Subject(s)
Receptors, GABA-A , gamma-Aminobutyric Acid , Animals , Benzodiazepines , Benzodiazepinones , GABA Plasma Membrane Transport Proteins , GABA-A Receptor Agonists , Presynaptic Terminals , Rats , Rats, Wistar , Synaptosomes
15.
EMBO J ; 40(3): e106501, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1389834

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. We show that SARS-CoV-2 Spike-pseudotyped virus and genuine SARS-CoV-2 infections are generally restricted by human and mouse IFITM1, IFITM2, and IFITM3, using gain- and loss-of-function approaches. Mechanistically, SARS-CoV-2 restriction occurred independently of IFITM3 S-palmitoylation, indicating a restrictive capacity distinct from reported inhibition of other viruses. In contrast, the IFITM3 amphipathic helix and its amphipathic properties were required for virus restriction. Mutation of residues within the IFITM3 endocytosis-promoting YxxФ motif converted human IFITM3 into an enhancer of SARS-CoV-2 infection, and cell-to-cell fusion assays confirmed the ability of endocytic mutants to enhance Spike-mediated fusion with the plasma membrane. Overexpression of TMPRSS2, which increases plasma membrane fusion versus endosome fusion of SARS-CoV-2, attenuated IFITM3 restriction and converted amphipathic helix mutants into infection enhancers. In sum, we uncover new pro- and anti-viral mechanisms of IFITM3, with clear distinctions drawn between enhancement of viral infection at the plasma membrane and amphipathicity-based mechanisms used for endosomal SARS-CoV-2 restriction.


Subject(s)
Antigens, Differentiation/genetics , COVID-19/genetics , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , Cell Line , Chlorocebus aethiops , Humans , Mice , Mutation , SARS-CoV-2/physiology , Serine Endopeptidases , Virus Internalization
16.
PLoS Pathog ; 17(1): e1009161, 2021 01.
Article in English | MEDLINE | ID: covidwho-1388959

ABSTRACT

We report the emergency development and application of a robust serologic test to evaluate acute and convalescent antibody responses to SARS-CoV-2 in Argentina. The assays, COVIDAR IgG and IgM, which were produced and provided for free to health authorities, private and public health institutions and nursing homes, use a combination of a trimer stabilized spike protein and the receptor binding domain (RBD) in a single enzyme-linked immunosorbent assay (ELISA) plate. Over half million tests have already been distributed to detect and quantify antibodies for multiple purposes, including assessment of immune responses in hospitalized patients and large seroprevalence studies in neighborhoods, slums and health care workers, which resulted in a powerful tool for asymptomatic detection and policy making in the country. Analysis of antibody levels and longitudinal studies of symptomatic and asymptomatic SARS-CoV-2 infections in over one thousand patient samples provided insightful information about IgM and IgG seroconversion time and kinetics, and IgM waning profiles. At least 35% of patients showed seroconversion within 7 days, and 95% within 45 days of symptoms onset, with simultaneous or close sequential IgM and IgG detection. Longitudinal studies of asymptomatic cases showed a wide range of antibody responses with median levels below those observed in symptomatic patients. Regarding convalescent plasma applications, a protocol was standardized for the assessment of end point IgG antibody titers with COVIDAR with more than 500 plasma donors. The protocol showed a positive correlation with neutralizing antibody titers, and was used for clinical trials and therapies across the country. Using this protocol, about 80% of convalescent donor plasmas were potentially suitable for therapies. Here, we demonstrate the importance of providing a robust and specific serologic assay for generating new information about antibody kinetics in infected individuals and mitigation policies to cope with pandemic needs.


Subject(s)
COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation , Argentina/epidemiology , COVID-19/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies
17.
Virol J ; 18(1): 1, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1388776

ABSTRACT

BACKGROUND: Virus neutralization by antibodies is an important prognostic factor in many viral diseases. To easily and rapidly measure titers of neutralizing antibodies in serum or plasma, we developed pseudovirion particles composed of the spike glycoprotein of SARS-CoV-2 incorporated onto murine leukemia virus capsids and a modified minimal murine leukemia virus genome encoding firefly luciferase. This assay design is intended for use in laboratories with biocontainment level 2 and therefore circumvents the need for the biocontainment level 3 that would be required for replication-competent SARS-CoV-2 virus. To validate the pseudovirion assay, we set up comparisons with other available antibody tests including those from Abbott, Euroimmun and Siemens, using archived, known samples. RESULTS: 11 out of 12 SARS-CoV-2-infected patient serum samples showed neutralizing activity against SARS-CoV-2-spike pseudotyped MLV viruses, with neutralizing titers-50 (NT50) that ranged from 1:25 to 1:1,417. Five historical samples from patients hospitalized for severe influenza infection in 2016 tested negative in the neutralization assay (NT50 < 25). Three serum samples with high neutralizing activity against SARS-CoV-2/MLV pseudoviruses showed no detectable neutralizing activity (NT50 < 25) against SARS-CoV-1/MLV pseudovirions. We also compared the semiquantitative Siemens SARS-CoV-2 IgG test, which measures binding of IgG to recombinantly expressed receptor binding domain of SARS-CoV-2 spike glycoprotein with the neutralization titers obtained in the pseudovirion assay and the results show high concordance between the two tests (R2 = 0.9344). CONCLUSIONS: SARS-CoV-2 spike/MLV pseudovirions provide a practical means of assessing neutralizing activity of antibodies in serum or plasma from infected patients under laboratory conditions consistent with biocontainment level 2. This assay offers promise also in evaluating immunogenicity of spike glycoprotein-based candidate vaccines in the near future.


Subject(s)
COVID-19/immunology , Leukemia/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Virion/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , HEK293 Cells , Humans , Immunoglobulin G/blood , Mice
18.
Viruses ; 12(11)2020 10 26.
Article in English | MEDLINE | ID: covidwho-1389519

ABSTRACT

Convalescent plasma from SARS-CoV-2 infected individuals and monoclonal antibodies were shown to potently neutralize viral and pseudoviral particles carrying the S glycoprotein. However, a non-negligent proportion of plasma samples from infected individuals, as well as S-specific monoclonal antibodies, were reported to be non-neutralizing despite efficient interaction with the S glycoprotein in different biochemical assays using soluble recombinant forms of S or when expressed at the cell surface. How neutralization relates to the binding of S glycoprotein in the context of viral particles remains to be established. Here, we developed a pseudovirus capture assay (VCA) to measure the capacity of plasma samples or antibodies immobilized on ELISA plates to bind to membrane-bound S glycoproteins from SARS-CoV-2 expressed at the surface of lentiviral particles. By performing VCA, ELISA, and neutralization assays, we observed a strong correlation between these parameters. However, while we found that plasma samples unable to capture viral particles did not neutralize, capture did not guarantee neutralization, indicating that the capacity of antibodies to bind to the S glycoprotein at the surface of pseudoviral particles is required but not sufficient to mediate neutralization. Altogether, our results highlight the importance of better understanding the inactivation of S by plasma and neutralizing antibodies.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19 , Cell Line , Convalescence , HEK293 Cells , Humans , Neutralization Tests , Pandemics , SARS-CoV-2 , Time Factors
19.
Front Microbiol ; 11: 2014, 2020.
Article in English | MEDLINE | ID: covidwho-1389202

ABSTRACT

Electron microscopy is a powerful tool in the field of microbiology. It has played a key role in the rapid diagnosis of viruses in patient samples and has contributed significantly to the clarification of virus structure and function, helping to guide the public health response to emerging viral infections. In the present study, we used scanning electron microscopy (SEM) to study the infectious cycle of SARS-CoV-2 in Vero E6 cells and we controlled some key findings by classical transmission electronic microscopy (TEM). The replication cycle of the virus was followed from 1 to 36 h post-infection. Our results revealed that SARS-CoV-2 infected the cells through membrane fusion. Particles are formed in the peri-nuclear region from a budding of the endoplasmic reticulum-Golgi apparatus complex into morphogenesis matrix vesicae. New SARS-CoV-2 particles were expelled from the cells, through cell lysis or by fusion of virus containing vacuoles with the cell plasma membrane. Overall, this cycle is highly comparable to that of SARS-CoV. By providing a detailed and complete SARS-CoV-2 infectious cycle, SEM proves to be a very rapid and efficient tool compared to classical TEM.

20.
J Infect Dis ; 224(1): 21-30, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1379462

ABSTRACT

The differentiation between influenza and coronavirus disease 2019 (COVID-19) could constitute a diagnostic challenge during the ongoing winter owing to their clinical similitude. Thus, novel biomarkers are required to enable making this distinction. Here, we evaluated whether the surfactant protein D (SP-D), a collectin produced at the alveolar epithelium with known immune properties, was useful to differentiate pandemic influenza A(H1N1) from COVID-19 in critically ill patients. Our results revealed high serum SP-D levels in patients with severe pandemic influenza but not those with COVID-19. This finding was validated in a separate cohort of mechanically ventilated patients with COVID-19 who also showed low plasma SP-D levels. However, plasma SP-D levels did not distinguish seasonal influenza from COVID-19 in mild-to-moderate disease. Finally, we found that high serum SP-D levels were associated with death and renal failure among severe pandemic influenza cases. Thus, our studies have identified SP-D as a unique biomarker expressed during severe pandemic influenza but not COVID-19.


Subject(s)
COVID-19/genetics , Gene Expression , Host-Pathogen Interactions/genetics , Influenza A Virus, H1N1 Subtype , Influenza, Human/genetics , Pulmonary Surfactant-Associated Protein D/genetics , SARS-CoV-2 , Adult , Aged , Biomarkers , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Coinfection , Enzyme-Linked Immunosorbent Assay , Female , Humans , Influenza, Human/diagnosis , Influenza, Human/virology , Male , Middle Aged , Prognosis , Pulmonary Surfactant-Associated Protein D/blood , Severity of Illness Index , Symptom Assessment , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL