Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 977
Filter
1.
Curr Opin Anaesthesiol ; 34(2): 187-198, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1956585

ABSTRACT

PURPOSE OF REVIEW: Hospitalizations for COVID-19 dramatically increase with age. This is likely because of increases in fragility across biological repair systems and a weakened immune system, including loss of the cardiorenal protective arm of the renin--angiotensin system (RAS), composed of angiotensin-converting enzyme-2 (ACE2)/angiotensin-(1--7) [Ang-(1--7)] and its actions through the Mas receptor. The purpose of this review is to explore how cardiac ACE2 changes with age, cardiac diseases, comorbid conditions and pharmaceutical regimens in order to shed light on a potential hormonal unbalance facilitating SARs-CoV-2 vulnerabilities in older adults. RECENT FINDINGS: Increased ACE2 gene expression has been reported in human hearts with myocardial infarction, cardiac remodeling and heart failure. We also found ACE2 mRNA in atrial appendage tissue from cardiac surgical patients to be positively associated with age, elevated by certain comorbid conditions (e.g. COPD and previous stroke) and increased in conjunction with patients' chronic use of antithrombotic agents and thiazide diuretics but not drugs that block the renin--angiotensin system. SUMMARY: Cardiac ACE2 may have bifunctional roles in COVID-19 as ACE2 not only mediates cellular susceptibility to SARS-CoV-2 infection but also protects the heart via the ACE2/Ang-(1--7) pathway. Linking tissue ACE2 from cardiac surgery patients to their comorbid conditions and medical regimens provides a unique latform to address the influence that altered expression of the ACE2/Ang-(1-7)/Mas receptor axis might have on SARs-CoV-2 vulnerability in older adults.


Subject(s)
Atrial Appendage , COVID-19 , Cardiac Surgical Procedures , Aged , Aging , Angiotensin-Converting Enzyme 2 , Angiotensins , Atrial Appendage/surgery , Humans , SARS-CoV-2
2.
Int J Mol Sci ; 21(14)2020 Jul 08.
Article in English | MEDLINE | ID: covidwho-1934087

ABSTRACT

Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30-40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways.


Subject(s)
Acute Lung Injury/metabolism , Deubiquitinating Enzymes/metabolism , Respiratory Distress Syndrome/metabolism , Animals , Humans , Pneumonia/metabolism , Signal Transduction/physiology , Ubiquitin/metabolism , Ubiquitination/physiology
3.
Lancet Respir Med ; 9(5): 533-544, 2021 05.
Article in English | MEDLINE | ID: covidwho-1931217

ABSTRACT

Cough is one of the most common presenting symptoms of COVID-19, along with fever and loss of taste and smell. Cough can persist for weeks or months after SARS-CoV-2 infection, often accompanied by chronic fatigue, cognitive impairment, dyspnoea, or pain-a collection of long-term effects referred to as the post-COVID syndrome or long COVID. We hypothesise that the pathways of neurotropism, neuroinflammation, and neuroimmunomodulation through the vagal sensory nerves, which are implicated in SARS-CoV-2 infection, lead to a cough hypersensitivity state. The post-COVID syndrome might also result from neuroinflammatory events in the brain. We highlight gaps in understanding of the mechanisms of acute and chronic COVID-19-associated cough and post-COVID syndrome, consider potential ways to reduce the effect of COVID-19 by controlling cough, and suggest future directions for research and clinical practice. Although neuromodulators such as gabapentin or opioids might be considered for acute and chronic COVID-19 cough, we discuss the possible mechanisms of COVID-19-associated cough and the promise of new anti-inflammatories or neuromodulators that might successfully target both the cough of COVID-19 and the post-COVID syndrome.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Cough/etiology , Inflammation/etiology , Nervous System Diseases/etiology , Neuroimmunomodulation , Cough/physiopathology , Humans , Inflammation/physiopathology , Nervous System Diseases/physiopathology , SARS-CoV-2 , Syndrome
4.
Endocrinol Diabetes Metab ; 4(1): e00176, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1898651

ABSTRACT

Background: Obesity accompanied by excess ectopic fat storage has been postulated as a risk factor for severe disease in people with SARS-CoV-2 through the stimulation of inflammation, functional immunologic deficit and a pro-thrombotic disseminated intravascular coagulation with associated high rates of venous thromboembolism. Methods: Observational studies in COVID-19 patients reporting data on raised body mass index at admission and associated clinical outcomes were identified from MEDLINE, Embase, Web of Science and the Cochrane Library up to 16 May 2020. Mean differences and relative risks (RR) with 95% confidence intervals (CIs) were aggregated using random effects models. Results: Eight retrospective cohort studies and one cohort prospective cohort study with data on of 4,920 patients with COVID-19 were eligible. Comparing BMI ≥ 25 vs <25 kg/m2, the RRs (95% CIs) of severe illness and mortality were 2.35 (1.43-3.86) and 3.52 (1.32-9.42), respectively. In a pooled analysis of three studies, the RR (95% CI) of severe illness comparing BMI > 35 vs <25 kg/m2 was 7.04 (2.72-18.20). High levels of statistical heterogeneity were partly explained by age; BMI ≥ 25 kg/m2 was associated with an increased risk of severe illness in older age groups (≥60 years), whereas the association was weaker in younger age groups (<60 years). Conclusions: Excess adiposity is a risk factor for severe disease and mortality in people with SARS-CoV-2 infection. This was particularly pronounced in people 60 and older. The increased risk of worse outcomes from SARS-CoV-2 infection in people with excess adiposity should be taken into account when considering individual and population risks and when deciding on which groups to target for public health messaging on prevention and detection measures. Systematic review registration: PROSPERO 2020: CRD42020179783.

5.
Tanaffos ; 19(4): 291-299, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1801409

ABSTRACT

BACKGROUND: Inflammatory mediators are an important component in the pathophysiology of the coronavirus disease 2019 (COVID-19). This study aimed to assess the effects of reducing inflammatory mediators using hemoperfusion (HP) and continuous renal replacement therapy (CRRT) on the mortality of patients with COVID-19. MATERIALS AND METHODS: Twelve patients with confirmed diagnosis of COVID-19 were included. All patients had acute respiratory distress syndrome (ARDS). Patients were divided into three groups, namely, HP, CRRT and HP+CRRT. The primary outcome was mortality and the secondary outcomes were oxygenation and reduction in inflammatory mediators at the end of the study. RESULTS: Patients were not different at baseline in demographics, inflammatory cytokine levels, and the level of acute phase reactants. Half of the patients (3 out of 6) in the HP+CRRT group survived along with the survival of one patient (1 out of 2) in the HP group. All four patients in the CRRT group died. Serum creatinine (SCr), Interleukin-1 (IL1), Interleukin-6 (IL6), Interleukin-8 (IL8), partial pressure of oxygen (PaO2), O2 saturation (O2 sat), and hemodynamic parameters improved over time in HP+CRRT and CRRT groups, but no significant difference was observed in the HP group (All Ps > 0.05). CONCLUSION: Combined HP and CRRT demonstrated the best result in terms of mortality, reduction of inflammatory mediators and oxygenation. Further investigations are needed to explore the role of HP+CRRT in COVID-19 patients.

6.
Indian J Crit Care Med ; 24(10): 914-918, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1792087

ABSTRACT

BACKGROUND: The World Health Organization (WHO) has declared SARS-CoV-2 as pandemic. Patients with COVID-19 present mainly with respiratory symptoms. Prone position has been traditionally used in acute respiratory distress syndrome (ARDS) to improve oxygenation and prevent barotrauma in ventilated patients. Awake proning is being used as an investigational therapy in COVID to defer invasive ventilation, improve oxygenation, and outcomes. Hence, we conducted a retrospective case study to look for benefits of awake proning with oxygen therapy in non-intubated COVID patients. MATERIALS AND METHODS: A retrospective case study of 15 COVID patients admitted from June 15 to July 1, 2020 to HDU in our hospital was conducted. Cooperative patients who were hemodynamically stable and SpO2 < 90% on presentation were included. Oxygen was administered through facemask, non-rebreathing mask and noninvasive ventilation to patients as per requirement. Patients were encouraged to maintain prone position and target time was 10-12 hours/day. SpO2 and P/f ratio in supine and prone position was observed till discharge. Primary target was SpO2 > 95% and P/f > 200 mm Hg. Other COVID therapies were used according to institutional protocol. RESULTS: The mean SpO2 on room air on admission was 80%. In day 1 to 3, the mean P/f ratio in supine position was 98.8 ± 29.7 mm Hg which improved to 136.6 ± 38.8 mm Hg after proning (p = 0.005). The difference was significant from day 1 to 10. Two patients were intubated. The mean duration of stay was 11 days. CONCLUSION: Awake prone positioning showed marked improvement in P/f ratio and SpO2 in COVID-19 patients with improvement in clinical symptoms with reduced rate of intubation. HIGHLIGHTS: Prone position ventilation improves oxygenation by reducing V/Q mismatch.Awake prone positioning has been used along with high-flow oxygen therapy in recent pandemic of SARS-CoV-2 virus for management of mild to moderate cases. HOW TO CITE THIS ARTICLE: Singh P, Jain P, Deewan H. Awake Prone Positioning in COVID-19 Patients. Indian J Crit Care Med 2020;24(10):914-918.

7.
J Clin Rheumatol ; 28(2): e623-e625, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1703382

ABSTRACT

BACKGROUND: SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection produces a wide variety of inflammatory responses in children, including multisystem inflammatory syndrome in children, which has similar clinical manifestations as Kawasaki disease (KD). METHODS: We performed a chart review of all patients with KD-like illnesses from January 1, 2016, to May 31, 2020, at a tertiary care children's hospital within a larger health system. Relevant symptoms, comorbid illnesses, laboratory results, imaging studies, treatment, and outcomes were reviewed. Descriptive analyses to compare features over time were performed. RESULTS: We identified 81 cases of KD-like illnesses from January 1, 2016, to May 31, 2020. Few clinical features, such as gallbladder involvement, were more prevalent in 2020 than in previous years. A few patients in 2020 required more intensive treatment with interleukin 1 receptor antagonist therapy. There were no other clear differences in incidence, laboratory parameters, number of doses of intravenous immunoglobulin, or outcomes over the years of the study. CONCLUSIONS: There was no difference in incidence, laboratory parameters, or number of doses of intravenous immunoglobulin required for treatment of KD-like illnesses during the COVID-19 pandemic when compared with previous years at our institution. Kawasaki disease-like illnesses, including multisystem inflammatory syndrome in children, may not have changed substantially during the COVID-19 pandemic.


Subject(s)
COVID-19 , Mucocutaneous Lymph Node Syndrome , COVID-19/complications , Child , Humans , Medical Records , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/epidemiology , Pandemics , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
8.
Curr Pharmacol Rep ; 6(5): 228-240, 2020.
Article in English | MEDLINE | ID: covidwho-1682288

ABSTRACT

The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for causing coronavirus disease 2019 (COVID-19), marked the third time in the twenty-first century when a new, highly pathogenic human coronavirus outbreak has led to an epidemic. The COVID-19 epidemic has emerged in late December 2019 in Wuhan city of China and spread rapidly to other parts of the world. This quick spread of SARS-CoV-2 infection to many states across the globe affecting many people has led WHO to declare it a pandemic on March 12, 2020. As of July 4, 2020, more than 523,011 people lost their lives worldwide because of this deadly SARS-CoV-2. The current situation becomes more frightening as no FDA-approved drugs or vaccines are available to treat or prevent SARS-CoV-2 infection. The current therapeutic options for COVID-19 are limited only to supportive measures and non-specific interventions. So, the need of the hour is to search for SARS-CoV-2-specific antiviral treatments and to develop vaccines for SARS-CoV-2. Also, it is equally important to maintain our immunity, and natural products and Ayurvedic medicines are indispensable in this regard. In this review, we discuss recent updates regarding various therapeutic approaches to combat COVID-19 pandemic and enlist the major pipeline drugs and traditional medicines that are under trial for COVID-19. Also, possible mechanisms involved in viral pathogenesis are discussed, which further allow us to understand various drug targets and helps in discovering novel therapeutic approaches for COVID-19. Altogether, the information provided in this review will work as an intellectual groundwork and provides an insight into the ongoing development of various therapeutic agents.

9.
J Clin Gastroenterol ; 56(2): e149-e152, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1672370

ABSTRACT

GOALS: The goal of this study was to describe the influence of the COVID-19 pandemic on ability to engage in activities and the influence on psychological distress and gastrointestinal symptoms among individuals with irritable bowel syndrome (IBS) and comorbid anxiety and/or depression. BACKGROUND: Individuals with IBS and comorbid anxiety and/or depression report increased symptoms and decreased quality of life compared with individuals with IBS alone. The current COVID-19 pandemic has the potential to further influence symptoms among individuals with IBS and comorbid anxiety and/or depression. STUDY: Individuals who met the Rome-IV IBS criteria and reported mild to severe anxiety and/or depression were included. Participants completed an online survey with questions about anxiety, depression, impact of COVID on activities and symptoms, and demographics. RESULTS: Fifty-five individuals participated in the study. The COVID-19 pandemic most commonly influenced their ability to spend time with friends and family, shop for certain types of food, and access health care. Participants also reported increased stress (92%), anxiety (81%), and depressive symptoms (67%). Finally, around half the sample reported increases in abdominal pain (48%), diarrhea (45%), or constipation (44%). CONCLUSIONS: The COVID-19 pandemic is related to self-reported increases in psychological distress and gastrointestinal symptoms among individuals with IBS and comorbid anxiety and/or depression. Additional research is needed to intervene on these symptoms.


Subject(s)
COVID-19 , Irritable Bowel Syndrome , Anxiety/epidemiology , Depression/epidemiology , Humans , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/epidemiology , Pandemics , Quality of Life , SARS-CoV-2 , Surveys and Questionnaires
10.
Br J Nutr ; 127(6): 896-903, 2022 03 28.
Article in English | MEDLINE | ID: covidwho-1651089

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused mild illness in children, until the emergence of the novel hyperinflammatory condition paediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PIMS-TS). PIMS-TS is thought to be a post-SARS-CoV-2 immune dysregulation with excessive inflammatory cytokine release. We studied 25 hydroxyvitamin D (25OHD) concentrations in children with PIMS-TS, admitted to a tertiary paediatric hospital in the UK, due to its postulated role in cytokine regulation and immune response. Eighteen children (median (range) age 8·9 (0·3-14·6) years, male = 10) met the case definition. The majority were of Black, Asian and Minority Ethnic (BAME) origin (89 %, 16/18). Positive SARS-CoV-2 IgG antibodies were present in 94 % (17/18) and RNA by PCR in 6 % (1/18). Seventy-eight percentage of the cohort were vitamin D deficient (< 30 nmol/l). The mean 25OHD concentration was significantly lower when compared with the population mean from the 2015/16 National Diet and Nutrition Survey (children aged 4-10 years) (24 v. 54 nmol/l (95 % CI -38·6, -19·7); P < 0·001). The paediatric intensive care unit (PICU) group had lower mean 25OHD concentrations compared with the non-PICU group, but this was not statistically significant (19·5 v. 31·9 nmol/l; P = 0·11). The higher susceptibility of BAME children to PIMS-TS and also vitamin D deficiency merits contemplation. Whilst any link between vitamin D deficiency and the severity of COVID-19 and related conditions including PIMS-TS requires further evidence, public health measures to improve vitamin D status of the UK BAME population have been long overdue.


Subject(s)
COVID-19 , COVID-19/complications , Child , Child, Preschool , Humans , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Vitamin D
11.
Trials ; 22(1): 172, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-1622253

ABSTRACT

OBJECTIVES: The primary objective of this study is to test the hypothesis that administration of dexamethasone 20 mg is superior to a 6 mg dose in adult patients with moderate or severe ARDS due to confirmed COVID-19. The secondary objective is to investigate the efficacy and safety of dexamethasone 20 mg versus dexamethasone 6 mg. The exploratory objective of this study is to assess long-term consequences on mortality and quality of life at 180 and 360 days. TRIAL DESIGN: REMED is a prospective, phase II, open-label, randomised controlled trial testing superiority of dexamethasone 20 mg vs 6 mg. The trial aims to be pragmatic, i.e. designed to evaluate the effectiveness of the intervention in conditions that are close to real-life routine clinical practice. PARTICIPANTS: The study is multi-centre and will be conducted in the intensive care units (ICUs) of ten university hospitals in the Czech Republic. INCLUSION CRITERIA: Subjects will be eligible for the trial if they meet all of the following criteria: 1. Adult (≥18 years of age) at time of enrolment; 2. Present COVID-19 (infection confirmed by RT-PCR or antigen testing); 3. Intubation/mechanical ventilation or ongoing high-flow nasal cannula (HFNC) oxygen therapy; 4. Moderate or severe ARDS according to Berlin criteria: • Moderate - PaO2/FiO2 100-200 mmHg; • Severe - PaO2/FiO2 < 100 mmHg; 5. Admission to ICU in the last 24 hours. EXCLUSION CRITERIA: Subjects will not be eligible for the trial if they meet any of the following criteria: 1. Known allergy/hypersensitivity to dexamethasone or excipients of the investigational medicinal product (e.g. parabens, benzyl alcohol); 2. Fulfilled criteria for ARDS for ≥14 days at enrolment; 3. Pregnancy or breastfeeding; 4. Unwillingness to comply with contraception measurements from enrolment until at least 1 week after the last dose of dexamethasone (sexual abstinence is considered an adequate contraception method); 5. End-of-life decision or patient is expected to die within next 24 hours; 6. Decision not to intubate or ceilings of care in place; 7. Immunosuppression and/or immunosuppressive drugs in medical history: a) Systemic immunosuppressive drugs or chemotherapy in the past 30 days; b) Systemic corticosteroid use before hospitalization; c) Any dose of dexamethasone during the present hospital stay for COVID-19 for ≥5 days before enrolment; d) Systemic corticosteroids during present hospital stay for conditions other than COVID-19 (e.g. septic shock); 8. Current haematological or generalized solid malignancy; 9. Any contraindication for corticosteroid administration, e.g. • intractable hyperglycaemia; • active gastrointestinal bleeding; • adrenal gland disorders; • presence of superinfection diagnosed with locally established clinical and laboratory criteria without adequate antimicrobial treatment; 10. Cardiac arrest before ICU admission; 11. Participation in another interventional trial in the last 30 days. INTERVENTION AND COMPARATOR: Dexamethasone solution for injection/infusion is the investigational medicinal product as well as the comparator. The trial will assess two doses, 20 mg (investigational) vs 6 mg (comparator). Patients in the intervention group will receive dexamethasone 20 mg intravenously once daily on day 1-5, followed by dexamethasone 10 mg intravenously once daily on day 6-10. Patients in the control group will receive dexamethasone 6 mg day 1-10. All authorized medicinal products containing dexamethasone in the form of solution for i.v. injection/infusion can be used. MAIN OUTCOMES: Primary endpoint: Number of ventilator-free days (VFDs) at 28 days after randomisation, defined as being alive and free from mechanical ventilation. SECONDARY ENDPOINTS: a) Mortality from any cause at 60 days after randomisation; b) Dynamics of inflammatory marker (C-Reactive Protein, CRP) change from Day 1 to Day 14; c) WHO Clinical Progression Scale at Day 14; d) Adverse events related to corticosteroids (new infections, new thrombotic complications) until Day 28 or hospital discharge; e) Independence at 90 days after randomisation assessed by Barthel Index. The long-term outcomes of this study are to assess long-term consequences on mortality and quality of life at 180 and 360 days through telephone structured interviews using the Barthel Index. RANDOMISATION: Randomisation will be carried out within the electronic case report form (eCRF) by the stratified permuted block randomisation method. Allocation sequences will be prepared by a statistician independent of the study team. Allocation to the treatment arm of an individual patient will not be available to the investigators before completion of the whole randomisation process. The following stratification factors will be applied: • Age <65 and ≥ 65; • Charlson Comorbidity index (CCI) <3 and ≥3; • CRP <150 mg/L and ≥150 mg/L • Trial centre. Patients will be randomised in a 1 : 1 ratio into one of the two treatment arms. Randomisation through the eCRF will be available 24 hours every day. BLINDING (MASKING): This is an open-label trial in which the participants and the study staff will be aware of the allocated intervention. Blinded pre-planned statistical analysis will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The sample size is calculated to detect the difference of 3 VFDs at 28 days (primary efficacy endpoint) between the two treatment arms with a two-sided type I error of 0.05 and power of 80%. Based on data from a multi-centre randomised controlled trial in COVID-19 ARDS patients in Brazil and a multi-centre observational study from French and Belgian ICUs regarding moderate to severe ARDS related to COVID-19, investigators assumed a standard deviation of VFD at 28 days as 9. Using these assumptions, a total of 142 patients per treatment arm would be needed. After adjustment for a drop-out rate, 150 per treatment arm (300 patients per study) will be enrolled. TRIAL STATUS: This is protocol version 1.1, 15.01.2021. The trial is due to start on 2 February 2021 and recruitment is expected to be completed by December 2021. TRIAL REGISTRATION: The study protocol was registered on EudraCT No.:2020-005887-70, and on December 11, 2020 on ClinicalTrials.gov (Title: Effect of Two Different Doses of Dexamethasone in Patients With ARDS and COVID-19 (REMED)) Identifier: NCT04663555 with a last update posted on February 1, 2021. FULL PROTOCOL: The full protocol (version 1.1) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the standard formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19/therapy , Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Respiration, Artificial , Respiratory Distress Syndrome/therapy , COVID-19/complications , Clinical Trials, Phase II as Topic , Disease Progression , Dose-Response Relationship, Drug , Equivalence Trials as Topic , Humans , Length of Stay , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/etiology , SARS-CoV-2
12.
J Immunotoxicol ; 18(1): 23-29, 2021 12.
Article in English | MEDLINE | ID: covidwho-1593522

ABSTRACT

The coronavirus SARS-CoV-2 of 2019 (COVID-19) causes a pandemic that has been diagnosed in more than 70 million people worldwide. Mild-to-moderate COVID-19 symptoms include coughing, fever, myalgia, shortness of breath, and acute inflammatory lung injury (ALI). In contrast, acute respiratory distress syndrome (ARDS) and respiratory failure occur in patients diagnosed with severe COVID-19. ARDS is mediated, at least in part, by a dysregulated inflammatory response due to excessive levels of circulating cytokines, a condition known as the "cytokine-storm syndrome." Currently, there are FDA-approved therapies that attenuate the dysregulated inflammation that occurs in COVID-19 patients, such as dexamethasone or other corticosteroids and IL-6 inhibitors, including sarilumab, tocilizumab, and siltuximab. However, the efficacy of these treatments have been shown to be inconsistent. Compounds that activate the vagus nerve-mediated cholinergic anti-inflammatory reflex, such as the α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuate ARDS/inflammatory lung injury by decreasing the extracellular levels of high mobility group box-1 (HMGB1) in the airways and the circulation. It is possible that HMGB1 may be an important mediator of the "cytokine-storm syndrome." Notably, high plasma levels of HMGB1 have been reported in patients diagnosed with severe COVID-19, and there is a significant negative correlation between HMGB1 plasma levels and clinical outcomes. Nicotine can activate the cholinergic anti-inflammatory reflex, which attenuates the up-regulation and the excessive release of pro-inflammatory cytokines/chemokines. Therefore, we hypothesize that low molecular weight compounds that activate the cholinergic anti-inflammatory reflex, such as nicotine or GTS-21, may represent a potential therapeutic approach to attenuate the dysregulated inflammatory responses in patients with severe COVID-19.


Subject(s)
Benzylidene Compounds/pharmacology , COVID-19/drug therapy , Cholinergic Agents/pharmacology , Inflammation/drug therapy , Nicotine/metabolism , Pyridines/pharmacology , SARS-CoV-2/physiology , Tobacco Use Disorder/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Cigarette Smoking/adverse effects , Dexamethasone/therapeutic use , HMGB1 Protein/blood , Humans , Pandemics , alpha7 Nicotinic Acetylcholine Receptor/agonists
13.
Clin Infect Dis ; 73(11): e4131-e4138, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1560574

ABSTRACT

BACKGROUND: Population-based literature suggests severe acute respiratory syndrome coronavirus 2 infection may disproportionately affect racial/ethnic minorities; however, patient-level observations of hospitalization outcomes by race/ethnicity are limited. Our aim in this study was to characterize coronavirus disease 2019 (COVID-19)-associated morbidity and in-hospital mortality by race/ethnicity. METHODS: This was a retrospective analysis of 9 Massachusetts hospitals including all consecutive adult patients hospitalized with laboratory-confirmed COVID-19. Measured outcomes were assessed and compared by patient-reported race/ethnicity, classified as white, black, Latinx, Asian, or other. Student t test, Fischer exact test, and multivariable regression analyses were performed. RESULTS: A total of 379 patients (aged 62.9 ± 16.5 years; 55.7% men) with confirmed COVID-19 were included (49.9% white, 13.7% black, 29.8% Latinx, 3.7% Asian), of which 376 (99.2%) were insured (34.3% private, 41.2% public, 23.8% public with supplement). Latinx patients were younger, had fewer cardiopulmonary disorders, were more likely to be obese, more frequently reported fever and myalgia, and had lower D-dimer levels compared with white patients (P < .05). On multivariable analysis controlling for age, gender, obesity, cardiopulmonary comorbidities, hypertension, and diabetes, no significant differences in in-hospital mortality, intensive care unit admission, or mechanical ventilation by race/ethnicity were found. Diabetes was a significant predictor for mechanical ventilation (odds ratio [OR], 1.89; 95% confidence interval [CI], 1.11-3.23), while older age was a predictor of in-hospital mortality (OR, 4.18; 95% CI, 1.94-9.04). CONCLUSIONS: In this multicenter cohort of hospitalized COVID-19 patients in the largest health system in Massachusetts, there was no association between race/ethnicity and clinically relevant hospitalization outcomes, including in-hospital mortality, after controlling for key demographic/clinical characteristics. These findings serve to refute suggestions that certain races/ethnicities may be biologically predisposed to poorer COVID-19 outcomes.


Subject(s)
COVID-19 , Adult , Aged , Comorbidity , Female , Hospitalization , Humans , Male , Retrospective Studies , SARS-CoV-2
14.
Lancet Respir Med ; 9(5): 533-544, 2021 05.
Article in English | MEDLINE | ID: covidwho-1537202

ABSTRACT

Cough is one of the most common presenting symptoms of COVID-19, along with fever and loss of taste and smell. Cough can persist for weeks or months after SARS-CoV-2 infection, often accompanied by chronic fatigue, cognitive impairment, dyspnoea, or pain-a collection of long-term effects referred to as the post-COVID syndrome or long COVID. We hypothesise that the pathways of neurotropism, neuroinflammation, and neuroimmunomodulation through the vagal sensory nerves, which are implicated in SARS-CoV-2 infection, lead to a cough hypersensitivity state. The post-COVID syndrome might also result from neuroinflammatory events in the brain. We highlight gaps in understanding of the mechanisms of acute and chronic COVID-19-associated cough and post-COVID syndrome, consider potential ways to reduce the effect of COVID-19 by controlling cough, and suggest future directions for research and clinical practice. Although neuromodulators such as gabapentin or opioids might be considered for acute and chronic COVID-19 cough, we discuss the possible mechanisms of COVID-19-associated cough and the promise of new anti-inflammatories or neuromodulators that might successfully target both the cough of COVID-19 and the post-COVID syndrome.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Cough/etiology , Inflammation/etiology , Nervous System Diseases/etiology , Neuroimmunomodulation , Cough/physiopathology , Humans , Inflammation/physiopathology , Nervous System Diseases/physiopathology , SARS-CoV-2 , Syndrome
15.
Neuromolecular Med ; 23(4): 561-571, 2021 12.
Article in English | MEDLINE | ID: covidwho-1525619

ABSTRACT

The current SARS-CoV-2 outbreak, which causes COVID-19, is particularly devastating for individuals with chronic medical conditions, in particular those with Down Syndrome (DS) who often exhibit a higher prevalence of respiratory tract infections, immune dysregulation and potential complications. The incidence of Alzheimer's disease (AD) is much higher in DS than in the general population, possibly increasing further the risk of COVID-19 infection and its complications. Here we provide a biological overview with regard to specific susceptibility of individuals with DS to SARS-CoV-2 infection as well as data from a recent survey on the prevalence of COVID-19 among them. We see an urgent need to protect people with DS, especially those with AD, from COVID-19 and future pandemics and focus on developing protective measures, which also include interventions by health systems worldwide for reducing the negative social effects of long-term isolation and increased periods of hospitalization.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Disease Susceptibility , Down Syndrome/epidemiology , Adolescent , Adult , Alzheimer Disease/complications , Alzheimer Disease/epidemiology , Alzheimer Disease/immunology , COVID-19/complications , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Comorbidity , Disease Susceptibility/immunology , Disease Susceptibility/virology , Down Syndrome/complications , Down Syndrome/immunology , Female , Hospitalization , Humans , Immune System/abnormalities , Incidence , Male , Pandemics/prevention & control , Prevalence , Risk Factors , Vaccination/methods
17.
Minerva Gastroenterol (Torino) ; 67(3): 283-288, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1485664

ABSTRACT

World Gastroenterology Organization define acute on chronic liver failure (ACLF) a syndrome in patients with chronic liver disease with or without previously diagnosed cirrhosis, characterized by acute hepatic decompensation resulting in liver failure and one or more extrahepatic organ failures, associated with increased mortality up to three months. A-56-year-old gentleman with alcohol related liver cirrhosis (ARLC) and history of variceal bleeding with insertion of transjugular intrahepatic porto-systemic stent shunt presented with two days history of fever, dry cough and worsening of the sensory. The severe acute respiratory coronavirus-2 (SARS-CoV-2) nasopharingeal C-reactive protein test was positive. X-ray showed multiple patchy ground glass opacities in both lungs. Despite the therapy, the clinical and laboratory picture deteriorated rapidly. The patient succumbed on day 14 with multi-organ-failure. SARS-Cov-2 infection can overlap with pre-existing chronic liver disease or induce liver damage directly or indirectly. From the data of the literature and from what is inferred from the case report it clearly emerges that alcohol related liver disease (ALD) patients are particularly vulnerable to SARS-Cov-2 infection. Thereafter, some considerations can be deduced from the analysis of the case report. In subjects with pre-existing cirrhosis hepatologists should play more attention to hepatic injury and monitor risk of hepatic failure caused by coronavirus disease 2019 (COVID-19). It is appropriate to promptly define the alcoholic etiology and investigate whether the patient is actively consuming. In fact, withdrawal symptoms may be present, and the prognosis of these patients is also worse. Physicians should be alerted to the possibility of the development of ACLF in this population, hepatotoxic drugs should be avoided, it is recommended to use of hepatoprotective therapy to mitigate the negative impact of COVID-19, and it is mandatory to administer anti COVID-19 vaccine to patients with alcohol related liver cirrhosis.


Subject(s)
Acute-On-Chronic Liver Failure/etiology , Alcoholism/complications , COVID-19/complications , Liver Cirrhosis/complications , Humans , Male , Middle Aged
18.
Wellcome Open Res ; 6: 38, 2021.
Article in English | MEDLINE | ID: covidwho-1478483

ABSTRACT

Background: Acute respiratory distress syndrome (ARDS) is a severe critical condition with a high mortality that is currently in focus given that it is associated with mortality caused by coronavirus disease 2019 (COVID-19). Neutrophils play a key role in the lung injury characteristic of non-COVID-19 ARDS and there is also accumulating evidence of neutrophil mediated lung injury in patients who succumb to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We undertook a functional proteomic and metabolomic survey of circulating neutrophil populations, comparing patients with COVID-19 ARDS and non-COVID-19 ARDS to understand the molecular basis of neutrophil dysregulation. Results: Expansion of the circulating neutrophil compartment and the presence of activated low and normal density mature and immature neutrophil populations occurs in ARDS, irrespective of cause. Release of neutrophil granule proteins, neutrophil activation of the clotting cascade and upregulation of the Mac-1 platelet binding complex with formation of neutrophil platelet aggregates is exaggerated in COVID-19 ARDS. Importantly, activation of components of the neutrophil type I interferon responses is seen in ARDS following infection with SARS-CoV-2, with associated rewiring of neutrophil metabolism, and the upregulation of antigen processing and presentation. Whilst dexamethasone treatment constricts the immature low density neutrophil population, it does not impact upon prothrombotic hyperinflammatory neutrophil signatures. Conclusions: Given the crucial role of neutrophils in ARDS and the evidence of a disordered myeloid response observed in COVID-19 patients, this work maps the molecular basis for neutrophil reprogramming in the distinct clinical entities of COVID-19 and non-COVID-19 ARDS.

19.
Ageing Res Rev ; 67: 101302, 2021 05.
Article in English | MEDLINE | ID: covidwho-1454005

ABSTRACT

BACKGROUND: Dementia is a debilitating syndrome that significantly impacts individuals over the age of 65 years. There are currently no disease-modifying treatments for dementia. Impairment of nutrient sensing pathways has been implicated in the pathogenesis of dementia, and may offer a novel treatment approach for dementia. AIMS: This systematic review collates all available evidence for Food and Drug Administration (FDA)-approved therapeutics that modify nutrient sensing in the context of preventing cognitive decline or improving cognition in ageing, mild cognitive impairment (MCI), and dementia populations. METHODS: PubMed, Embase and Web of Science databases were searched using key search terms focusing on available therapeutics such as 'metformin', 'GLP1', 'insulin' and the dementias including 'Alzheimer's disease' and 'Parkinson's disease'. Articles were screened using Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia). The risk of bias was assessed using the Cochrane Risk of Bias tool v 2.0 for human studies and SYRCLE's risk of bias tool for animal studies. RESULTS: Out of 2619 articles, 114 were included describing 31 different 'modulation of nutrient sensing pathway' therapeutics, 13 of which specifically were utilized in human interventional trials for normal ageing or dementia. Growth hormone secretagogues improved cognitive outcomes in human mild cognitive impairment, and potentially normal ageing populations. In animals, all investigated therapeutic classes exhibited some cognitive benefits in dementia models. While the risk of bias was relatively low in human studies, this risk in animal studies was largely unclear. CONCLUSIONS: Modulation of nutrient sensing pathway therapeutics, particularly growth hormone secretagogues, have the potential to improve cognitive outcomes. Overall, there is a clear lack of translation from animal models to human populations.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia , Aged , Cognitive Dysfunction/drug therapy , Disease Progression , Humans , Nutrients
20.
Perfusion ; 36(4): 374-381, 2021 May.
Article in English | MEDLINE | ID: covidwho-1453006

ABSTRACT

BACKGROUND: Patients with acute respiratory distress syndrome supported with veno-venous extracorporeal membrane oxygenation benefit from higher positive end-expiratory pressure combined with conventional ventilation during the early extracorporeal membrane oxygenation period. The role of incremental positive end-expiratory pressure titration in patients with severe acute respiratory distress syndrome supported with veno-venous extracorporeal membrane oxygenation remains unclear. This study aimed to determine the preferred method for setting positive end-expiratory pressure in patients with severe acute respiratory distress syndrome on veno-venous extracorporeal membrane oxygenation support. METHODS: We retrospectively reviewed all subjects supported with veno-venous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome from 2009 to 2019 in the intensive care units in Tianjin Third Central Hospital. Subjects were divided into two groups according to the positive end-expiratory pressure titration method used: P-V curve (quasi-static pressure-volume curve-guided positive end-expiratory pressure setting) group or Crs (respiratory system compliance-guided positive end-expiratory pressure setting) group. RESULTS: Forty-three subjects were included in the clinical outcome analysis: 20 in the P-V curve group and 23 in the Crs group. Initial positive end-expiratory pressure levels during veno-venous extracorporeal membrane oxygenation were similar in both groups. Incidence rates of barotrauma and hemodynamic events were significantly lower in the Crs group (all p < 0.05). Mechanical ventilation duration, intensive care unit length of stay, and hospital length of stay were significantly shorter in the Crs group than the P-V curve group (all p < 0.05). Subjects in the Crs group showed non-significant improvements in the duration of extracorporeal membrane oxygenation support and 28-day mortality (p > 0.05). CONCLUSION: Respiratory system compliance-guided positive end-expiratory pressure setting may lead to more optimal clinical outcomes for patients with severe acute respiratory distress syndrome supported by veno-venous extracorporeal membrane oxygenation. Moreover, the operation is simple, safe, and convenient in clinical practice.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Positive-Pressure Respiration , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL