ABSTRACT
In the face of the COVID-19 pandemic, the need for rapid serological tests that allow multiplexing emerged, as antibody seropositivity can instruct about individual immunity after an infection with SARS-CoV-2 or after vaccination. As many commercial antibody tests are either time-consuming or tend to produce false negative or false positive results when only one antigen is considered, we developed an automated, flow-based chemiluminescence microarray immunoassay (CL-MIA) that allows for the detection of IgG antibodies to SARS-CoV-2 receptor-binding domain (RBD), spike protein (S1 fragment), and nucleocapsid protein (N) in human serum and plasma in less than 8 min. The CoVRapid CL-MIA was tested with a set of 65 SARS-CoV-2 serology positive or negative samples, resulting in 100% diagnostic specificity and 100% diagnostic sensitivity, thus even outcompeting commercial tests run on the same sample set. Additionally, the prospect of future quantitative assessments (i.e., quantifying the level of antibodies) was demonstrated. Due to the fully automated process, the test can easily be operated in hospitals, medical practices, or vaccination centers, offering a valuable tool for COVID-19 serosurveillance. Graphical abstract.
Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Immunoassay/methods , Immunoglobulin G/blood , SARS-CoV-2/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Automation, Laboratory , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immune Sera , Immunoassay/instrumentation , Lab-On-A-Chip Devices , Luminescent Measurements , Phosphoproteins/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Time FactorsABSTRACT
Confronted with the challenge of understanding population-level processes, disease ecologists and epidemiologists often simplify quantitative data into distinct physiological states (e.g. susceptible, exposed, infected, recovered). However, data defining these states often fall along a spectrum rather than into clear categories. Hence, the host-pathogen relationship is more accurately defined using quantitative data, often integrating multiple diagnostic measures, just as clinicians do to assess their patients. We use quantitative data on a major neglected tropical disease (Leptospira interrogans) in California sea lions (Zalophus californianus) to improve individual-level and population-level understanding of this Leptospira reservoir system. We create a "host-pathogen space" by mapping multiple biomarkers of infection (e.g. serum antibodies, pathogen DNA) and disease state (e.g. serum chemistry values) from 13 longitudinally sampled, severely ill individuals to characterize changes in these values through time. Data from these individuals describe a clear, unidirectional trajectory of disease and recovery within this host-pathogen space. Remarkably, this trajectory also captures the broad patterns in larger cross-sectional datasets of 1456 wild sea lions in all states of health but sampled only once. Our framework enables us to determine an individual's location in their time-course since initial infection, and to visualize the full range of clinical states and antibody responses induced by pathogen exposure. We identify predictive relationships between biomarkers and outcomes such as survival and pathogen shedding, and use these to impute values for missing data, thus increasing the size of the useable dataset. Mapping the host-pathogen space using quantitative biomarker data enables more nuanced understanding of an individual's time course of infection, duration of immunity, and probability of being infectious. Such maps also make efficient use of limited data for rare or poorly understood diseases, by providing a means to rapidly assess the range and extent of potential clinical and immunological profiles. These approaches yield benefits for clinicians needing to triage patients, prevent transmission, and assess immunity, and for disease ecologists or epidemiologists working to develop appropriate risk management strategies to reduce transmission risk on a population scale (e.g. model parameterization using more accurate estimates of duration of immunity and infectiousness) and to assess health impacts on a population scale.
Subject(s)
Biomarkers/blood , Host-Pathogen Interactions/physiology , Leptospira/pathogenicity , Leptospirosis/diagnosis , Leptospirosis/veterinary , Sea Lions/microbiology , Animal Diseases/diagnosis , Animal Diseases/immunology , Animal Diseases/microbiology , Animals , Antibodies, Bacterial/blood , Bacterial Shedding , California , Cross-Sectional Studies , Host-Pathogen Interactions/immunology , Immunity , Kinetics , Leptospira interrogans , Leptospirosis/immunology , Survival RateABSTRACT
The study presents the results of the creation and evaluation of the diagnostic characteristics of the rapid immunochromatographic test for the qualitative detection and differentiation of IgM/IgG antibodies to SARS-CoV-2 in human serum, plasma, and whole blood "ÐÐ¥Ð-COVID-19-IgM / IgG". Have been tested some samples without antibodies to SARS-CoV-2 and a samples with two and one type of specific antibodies. The coincidence of the results of immunochromatographic analysis with the results of the immunochemiluminescent method was 87.2%. Test kit can be use as the rapid diagnostic test in the context of the COVID-19 pandemic and to assess the immune status of convalescents.
Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing , COVID-19/diagnosis , Immunoassay , Immunoglobulin G/analysis , Immunoglobulin M/analysis , HumansABSTRACT
A new original Russian test kit for the detection of IgG-antibodies to the causative agent of COVID-19 - coronavirus SARS-CoV-2 by the method of enzyme-linked immunosorbent assay (ELISA) on a solid-phase «ELISA-SARS-CoV-2-AT-G¼ has been developed. In comparative tests with similar test systems «Vitrotest® SARS-CoV-2 IgG¼ (Vitrotest, Ukraine) and «Anti-SARS-Cov-2 ELISA (IgG)¼ (EUROIMMUN AG, Germany) high diagnostic efficiency of the new test system was shown.
Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G/analysis , Clinical Laboratory Techniques , Humans , Plasma , Reagent Kits, DiagnosticABSTRACT
Antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in serum and cerebrospinal fluid (CSF) samples from 16 patients with coronavirus disease 2019 and neurological symptoms were assessed using 2 independent methods. Immunoglobulin G (IgG) specific for the virus spike protein was found in 81% of patients in serum and in 56% in CSF. SARS-CoV-2 IgG in CSF was observed in 2 patients with negative serological findings. Levels of IgG in both serum and CSF were associated with disease severity (Pâ <â .05). All patients with elevated markers of central nervous system damage in CSF also had CSF antibodies (Pâ =â .002), and CSF antibodies had the highest predictive value for neuronal damage markers of all tested clinical variables.
Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Immunoglobulin G/blood , Nervous System Diseases/blood , Nervous System Diseases/cerebrospinal fluid , SARS-CoV-2/isolation & purification , Aged , Antibodies, Neutralizing/blood , Antibody Formation , Biomarkers/blood , Biomarkers/cerebrospinal fluid , COVID-19/blood , COVID-19/cerebrospinal fluid , COVID-19/complications , Female , Humans , Male , Middle Aged , Nervous System Diseases/diagnosis , Nervous System Diseases/etiology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, CoronavirusABSTRACT
PURPOSE: Inflammatory pathways are involved in the pathogenesis of pneumonia. Frequent sauna sessions may reduce the risk of respiratory tract infections including pneumonia independent of inflammation. We aimed to evaluate the independent and joint associations of high-sensitivity C-reactive protein (hsCRP) and frequency of sauna bathing (FSB) with risk of pneumonia in a prospective cohort study. METHODS: Serum hsCRP as an inflammatory marker was measured using an immunometric assay and FSB was assessed by self-reported sauna bathing habits at baseline in 2264 men aged 42-61 yr. Serum hsCRP was categorized as normal and high (≤3 and >3 mg/L, respectively) and FSB as low and high (defined as ≤1 and 2-7 sessions/wk, respectively). Multivariable-adjusted HRs (CIs) were calculated for incident pneumonia. RESULTS: A total of 528 cases of pneumonia occurred during a median follow-up of 26.6 yr. Comparing high versus normal hsCRP, the multivariable-adjusted risk for pneumonia was HR = 1.30 (95% CI, 1.04-1.62). The corresponding risk was HR = 0.79 (95% CI, 0.66-0.95) comparing high versus low FSB. Compared with men with normal hsCRP and low FSB, high hsCRP and low FSB was associated with an increased risk of pneumonia in multivariable analysis (HR = 1.67: 95% CI, 1.21-2.29), with no evidence of an association for high hsCRP and high FSB and pneumonia (HR = 0.94: 95% CI, 0.69-1.29). CONCLUSIONS: In a general middle-aged to older male Caucasian population, frequent sauna baths attenuated the increased risk of pneumonia due to inflammation.
Subject(s)
Pneumonia , Steam Bath , Baths , C-Reactive Protein , Humans , Inflammation , Male , Middle Aged , Pneumonia/epidemiology , Pneumonia/etiology , Pneumonia/prevention & control , Prospective Studies , Risk Factors , Steam Bath/adverse effectsABSTRACT
BACKGROUND AND PURPOSE: An incremental number of cases of acute transverse myelitis (ATM) in individuals with ongoing or recent coronavirus disease 2019 (COVID-19) have been reported. METHODS: A systematic review was performed of cases of ATM described in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by screening both articles published and in preprint. RESULTS: Twenty cases were identified. There was a slight male predominance (60.0%) and the median age was 56 years. Neurological symptoms first manifested after a mean of 10.3 days from the first onset of classical, mostly respiratory symptoms of COVID-19. Overall, COVID-19 severity was relatively mild. Polymerase chain reaction of cerebrospinal fluid for SARS-CoV-2 was negative in all 14 cases examined. Cerebrospinal fluid findings reflected an inflammatory process in most instances (77.8%). Aquaporin-4 and myelin oligodendrocyte protein antibodies in serum (tested in 10 and nine cases, respectively) were negative. On magnetic resonance imaging, the spinal cord lesions spanned a mean of 9.8 vertebral segments, necrotic-hemorrhagic transformation was present in three cases and two individuals had additional acute motor axonal neuropathy. More than half of the patients received a second immunotherapy regimen. Over a limited follow-up period of several weeks, 90% of individuals recovered either partially or near fully. CONCLUSION: Although causality cannot readily be inferred, it is possible that cases of ATM occur para- or post-infectiously in COVID-19. All identified reports are anecdotal and case descriptions are heterogeneous. Whether the condition and the observed radiological characteristics are specific to SARS-CoV-2 infection needs to be clarified.
Subject(s)
COVID-19 , Guillain-Barre Syndrome , Myelitis, Transverse , Humans , Magnetic Resonance Imaging , Male , Middle Aged , SARS-CoV-2ABSTRACT
PURPOSE: To assess the diagnostic performances of five automated anti-SARS-CoV-2 immunoassays, Epitope (N), Diasorin (S1/S2), Euroimmun (S1), Roche N (N), and Roche S (S-RBD), and to provide a testing strategy based on pre-test probability. METHODS: We assessed the receiver operating characteristic (ROC) areas under the curve (AUC) values, along with the sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs), of each assay using a validation sample set of 172 COVID-19 sera and 185 negative controls against a validated S1-immunofluorescence as a reference method. The three assays displaying the highest AUCs were selected for further serodetection of 2033 sera of a large population-based cohort. RESULTS: In the validation analysis (pre-test probability: 48.1%), Roche N, Roche S and Euroimmun showed the highest discriminant accuracy (AUCs: 0.99, 0.98, and 0.98) with PPVs and NPVs above 96% and 94%, respectively. In the population-based cohort (pre-test probability: 6.2%) these three assays displayed AUCs above 0.97 and PPVs and NPVs above 90.5% and 99.4%, respectively. A sequential strategy using an anti-S assay as screening test and an anti-N as confirmatory assays resulted in a 96.7% PPV and 99.5% NPV, respectively. CONCLUSIONS: Euroimmun and both Roche assays performed equally well in high pre-test probability settings. At a lower prevalence, sequentially combining anti-S and anti-N assays resulted in the optimal trade-off between diagnostic performances and operational considerations.
ABSTRACT
OBJECTIVES: Critical illness is characterized by increased serum cortisol concentrations and bioavailability resulting from the activation of the hypothalamic-pituitary-adrenal axis, which constitutes an essential part of the stress response. The actions of glucocorticoids are mediated by a ubiquitous intracellular receptor protein, the glucocorticoid receptor. So far, data on coronavirus disease 2019 and glucocorticoid receptor alpha expression are lacking. DESIGN: Prospective observational study. SETTING: One academic multidisciplinary ICU. SUBJECTS: Twenty-six adult coronavirus disease 2019 patients; 33 adult noncoronavirus disease 2019 patients, matched for age, sex, and disease severity, constituted the control group. All patients were steroid-free. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Glucocorticoid receptor alpha, glucocorticoid-inducible leucine zipper expression, and serum cortisol were measured on ICU admission. In coronavirus disease 2019 patients, glucocorticoid receptor alpha and glucocorticoid-inducible leucine zipper messenger RNA expression were upregulated (4.7-fold, p < 0.01 and 14-fold, p < 0.0001, respectively), and cortisol was higher (20.3 vs 14.3 µg/dL, p < 0.01) compared with the control group. CONCLUSIONS: ICU coronavirus disease 2019 patients showed upregulated glucocorticoid receptor alpha and glucocorticoid-inducible leucine zipper expression, along with cortisol levels, compared with ICU noncoronavirus disease 2019 patients. Thus, on ICU admission, critical coronavirus disease 2019 appears to be associated with hypercortisolemia, and increased synthesis of glucocorticoid receptor alpha and induced proteins.
Subject(s)
COVID-19/physiopathology , Hydrocortisone/blood , Leucine Zippers/physiology , Receptors, Glucocorticoid/biosynthesis , Academic Medical Centers , Adult , Aged , Comorbidity , Critical Illness , Female , Greece , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Severity of Illness IndexABSTRACT
Maternal and cord blood sera were collected from 20 parturients who received the BNT162b2 vaccine. All women and infants were positive for anti S- and anti-receptor binding domain antibody-specific immunoglobulin G. Cord blood antibody concentrations were correlated to maternal levels and to time since vaccination. Antenatal severe acute respiratory syndrome coronavirus 2 vaccination may provide maternal and neonatal protection.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Female , Humans , Infant, Newborn , Pregnancy , RNA, Messenger , VaccinationABSTRACT
BACKGROUND: It is currently unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection will remain a rare event, only occurring in individuals who fail to mount an effective immune response, or whether it will occur more frequently when humoral immunity wanes following primary infection. METHODS: A case of reinfection was observed in a Belgian nosocomial outbreak involving 3 patients and 2 healthcare workers. To distinguish reinfection from persistent infection and detect potential transmission clusters, whole genome sequencing was performed on nasopharyngeal swabs of all individuals including the reinfection case's first episode. Immunoglobulin A, immunoglobulin M, and immunoglobulin G (IgG) and neutralizing antibody responses were quantified in serum of all individuals, and viral infectiousness was measured in the swabs of the reinfection case. RESULTS: Reinfection was confirmed in a young, immunocompetent healthcare worker as viral genomes derived from the first and second episode belonged to different SARS-CoV-2 clades. The symptomatic reinfection occurred after an interval of 185 days, despite the development of an effective humoral immune response following symptomatic primary infection. The second episode, however, was milder and characterized by a fast rise in serum IgG and neutralizing antibodies. Although contact tracing and viral culture remained inconclusive, the healthcare worker formed a transmission cluster with 3 patients and showed evidence of virus replication but not of neutralizing antibodies in her nasopharyngeal swabs. CONCLUSIONS: If this case is representative of most patients with coronavirus disease 2019, long-lived protective immunity against SARS-CoV-2 after primary infection might not be likely.
Subject(s)
COVID-19 , Cross Infection , Antibodies, Neutralizing , Belgium/epidemiology , Cross Infection/epidemiology , Disease Outbreaks , Female , Health Personnel , Humans , Reinfection , SARS-CoV-2ABSTRACT
BACKGROUND: Humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs within the first weeks after coronavirus disease 2019 (COVID-19). Those antibodies exert a neutralizing activity against SARS-CoV-2, whose evolution over time after COVID-19 as well as efficiency against novel variants are poorly characterized. METHODS: In this prospective study, sera of 107 patients hospitalized with COVID-19 were collected at 3 and 6 months postinfection. We performed quantitative neutralization experiments on top of high-throughput serological assays evaluating anti-spike (S) and anti-nucleocapsid (NP) immunoglobulin G (IgG). RESULTS: Levels of seroneutralization and IgG rates against the ancestral strain decreased significantly over time. After 6 months, 2.8% of the patients had a negative serological status for both anti-S and anti-NP IgG. However, all sera had a persistent and effective neutralizing effect against SARS-CoV-2. IgG levels correlated with seroneutralization, and this correlation was stronger for anti-S than for anti-NP antibodies. The level of seroneutralization quantified at 6 months correlated with markers of initial severity, notably admission to intensive care units and the need for mechanical invasive ventilation. In addition, sera collected at 6 months were tested against multiple SARS-CoV-2 variants and showed efficient neutralizing effects against the D614G, B.1.1.7, and P.1 variants but significantly weaker activity against the B.1.351 variant. CONCLUSIONS: Decrease in IgG rates and serological assays becoming negative did not imply loss of neutralizing capacity. Our results indicate a sustained humoral response against the ancestral strain and the D614G, B.1.1.7, and P.1 variants for at least 6 months in patients previously hospitalized for COVID-19. A weaker protection was, however, observed for the B.1.351 variant.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Hospitalization , Humans , Prospective Studies , Spike Glycoprotein, CoronavirusABSTRACT
The metabolism of vitamin D3 includes a parallel C-3 epimerization pathway-in addition to the standard metabolic processes for vitamin D3-reversing the stereochemical configuration of the -OH group at carbon-3 (ßâα). While the biological function of the 3α epimer has not been elucidated yet, the additional species cannot be neglected in the analytical determination of vitamin D3, as it has the potential to introduce analytical errors if not properly accounted for. Recently, some inconsistent mass spectral behavior was seen for the 25-hydroxyvitamin D3 (25(OH)D3) epimers during quantification using electrospray LC-MS/MS. The present work extends that of Flynn et al. ( Ann. Clin. Biochem. 2014, 51, 352-559) and van den Ouweland et al. ( J. Chromatogr. B 2014, 967, 195-202), who reported larger electrospray ionization response factors for the 3α epimer of 25(OH)D3 in human serum samples as compared to the regular 3ß variant. The present work was concerned with the mechanistic reasons for these differences. We used a combination of electrospray ionization, atmospheric pressure chemical ionization, and density functional theory calculations to uncover structural dissimilarities between the epimers. A plausible mechanism is described based on intramolecular hydrogen bonding in the gas phase, which creates a small difference of proton affinities between the epimers. More importantly, this mechanism allows the explanation of the different ionization efficiencies of the epimers based on kinetic control of the ionization process, where ionization initially takes place at the hydroxyl group with subsequent proton transfer to a basic carbon atom. The barrier for this transfer differs between the epimers and is in direct competition with H2O elimination from the protonated hydroxyl group. The "hidden" site of high gas phase basicity was revealed through computational calculations and appears to be inaccessible via direct protonation.
Subject(s)
Calcifediol/blood , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Calcifediol/chemistry , Density Functional Theory , Gases , Molecular Structure , Protons , Solvents , StereoisomerismABSTRACT
Angiotensin II (AngII), the effector peptide of the renin angiotensin system and has an important role in regulating cardiovascular hemodynamics and structure. AngII is an important biomarker for certain diseases that are associated with cardiovascular disorders, i.e., influenza, SARS-CoV-2, tumors, hypertension, etc. However, AngII presents in blood in very low concentrations and they are not stable due to their reactivity, therefore spontaneous detection of AngII is a big challenge. In this study, AngII-imprinted spongy columns (AngII-misc) synthesized for AngII detection from human serum, and characterized by surface area measurements (BET), swelling tests, scanning electron microscopy (SEM), FTIR studies. AngII binding studies were achieved from aqueous environment and maximum binding capacity was found as 0.667 mg/g. It was calculated that the AngII-miscs recognized AngII 8.27 and 14.25 times more selectively than competitor Angiotensin I and Vasopressin molecules. Newly produced AngII-misc binds 60.5 pg/g AngII from crude human serum selectively. It has a great potential for spontaneous detection of AngII from human serum for direct and critical measurements in serious diseases, that is, heart attacks, SARS-CoV-2, etc.
Subject(s)
Angiotensin II/blood , Molecularly Imprinted Polymers , Angiotensin II/isolation & purification , Biomarkers/blood , Humans , Protein BindingABSTRACT
SARS-CoV-2 infection takes a mild or clinically inapparent course in the majority of humans who contract this virus. After such individuals have cleared the virus, only the detection of SARS-CoV-2-specific immunological memory can reveal the exposure, and hopefully the establishment of immune protection. With most viral infections, the presence of specific serum antibodies has provided a reliable biomarker for the exposure to the virus of interest. SARS-CoV-2 infection, however, does not reliably induce a durable antibody response, especially in sub-clinically infected individuals. Consequently, it is plausible for a recently infected individual to yield a false negative result within only a few months after exposure. Immunodiagnostic attention has therefore shifted to studies of specific T cell memory to SARS-CoV-2. Most reports published so far agree that a T cell response is engaged during SARS-CoV-2 infection, but they also state that in 20-81% of SARS-CoV-2-unexposed individuals, T cells respond to SARS-CoV-2 antigens (mega peptide pools), allegedly due to T cell cross-reactivity with Common Cold coronaviruses (CCC), or other antigens. Here we show that, by introducing irrelevant mega peptide pools as negative controls to account for chance cross-reactivity, and by establishing the antigen dose-response characteristic of the T cells, one can clearly discern between cognate T cell memory induced by SARS-CoV-2 infection vs. cross-reactive T cell responses in individuals who have not been infected with SARS-CoV-2.
Subject(s)
COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Antigens, Viral/immunology , Biomarkers , COVID-19/metabolism , Cross Reactions/immunology , Cytokines/metabolism , Epitopes, T-Lymphocyte/immunology , Humans , Immunodominant Epitopes/immunology , Immunologic Memory , Peptides/immunology , Protein Binding , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/metabolismABSTRACT
BACKGROUND: Virus neutralization by antibodies is an important prognostic factor in many viral diseases. To easily and rapidly measure titers of neutralizing antibodies in serum or plasma, we developed pseudovirion particles composed of the spike glycoprotein of SARS-CoV-2 incorporated onto murine leukemia virus capsids and a modified minimal murine leukemia virus genome encoding firefly luciferase. This assay design is intended for use in laboratories with biocontainment level 2 and therefore circumvents the need for the biocontainment level 3 that would be required for replication-competent SARS-CoV-2 virus. To validate the pseudovirion assay, we set up comparisons with other available antibody tests including those from Abbott, Euroimmun and Siemens, using archived, known samples. RESULTS: 11 out of 12 SARS-CoV-2-infected patient serum samples showed neutralizing activity against SARS-CoV-2-spike pseudotyped MLV viruses, with neutralizing titers-50 (NT50) that ranged from 1:25 to 1:1,417. Five historical samples from patients hospitalized for severe influenza infection in 2016 tested negative in the neutralization assay (NT50 < 25). Three serum samples with high neutralizing activity against SARS-CoV-2/MLV pseudoviruses showed no detectable neutralizing activity (NT50 < 25) against SARS-CoV-1/MLV pseudovirions. We also compared the semiquantitative Siemens SARS-CoV-2 IgG test, which measures binding of IgG to recombinantly expressed receptor binding domain of SARS-CoV-2 spike glycoprotein with the neutralization titers obtained in the pseudovirion assay and the results show high concordance between the two tests (R2 = 0.9344). CONCLUSIONS: SARS-CoV-2 spike/MLV pseudovirions provide a practical means of assessing neutralizing activity of antibodies in serum or plasma from infected patients under laboratory conditions consistent with biocontainment level 2. This assay offers promise also in evaluating immunogenicity of spike glycoprotein-based candidate vaccines in the near future.
Subject(s)
COVID-19/immunology , Leukemia/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Virion/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , HEK293 Cells , Humans , Immunoglobulin G/blood , MiceABSTRACT
The binding and displacement interaction of colchicine and azithromycin to the model transport protein bovine serum albumin (BSA) was evaluated in this study. Azithromycin, a macrolide antibiotic, has antiviral properties and hence, has been used concomitantly with hydroxychloroquine against SARS-CoV-2. Colchicine, a natural plant product is used to treat and prevent acute gout flares. Some macrolide antibiotics are reported to have fatal drug-drug interactions with colchicine. The displacement interaction between colchicine and azithromycin on binding to BSA was evaluated using spectroscopic techniques, molecular docking and molecular dynamic simulation studies. The binding constant recorded for the binary system BSA-colchicine was 7.44 × 104 whereas, the binding constant for the ternary system BSA-colchicine in presence of azithromycin was 7.38 × 104 and were similar. Azithromycin didn't bind to BSA neither did it interfere in binding of colchicine. The results from molecular docking studies also led to a similar conclusion that azithromycin didn't interfere in the binding of colchicine to BSA. These findings are important since there is possibility of serious adverse event with co-administration of colchicine and azithromycin in patients with underlying gouty arthritis and these patients need to be continuously monitored for colchicine toxicity.
ABSTRACT
OBJECTIVES: To assess whether a commercially available CE-IVD, ELISA-based surrogate neutralisation assay (cPass, Genscript) provides a genuine measure of SARS-CoV-2 neutralisation by human sera, and further to establish whether measuring responses against the RBD of S was a diagnostically useful proxy for responses against the whole S protein. METHODS: Serum samples from 30 patients were assayed for anti-NP responses, for 'neutralisation' by the surrogate neutralisation assay and for neutralisation by SARS-CoV-2 S pseudotyped virus assays utilising two target cell lines. Correlation between assays was measured using linear regression. RESULTS: The responses observed within the surrogate neutralisation assay demonstrated an extremely strong, highly significant positive correlation with those observed in both pseudotyped virus assays. CONCLUSIONS: The tested ELISA-based surrogate assay provides an immunologically useful measure of functional immune responses in a much quicker and highly automatable fashion. It also reinforces that detection of anti-RBD neutralising antibodies alone is a powerful measure of the capacity to neutralise viral infection.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , HumansABSTRACT
SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization.
Subject(s)
Antibodies, Viral/immunology , Neutralization Tests/methods , Spike Glycoprotein, Coronavirus/analysis , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Containment of Biohazards , HEK293 Cells , Humans , Lentivirus , Peptidyl-Dipeptidase A/metabolism , Plasma/immunologyABSTRACT
Emerging highly pathogenic human coronaviruses (CoVs) represent a serious ongoing threat to the public health worldwide. The spike (S) proteins of CoVs are surface glycoproteins that facilitate viral entry into host cells via attachment to their respective cellular receptors. The S protein is believed to be a major immunogenic component of CoVs and a target for neutralizing antibodies (nAbs) and most candidate vaccines. Development of a safe and convenient assay is thus urgently needed to determine the prevalence of CoVs nAbs in the population, to study immune response in infected individuals, and to aid in vaccines and viral entry inhibitor evaluation. While live virus-based neutralization assays are used as gold standard serological methods to detect and measure nAbs, handling of highly pathogenic live CoVs requires strict bio-containment conditions in biosafety level-3 (BSL-3) laboratories. On the other hand, use of replication-incompetent pseudoviruses bearing CoVs S proteins could represent a safe and useful method to detect nAbs in serum samples under biosafety level-2 (BSL-2) conditions. Here, we describe a detailed protocol of a safe and convenient assay to generate vesicular stomatitis virus (VSV)-based pseudoviruses to evaluate and measure nAbs against highly pathogenic CoVs. The protocol covers methods to produce VSV pseudovirus bearing the S protein of the Middle East respiratory syndrome-CoV (MERS-CoV) and the severe acute respiratory syndrome-CoV-2 (SARS-CoV-2), pseudovirus titration, and pseudovirus neutralization assay. Such assay could be adapted by different laboratories and researchers working on highly pathogenic CoVs without the need to handle live viruses in the BSL-3 environment.