Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Tanaffos ; 19(4): 291-299, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1801409

ABSTRACT

BACKGROUND: Inflammatory mediators are an important component in the pathophysiology of the coronavirus disease 2019 (COVID-19). This study aimed to assess the effects of reducing inflammatory mediators using hemoperfusion (HP) and continuous renal replacement therapy (CRRT) on the mortality of patients with COVID-19. MATERIALS AND METHODS: Twelve patients with confirmed diagnosis of COVID-19 were included. All patients had acute respiratory distress syndrome (ARDS). Patients were divided into three groups, namely, HP, CRRT and HP+CRRT. The primary outcome was mortality and the secondary outcomes were oxygenation and reduction in inflammatory mediators at the end of the study. RESULTS: Patients were not different at baseline in demographics, inflammatory cytokine levels, and the level of acute phase reactants. Half of the patients (3 out of 6) in the HP+CRRT group survived along with the survival of one patient (1 out of 2) in the HP group. All four patients in the CRRT group died. Serum creatinine (SCr), Interleukin-1 (IL1), Interleukin-6 (IL6), Interleukin-8 (IL8), partial pressure of oxygen (PaO2), O2 saturation (O2 sat), and hemodynamic parameters improved over time in HP+CRRT and CRRT groups, but no significant difference was observed in the HP group (All Ps > 0.05). CONCLUSION: Combined HP and CRRT demonstrated the best result in terms of mortality, reduction of inflammatory mediators and oxygenation. Further investigations are needed to explore the role of HP+CRRT in COVID-19 patients.

2.
Crit Care Explor ; 2(9): e0207, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1795073

ABSTRACT

OBJECTIVES: To determine whether placental cell therapy PLacental eXpanded (PLX)-PAD (Pluristem Therapeutics, Haifa, Israel) may be beneficial to treating critically ill patients suffering from acute respiratory distress syndrome due to coronavirus disease 2019. DESIGN: Retrospective case report of critically ill coronavirus disease 2019 patients treated with PLacental eXpanded (PLX)-PAD from March 26, 2020, to April 4, 2020, with follow-up through May 2, 2020. SETTING: Four hospitals in Israel (Rambam Health Care Campus, Bnai Zion Medical Center, and Samson Assuta Ashdod University Hospital), and Holy Name Medical Center in New Jersey. PATIENTS: Eight critically ill patients on invasive mechanical ventilation, suffering from acute respiratory distress syndrome due to coronavirus disease 2019. INTERVENTIONS: Intramuscular injection of PLacental eXpanded (PLX)-PAD (300 × 106 cells) given as one to two treatments. MEASUREMENTS AND MAIN RESULTS: Mortality, time to discharge, and changes in blood and respiratory variables were monitored during hospitalization to day 17 posttreatment. Of the eight patients treated (median age 55 yr, seven males and one female), five were discharged, two remained hospitalized, and one died. By day 3 postinjection, mean C-reactive protein fell 45% (240.3-131.3 mg/L; p = 0.0019) and fell to 77% by day 5 (56.0 mg/L; p < 0.0001). Pao2/Fio2 improved in 5:8 patients after 24-hour posttreatment, with similar effects 48-hour posttreatment. A decrease in positive end-expiratory pressure and increase in pH were statistically significant between days 0 and 14 (p = 0.0032 and p = 0.00072, respectively). A decrease in hemoglobin was statistically significant for days 0-5 and 0-14 (p = 0.015 and p = 0.0028, respectively), whereas for creatinine, it was statistically significant between days 0 and 14 (p = 0.032). CONCLUSIONS: Improvement in several variables such as C-reactive protein, positive end-expiratory pressure, and Pao2/Fio2 was observed following PLacental eXpanded (PLX)-PAD treatment, suggesting possible therapeutic effect. However, interpretation of the data is limited due to the small sample size, use of concomitant investigational therapies, and the uncontrolled study design. The efficacy of PLacental eXpanded (PLX)-PAD in coronavirus disease 2019 should be further evaluated in a controlled clinical trial.

3.
Thromb J ; 18: 22, 2020.
Article in English | MEDLINE | ID: covidwho-1793931

ABSTRACT

BACKGROUND: Hospitals in the Middle East Gulf region have experienced an influx of COVID-19 patients to their medical wards and intensive care units. The hypercoagulability of these patients has been widely reported on a global scale. However, many of the experimental treatments used to manage the various complications of COVID-19 have not been widely studied in this context. The effect of the current treatment protocols on patients' diagnostic and prognostic biomarkers may thus impact the validity of the algorithms adopted. CASE PRESENTATION: In this case series, we report four cases of venous thromboembolism and 1 case of arterial thrombotic event, in patients treated with standard or intensified prophylactic doses of unfractionated heparin or low molecular weight heparin at our institution. Tocilizumab has been utilized as an add-on therapy to the standard of care to treat patients with SARS-CoV-2 associated acute respiratory distress syndrome, in order to dampen the hyperinflammatory response. It is imperative to be aware that this drug may be masking the inflammatory markers (e.g. IL6, CRP, fibrinogen, and ferritin), without reducing the risk of thrombotic events in this population, creating instead a façade of an improved prognostic outcome. However, the D-dimer levels remained prognostically reliable in these cases, as they were not affected by the drug and continued to be at the highest level until event occurrence. CONCLUSIONS: In the setting of tocilizumab therapy, traditional prognostic markers of worsening infection and inflammation, and thus potential risk of acute thrombosis, should be weighed carefully as they may not be reliable for prognosis and may create a façade of an improved prognostic outcome insteasd. Additionally, the fact that thrombotic events continued to be observed despite decrease in inflammatory markers and the proactive anticoagulative approach adopted, raises more questions about the coagulative mechanisms at play in COVID-19, and the appropriate management strategy.

4.
Indian J Crit Care Med ; 24(10): 914-918, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1792087

ABSTRACT

BACKGROUND: The World Health Organization (WHO) has declared SARS-CoV-2 as pandemic. Patients with COVID-19 present mainly with respiratory symptoms. Prone position has been traditionally used in acute respiratory distress syndrome (ARDS) to improve oxygenation and prevent barotrauma in ventilated patients. Awake proning is being used as an investigational therapy in COVID to defer invasive ventilation, improve oxygenation, and outcomes. Hence, we conducted a retrospective case study to look for benefits of awake proning with oxygen therapy in non-intubated COVID patients. MATERIALS AND METHODS: A retrospective case study of 15 COVID patients admitted from June 15 to July 1, 2020 to HDU in our hospital was conducted. Cooperative patients who were hemodynamically stable and SpO2 < 90% on presentation were included. Oxygen was administered through facemask, non-rebreathing mask and noninvasive ventilation to patients as per requirement. Patients were encouraged to maintain prone position and target time was 10-12 hours/day. SpO2 and P/f ratio in supine and prone position was observed till discharge. Primary target was SpO2 > 95% and P/f > 200 mm Hg. Other COVID therapies were used according to institutional protocol. RESULTS: The mean SpO2 on room air on admission was 80%. In day 1 to 3, the mean P/f ratio in supine position was 98.8 ± 29.7 mm Hg which improved to 136.6 ± 38.8 mm Hg after proning (p = 0.005). The difference was significant from day 1 to 10. Two patients were intubated. The mean duration of stay was 11 days. CONCLUSION: Awake prone positioning showed marked improvement in P/f ratio and SpO2 in COVID-19 patients with improvement in clinical symptoms with reduced rate of intubation. HIGHLIGHTS: Prone position ventilation improves oxygenation by reducing V/Q mismatch.Awake prone positioning has been used along with high-flow oxygen therapy in recent pandemic of SARS-CoV-2 virus for management of mild to moderate cases. HOW TO CITE THIS ARTICLE: Singh P, Jain P, Deewan H. Awake Prone Positioning in COVID-19 Patients. Indian J Crit Care Med 2020;24(10):914-918.

5.
Clin Infect Dis ; 74(3): 479-489, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684541

ABSTRACT

BACKGROUND: Increased inflammation has been well defined in coronavirus disease 2019 (COVID-19), while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases, and acute respiratory distress syndrome, a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets. METHODS: Blood was obtained serially from critically ill COVID-19 patients for 11 days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis, and cytokine levels were assessed. Lung tissue was obtained immediately postmortem for immunostaining. PubMed searches for neutrophils, lung, and COVID-19 yielded 10 peer-reviewed research articles in English. RESULTS: Elevations in neutrophil-associated cytokines interleukin 8 (IL-8) and interleukin 6, and general inflammatory cytokines IFN-inducible protien-19, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 1ß, interleukin 10, and tumor necrosis factor, were identified both at first measurement and across hospitalization (P < .0001). COVID-19 neutrophils had exaggerated oxidative burst (P < .0001), NETosis (P < .0001), and phagocytosis (P < .0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs available for examination (2 of 5). While elevations in IL-8 and absolute neutrophil count correlated with disease severity, plasma IL-8 levels alone correlated with death. CONCLUSIONS: Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. Importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data show that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.


Subject(s)
COVID-19 , Extracellular Traps , Critical Illness , Humans , Neutrophil Activation , Neutrophils , Phenotype , SARS-CoV-2
6.
Adv Skin Wound Care ; 34(8): 1-3, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1201587

ABSTRACT

ABSTRACT: Prone positioning is recognized for its efficacy in the treatment of acute respiratory distress syndrome related to COVID-19. Here the authors present a case of a facial pressure injury and buried dentition that occurred as a result of prolonged prone positioning in a patient who was COVID-19 positive. The patient was treated with primary closure of the injury and pressure offloading.


Subject(s)
COVID-19/complications , Facial Injuries/surgery , Patient Positioning/adverse effects , Pressure Ulcer/surgery , Prone Position , Aged , COVID-19/therapy , Dentition , Facial Injuries/diagnosis , Facial Injuries/etiology , Humans , Male , Pressure Ulcer/diagnosis , Pressure Ulcer/etiology , Respiration, Artificial/adverse effects
7.
Aging (Albany NY) ; 13(5): 7020-7034, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1106628

ABSTRACT

BACKGROUND: The inflammatory reaction is the main cause of acute respiratory distress syndrome and multiple organ failure in patients with Coronavirus disease 2019, especially those with severe and critical illness. Several studies suggested that high-dose vitamin C reduced inflammatory reaction associated with sepsis and acute respiratory distress syndrome. This study aimed to determine the efficacy and safety of high-dose vitamin C in Coronavirus disease 2019. METHODS: We included 76 patients with Coronavirus disease 2019, classified into the high-dose vitamin C group (loading dose of 6g intravenous infusion per 12 hr on the first day, and 6g once for the following 4 days, n=46) and the standard therapy group (standard therapy alone, n=30). RESULTS: The risk of 28-day mortality was reduced for the high-dose vitamin C versus the standard therapy group (HR=0.14, 95% CI, 0.03-0.72). Oxygen support status was improved more with high-dose vitamin C than standard therapy (63.9% vs 36.1%). No safety events were associated with high-dose vitamin C therapy. CONCLUSION: High-dose vitamin C may reduce the mortality and improve oxygen support status in patients with Coronavirus disease 2019 without adverse events.


Subject(s)
Ascorbic Acid/therapeutic use , COVID-19 Drug Treatment , Vitamins/therapeutic use , Aged , Ascorbic Acid/administration & dosage , Ascorbic Acid/adverse effects , COVID-19/diagnosis , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Treatment Outcome , Vitamins/administration & dosage , Vitamins/adverse effects
8.
Front Med (Lausanne) ; 8: 604263, 2021.
Article in English | MEDLINE | ID: covidwho-1106028

ABSTRACT

Corticosteroid is commonly used to reduce damage from inflammatory reactions in coronavirus disease 2019 (COVID-19). We aim to determine the outcomes of corticosteroid use in critically ill COVID-19 patients. Ninety six critically ill patients, hospitalized in 14 hospitals outside Wuhan from January 16 to March 30, 2020 were enrolled in this study. Among 96 critical patients, 68 were treated with corticosteroid (CS group), while 28 were not treated with corticosteroids (non-CS group). Multivariable logistic regression were performed to determine the possible correlation between corticosteroid use and the treatment outcomes. Forty-six (68%) patients in the CS group died compared to six (21%) of the non-CS group. Corticosteroid use was also associated with the development of ARDS, exacerbation of pulmonary fibrosis, longer hospital stay and virus clearance time. On admission, no difference in laboratory findings between the CS and the non-CS group was observed. After corticosteroid treatment, patients treated with corticosteroids were associated with higher counts of white blood cells, neutrophils, neutrophil-to-lymphocyte ratio, alanine aminotransferase level and Sequential Organ Failure Assessment score. In conclusion, corticosteroid use in critically ill COVID-19 patients was associated with a much higher case fatality rate. Frequent incidence of liver injury and multi-organ failure in corticosteroid treated patients may have contributed to the adverse outcomes. The multi-organ failure is likely caused by more persistent SARS-CoV-2 infection and higher viral load, due to the inhibition of immune surveillance by corticosteroid.

9.
Ann Surg ; 276(6): e659-e663, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-1101934

ABSTRACT

OBJECTIVE: COVID-19 can cause ARDS that is rapidly progressive, severe, and refractory to conventional therapies. ECMO can be used as a supportive therapy to improve outcomes but evidence-based guidelines have not been defined. SUMMARY BACKGROUND DATA: Initial mortality rates associated with ECMO for ARDS in COVID-19 were high, leading some to believe that there was no role for ECMO in this viral illness. With more experience, outcomes have improved. The ideal candidate, timing of cannulation, and best postcannulation management strategy, however, has not yet been defined. METHODS: We conducted a retrospective review from April 1 to July 31, 2020 of the first 25 patients with COVID-19 associated ARDS placed on V-V ECMO at our institution. We analyzed the differences between survivors to hospital discharge and those who died. Modified Poisson regression was used to model adjusted risk factors for mortality. RESULTS: Forty-four patients (11/25) survived to hospital discharge. Survivors were significantly younger (40.5 years vs 53.1 years; P < 0.001) with no differences between cohorts in mean body mass index, diabetes, or PaO2:-FiO2 at cannulation. Survivors had shorter duration from symptom onset to cannulation (12.5 days vs 19.9 days, P = 0.028) and shorter duration of intensive care unit (ICU) length of stay before cannulation (5.6 days vs 11.7 days, P = 0.045). Each day from ICU admission to cannulation increased the adjusted risk of death by 4% and each year increase in age increased the adjusted risk 6%. CONCLUSIONS: ECMO has a role in severe, refractory ARDS associated with COVID-19. Increasing age and time from ICU admission were risk factors for mortality and should be considered in patient selection. Further studies are needed to define best practices for V-V ECMO use in COVID-19.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , COVID-19/complications , COVID-19/therapy , Treatment Outcome , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Intensive Care Units , Catheterization , Retrospective Studies
10.
Eur Rev Med Pharmacol Sci ; 25(3): 1743-1751, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1102761

ABSTRACT

OBJECTIVE: This study evaluated the ability of mid-regional proadrenomedullin (MR-proADM) to identify disease severity in Coronavirus disease 2019 (COVID-19) patients in comparison to conventional inflammatory biomarkers and clinical scores. PATIENTS AND METHODS: In an observational trial, COVID-19 acute respiratory distress syndrome (ARDS) patients were enrolled. MR-proADM, C-reactive protein (CRP), procalcitonin (PCT) and lactic acid (LA) were measured in all patients at admission (T0), at 24 hours (T1) and in the third (T3) and fifth day (T5) of hospitalization. The aims of this study were to determine the role of MR-proADM to detect patients with high risk of mortality and compare the prognostic value of MR-proADM with commonly used clinical scores (Sequential Organ Failure Assessment score - SOFA score, Acute Physiologic Assessment and Chronic Health Evaluation II score - APACHE II score, and Simplified Acute Physiological score II - SAPS II score). RESULTS: Twenty-one COVID-19 ARDS patients admitted to the Intermediate Care Unit (IMCU) were enrolled. The median MR-proADM values were 2.28, 2.41, 1.96 and 1.89 nmol/L at T0, T1, T3 and T5, respectively. The 30-day all-cause mortality rate was 52.4%. Mean MR-proADM T0 value was significantly higher in non-survivors compared with survivors (3.5 vs. 1.1 nmol/L, p < 0.05). No significant differences were found for the other inflammatory biomarkers. In terms of the area under the receiver-operating characteristic curve (AUC), MR-proADM showed a similar discriminatory power compared with APACHE II, SOFA and SAPS II score (0.81, 0.91, 0.70 and 0.78, respectively). The optimal MR-proADM cut-point cut-off point was 1.07 nmol/L, which corresponds to a sensitivity of 91% and a specificity of 71%. CONCLUSIONS: MR-proADM, in addition to the clinical scores, could be useful to predict outcome in COVID-19 ARDS patients.


Subject(s)
Adrenomedullin/blood , COVID-19/blood , Protein Precursors/blood , SARS-CoV-2 , Severe Acute Respiratory Syndrome/blood , APACHE , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/mortality , Humans , Italy , Organ Dysfunction Scores , Prognosis , ROC Curve , Severe Acute Respiratory Syndrome/mortality , Severe Acute Respiratory Syndrome/virology
11.
Int J Clin Pract ; 75(7): e14112, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1102022

ABSTRACT

BACKGROUND: Current literature on COVID-19 pandemic has identified diabetes as a common comorbidity in patients affected. However, the evidence that diabetes increases the risk of infection, effect of diabetes on outcomes and characteristics of patients at risk is not clear. OBJECTIVES: To explore the prevalence of diabetes in COVID-19 pandemic, effect of diabetes on clinical outcomes and to characterise the patients with diabetes affected by COVID-19. METHODS: A literature review of articles published in English language and reported outcomes on prevalence and effect of diabetes on outcomes and patients' characteristics. RESULTS: The prevalence of diabetes in COVID-19 patients appears similar to that in the general population. The evidence of diabetes increasing the risk of severe infection and adverse outcomes is substantial. The progression of the disease into acute respiratory distress syndrome, the requirement for intensive care admission or mechanical ventilation and mortality all have been increased by the presence of diabetes. Patients with diabetes at risk of COVID-19 appear to be obese, of older age, have uncontrolled glycaemia and have coexisting comorbidities especially cardiovascular disease and hypertension. Tight glycaemic control on admission to hospital using insulin infusion has shown some beneficial effects; however, the role of hypoglycaemic medications in the management of these patients is not yet clear. CONCLUSION: High risk group should be identified and prioritised in future vaccination programmes. Future research is required to optimise management of patients with diabetes and develop new ways to manage them via technological developments such as telecare.


Subject(s)
COVID-19 , Diabetes Mellitus , Aged , Comorbidity , Diabetes Mellitus/epidemiology , Hospitalization , Humans , Pandemics , Prevalence , Respiration, Artificial , SARS-CoV-2
12.
Sci Immunol ; 6(56)2021 02 23.
Article in English | MEDLINE | ID: covidwho-1099742

ABSTRACT

Hyperinflammation contributes to lung injury and subsequent acute respiratory distress syndrome (ARDS) with high mortality in patients with severe coronavirus disease 2019 (COVID-19). To understand the underlying mechanisms involved in lung pathology, we investigated the role of the lung-specific immune response. We profiled immune cells in bronchoalveolar lavage fluid and blood collected from COVID-19 patients with severe disease and bacterial pneumonia patients not associated with viral infection. By tracking T cell clones across tissues, we identified clonally expanded tissue-resident memory-like Th17 cells (Trm17 cells) in the lungs even after viral clearance. These Trm17 cells were characterized by a a potentially pathogenic cytokine expression profile of IL17A and CSF2 (GM-CSF). Interactome analysis suggests that Trm17 cells can interact with lung macrophages and cytotoxic CD8+ T cells, which have been associated with disease severity and lung damage. High IL-17A and GM-CSF protein levels in the serum of COVID-19 patients were associated with a more severe clinical course. Collectively, our study suggests that pulmonary Trm17 cells are one potential orchestrator of the hyperinflammation in severe COVID-19.


Subject(s)
COVID-19/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Immunologic Memory , Lung/immunology , Th17 Cells/metabolism , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/complications , COVID-19/pathology , Clone Cells , Humans , Inflammation/etiology , Inflammation/immunology , Lung/pathology , Myeloid Cells , Pneumonia, Bacterial/immunology , Th17 Cells/immunology
13.
J Interferon Cytokine Res ; 41(2): 37-43, 2021 02.
Article in English | MEDLINE | ID: covidwho-1096480

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has been a major threat to global public health. In Indonesia, the cases have rapidly increased, and the case fatality rate remains high. With COVID-19, most of the deaths have been caused by acute respiratory distress syndrome and dysregulation of the immune response. A lung biopsy from a patient with COVID-19 showed inflammatory cellular infiltration with diffuse alveolar damage. Massive pulmonary destruction has also been reported as a result of highly increased levels of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, interferon-γ (IFN-γ), induced protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1). IL-6 is an inflammatory cytokine produced by various cell types, including immune cells and nonleukocytes, such as endothelial cells, fibroblasts, epithelial cells, type II pneumocytes, and certain tumor cells. Several studies have shown that IL-6 contributes to the severity and mortality of COVID-19. In this review, we would like to explore the immune response in COVID-19 and the role of IL-6 in the immunopathogenesis of COVID-19.


Subject(s)
COVID-19/pathology , Receptors, Interleukin-6/antagonists & inhibitors , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/prevention & control , Humans , Indonesia , Interleukin-6/immunology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Janus Kinase Inhibitors/therapeutic use , Nitriles , Pyrazoles/therapeutic use , Pyrimidines , SARS-CoV-2/drug effects , Signal Transduction/immunology , COVID-19 Drug Treatment
14.
Neurocrit Care ; 34(3): 739-747, 2021 06.
Article in English | MEDLINE | ID: covidwho-1095736

ABSTRACT

BACKGROUND: Hypercoagulability in Coronavirus Disease 2019 (COVID-19) causes deep vein thrombosis and pulmonary embolism necessitating systemic anticoagulation. Case reports of intracerebral hemorrhages in ventilated COVID-19 patients warrant precaution. It is unclear, however, if COVID-19 patients with acute respiratory distress syndrome (ARDS) with or without veno-venous extracorporeal membrane oxygenation therapy (VV-ECMO) have more intracerebral hemorrhages (ICH) compared to other ARDS patients. METHODS: We conducted a retrospective observational single-center study enrolling all patients with ARDS from 01/2018 to 05/2020. PCR-positive SARS-CoV-2 patients with ARDS were allocated to the COVID-19 group. Propensity score matching was performed for age, VV-ECMO, and bleeding risk. RESULTS: A total of 163 patients with moderate or severe ARDS were identified, 47 (28.8%) in the COVID-19 group, and 116 (71.2%) in the non-COVID-19 group. In 63/163 cases (38.7%), VV-ECMO therapy was required. The ICU survival was 52.8%. COVID-19 patients were older, more often male, and exhibited a lower SOFA score, but the groups showed similar rates of VV-ECMO therapy. Treatments with antiplatelet agents (p = 0.043) and therapeutic anticoagulation (p = 0.028) were significantly more frequent in the COVID-19 patients. ICH was detected in 22 patients (13.5%) with no statistical difference between the groups (11.2 vs. 19.1% without and with SARS-CoV-2, respectively, p = 0.21). Propensity score matching confirmed similar rates of ICH in both groups (12.8 vs. 19.1% without and with SARS-CoV-2, respectively, p = 0.57), thus leveling out possible confounders. CONCLUSIONS: Intracerebral hemorrhage was detected in every tenth patient with ARDS. Despite statistically higher rates of antiplatelet therapy and therapeutic anticoagulation in COVID-19 patients, we found a similar rate of ICH in patients with ARDS due to COVID-19 compared to other causes of ARDS.


Subject(s)
COVID-19/complications , Cerebral Hemorrhage/epidemiology , Cerebral Hemorrhage/virology , Respiratory Distress Syndrome/virology , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/therapy , Cerebral Hemorrhage/therapy , Critical Care , Extracorporeal Membrane Oxygenation , Female , Germany , Humans , Length of Stay , Male , Middle Aged , Propensity Score , Registries , Respiration, Artificial , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy , Retrospective Studies , Risk Factors , Survival Rate , Young Adult
15.
Int Rev Immunol ; 41(2): 217-230, 2022.
Article in English | MEDLINE | ID: covidwho-1093424

ABSTRACT

The coronavirus disease 2019 (COVID-19) triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) erupted in Hubei Province of China in December 2019 and has become a pandemic. Severe COVID-19 patients who suffer from acute respiratory distress syndrome (ARDS) and multi-organ dysfunction have high mortality. Several studies have shown that this is closely related to the cytokine release syndrome (CRS), often loosely referred to as cytokine storm. IL-6 is one of the key factors and its level is positively correlated with the severity of the disease. The molecular mechanisms for CRS in COVID-19 are related to the effects of the S-protein and N-protein of the virus and its ability to trigger NF-κB activation by disabling the inhibitory component IκB. This leads to activation of immune cells and the secretion of proinflammatory cytokines such as IL-6 and TNF-α. Other mechanisms related to IL-6 include its interaction with GM-CSF and interferon responses. The pivotal role of IL-6 makes it a target for therapeutic agents and studies on tocilizumab are already ongoing. Other possible targets of treating CRS in COVID-19 include IL-1ß and TNF-α. Recently, reports of a CRS like illness called multisystem inflammatory syndrome in children (MIS-C) in children have surfaced, with a variable presentation which in some cases resembles Kawasaki disease. It is likely that the immunological derangement and cytokine release occurring in COVID-19 cases is variable, or on a spectrum, that can potentially be governed by genetic factors. Currently, there are no approved biological modulators for the treatment of COVID-19, but the urgency of the pandemic has led to numerous clinical trials worldwide. Ultimately, there is great promise that an anti-inflammatory modulator targeting a cytokine storm effect may prove to be very beneficial in reducing morbidity and mortality in COVID-19 patients.


Subject(s)
COVID-19 , Cytokine Release Syndrome , COVID-19/complications , Humans , Morbidity , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
16.
Front Immunol ; 12: 603563, 2021.
Article in English | MEDLINE | ID: covidwho-1090415

ABSTRACT

The high infection rate and rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) make it a world-wide pandemic. Individuals infected by the virus exhibited different degrees of symptoms, and most convalescent individuals have been shown to develop both cellular and humoral immune responses. However, virus-specific adaptive immune responses in severe patients during acute phase have not been thoroughly studied. Here, we found that in a group of COVID-19 patients with acute respiratory distress syndrome (ARDS) during hospitalization, most of them mounted SARS-CoV-2-specific antibody responses, including neutralizing antibodies. However, compared to healthy controls, the percentages and absolute numbers of both NK cells and CD8+ T cells were significantly reduced, with decreased IFNγ expression in CD4+ T cells in peripheral blood from severe patients. Most notably, their peripheral blood lymphocytes failed in producing IFNγ against viral proteins. Thus, severe COVID-19 patients at acute infection stage developed SARS-CoV-2-specific antibody responses but were impaired in cellular immunity, which emphasizes on the role of cellular immunity in COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Killer Cells, Natural/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cell Count , Cells, Cultured , Disease Progression , Female , Humans , Immunity, Cellular , Interferon-gamma/metabolism , Male , Middle Aged
17.
Indian J Ophthalmol ; 69(3): 770-772, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1089032

ABSTRACT

The severity of coronavirus disease 2019 (COVID-19) has been frequently associated with acute respiratory distress syndrome. In this case report, an atypical presentation of COVID-19 in young with a thromboembolic event is reported. The patient initially presented with fever of unknown origin not responding to therapy. On examination, visual acuity was 20/20 in both eyes with bilateral disc oedema and disc haemorrhage in the right eye. Erythrocyte sedimentation rate, C-reactive protein and D-Dimer were elevated. Magnetic resonance venography (MRV) revealed features suggestive of cerebral venous thrombosis. Timely diagnosis and intervention have prevented a fatal outcome.


Subject(s)
COVID-19/epidemiology , Papilledema/etiology , Sinus Thrombosis, Intracranial/epidemiology , Visual Acuity , COVID-19/complications , Comorbidity , Female , Humans , Magnetic Resonance Imaging , Pandemics , Papilledema/diagnosis , Phlebography , SARS-CoV-2 , Sinus Thrombosis, Intracranial/complications , Sinus Thrombosis, Intracranial/diagnosis , Young Adult
18.
Artif Organs ; 45(5): 495-505, 2021 May.
Article in English | MEDLINE | ID: covidwho-1085292

ABSTRACT

Extracorporeal life support (ECLS) is a means to support patients with acute respiratory failure. Initially, recommendations to treat severe cases of pandemic coronavirus disease 2019 (COVID-19) with ECLS have been restrained. In the meantime, ECLS has been shown to produce similar outcomes in patients with severe COVID-19 compared to existing data on ARDS mortality. We performed an international email survey to assess how ECLS providers worldwide have previously used ECLS during the treatment of critically ill patients with COVID-19. A questionnaire with 45 questions (covering, e.g., indication, technical aspects, benefit, and reasons for treatment discontinuation), mostly multiple choice, was distributed by email to ECLS centers. The survey was approved by the European branch of the Extracorporeal Life Support Organization (ELSO); 276 ECMO professionals from 98 centers in 30 different countries on four continents reported that they employed ECMO for very severe COVID-19 cases, mostly in veno-venous configuration (87%). The most common reason to establish ECLS was isolated hypoxemic respiratory failure (50%), followed by a combination of hypoxemia and hypercapnia (39%). Only a small fraction of patients required veno-arterial cannulation due to heart failure (3%). Time on ECLS varied between less than 2 and more than 4 weeks. The main reason to discontinue ECLS treatment prior to patient's recovery was lack of clinical improvement (53%), followed by major bleeding, mostly intracranially (13%). Only 4% of respondents reported that triage situations, lack of staff or lack of oxygenators, were responsible for discontinuation of ECLS support. Most ECLS physicians (51%, IQR 30%) agreed that patients with COVID-19-induced ARDS (CARDS) benefitted from ECLS. Overall mortality of COVID-19 patients on ECLS was estimated to be about 55%. ECLS has been utilized successfully during the COVID-19 pandemic to stabilize CARDS patients in hypoxemic or hypercapnic lung failure. Age and multimorbidity limited the use of ECLS. Triage situations were rarely a concern. ECLS providers stated that patients with severe COVID-19 benefitted from ECLS.


Subject(s)
COVID-19/therapy , Extracorporeal Membrane Oxygenation , Practice Patterns, Physicians'/statistics & numerical data , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/therapy , Critical Illness , Humans , Internationality , Respiratory Distress Syndrome/virology , Respiratory Insufficiency/virology , SARS-CoV-2 , Surveys and Questionnaires
19.
Trials ; 22(1): 131, 2021 Feb 11.
Article in English | MEDLINE | ID: covidwho-1083070

ABSTRACT

OBJECTIVES: The main objective of this study is to evaluate the effect of intravenous lidocaine on gas exchange and inflammation in acute respiratory distress syndrome due or not to Covid-19 pneumonia. TRIAL DESIGN: This is a prospective monocentric, randomized, quadruple-blinded and placebo-controlled superiority trial. This phase 3 clinical study is based on two parallel groups received either intravenous lidocaine 2% or intravenous NaCl 0.9%. PARTICIPANTS: This study has been conducted at the University Hospitals of Strasbourg (medical and surgical Intensive Care Units in Hautepierre Hospital) since the 4th November 2020. The participants are 18 years-old and older, hospitalized in ICU for a moderate to severe ARDS according to the Berlin definition; they have to be intubated and sedated for mechanical protective ventilation. All participants are affiliated to the French Social security system and a dosage of beta HCG has to be negative for women of child bearing age . For the Covid-19 subgroup, the SARS-CoV2 infection is proved by RT-PCR <7 days before admission and/or another approved diagnostic technique and/or typical CT appearance pneumonia. The data are prospectively collected in e-Case Report Forms and extracted from clinical files. INTERVENTION AND COMPARATOR: The participants are randomised in two parallel groups with a 1:1 ratio. In the experimental group, patients receive intravenous lidocaine 2% (20mg/mL) (from FRESENIUS KABI France); the infusion protocol provide a bolus of 1 mg/kg (ideal weight), followed by 3 mg/kg/h for the first hour, 1.5 mg/kg/h for the second hour, 0.72 mg/kg/h for the next 22 hours and then 0.6 mg/kg/h for 14 days at most or 24 hours after extubation or ventilator-weaning. The patients in the control group receive intravenous NaCl 0.9% (9 mg/mL) (from Aguettant, France) as placebo comparator; the infusion protocol provide a bolus of 0.05 mL/kg (ideal weight), followed by 0.15 mL/kg/h for the first hour, 0.075 mL/kg/h for the second hour, 0.036 mL/kg/h for the next 22 hours, and the 0.03 mL/kg/h for up to 14 days or 24 hours after extubation or ventilator-weaning. Lidocaine level is assessed at H4, D2, D7 and D14 to prevent local anesthetics systemic toxicity. Clinical data and biological samples are collected to assess disease progression. MAIN OUTCOMES: The primary outcome is the evolution of alveolar-capillary gas exchange measured by the PaO2/FiO2 ratio after two days of treatment. The secondary endpoints of the study include the following: Evolution of PaO2/FiO2 ratio at admission and after 21 days of treatment Number of ventilator-free days Anti-inflammatory effects by dosing inflammatory markers at different timepoints (ferritin, bicarbonate, CRP, PCT, LDH, IL-6, Troponin HS, triglycerides, complete blood count, lymphocytes) Anti-thrombotic effects by dosing platelets, aPTT, fibrinogen, D-dimers, viscoelastic testing and identification of all thromboembolic events up to 4 weeks. Plasmatic concentration of lidocaine and albumin Incidence of adverse events like cardiac rhythm disorders, need of vasopressors, any modification of the QRS, QTc or PR intervals every day Ileus recovery time Consumption of hypnotics, opioids, neuromuscular blockers. Lengths of stay in the ICU, incidence of reintubation and complications due to intensive care unit care (mortality until 90 days, pneumothorax, bacterial pneumopathy, bronchospasm, cardiogenic shock, acute renal failure, need of renal dialysis, delirium, atrial fibrillation, stroke (CAM-ICU score), tetraplegia (MCR score)). Incidence of cough and sore throat at extubation or ventilator-weaning and within 24 hours. All these outcomes will be evaluated according to positivity to Sars-Cov-2. RANDOMISATION: The participants who meet the inclusion criteria and have signed written informed consent will be randomly allocated using a computer-generated random number to either intervention group or control group. The distribution ratio of the two groups will be 1:1, with a stratification according to positivity to Sars-Cov-2. BLINDING (MASKING): All participants, care providers, investigator and outcomes assessor are blinded. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): We planned to randomize fifty participants in each group, 100 participants total. TRIAL STATUS: The amended protocol version 2.1 was approved by the Ethics Committee "Comité de Protection des Personnes Sud-Méditerranée II on January 8, 2021 and by the Commission Nationale de l'Informatique et des Libertés (CNIL) on November 10, 2020. The study is currently recruiting participants; the recruitment started in November 2020 and the planned recruitment period is three years. TRIAL REGISTRATION: The trial was registered on clinicaltrials.gov on October 30, 2020 and identified by number NCT04609865 . FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19 Drug Treatment , Lidocaine/therapeutic use , Respiratory Distress Syndrome/drug therapy , Voltage-Gated Sodium Channel Blockers/therapeutic use , Administration, Intravenous , COVID-19/blood , COVID-19/physiopathology , Clinical Trials, Phase III as Topic , Equivalence Trials as Topic , Humans , Inflammation/blood , Pulmonary Gas Exchange , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2 , Treatment Outcome
20.
Front Immunol ; 11: 621441, 2020.
Article in English | MEDLINE | ID: covidwho-1081856

ABSTRACT

Although COVID-19 has become a major challenge to global health, there are currently no efficacious agents for effective treatment. Cytokine storm syndrome (CSS) can lead to acute respiratory distress syndrome (ARDS), which contributes to most COVID-19 mortalities. Research points to interleukin 6 (IL-6) as a crucial signature of the cytokine storm, and the clinical use of the IL-6 inhibitor tocilizumab shows potential for treatment of COVID-19 patient. In this study, we challenged wild-type and adenovirus-5/human angiotensin-converting enzyme 2-expressing BALB/c mice with a combination of polyinosinic-polycytidylic acid and recombinant SARS-CoV-2 spike-extracellular domain protein. High levels of TNF-α and nearly 100 times increased IL-6 were detected at 6 h, but disappeared by 24 h in bronchoalveolar lavage fluid (BALF) following immunostimulant challenge. Lung injury observed by histopathologic changes and magnetic resonance imaging at 24 h indicated that increased TNF-α and IL-6 may initiate CSS in the lung, resulting in the continual production of inflammatory cytokines. We hypothesize that TNF-α and IL-6 may contribute to the occurrence of CSS in COVID-19. We also investigated multiple monoclonal antibodies (mAbs) and inhibitors for neutralizing the pro-inflammatory phenotype of COVID-19: mAbs against IL-1α, IL-6, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF), and inhibitors of p38 and JAK partially relieved CSS; mAbs against IL-6, TNF-α, and GM-CSF, and inhibitors of p38, extracellular signal-regulated kinase, and myeloperoxidase somewhat reduced neutrophilic alveolitis in the lung. This novel murine model opens a biologically safe, time-saving avenue for clarifying the mechanism of CSS/ARDS in COVID-19 and developing new therapeutic drugs.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Disease Models, Animal , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Cytokine Release Syndrome/virology , Cytokines/immunology , Male , Mice , Mice, Inbred BALB C , Poly I-C/immunology , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL