Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Viral Immunol ; 34(6): 416-420, 2021.
Article in English | MEDLINE | ID: covidwho-1475758

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has infected millions of individuals in the world. However, the long-term effect of SARS-CoV-2 on the organs of recovered patients remains unclear. This study is to evaluate the impact of SARS-CoV-2 on the spleen and T lymphocytes. Seventy-six patients recovered from COVID-19, including 66 cases of moderate pneumonia and 10 cases of severe pneumonia were enrolled in the observation group. The control group consisted of 55 age-matched healthy subjects. The thickness and length of spleen were measured by using B-ultrasound and the levels of T lymphocytes were detected by flow cytometry. Results showed that the mean length of spleen in the observation group was 89.57 ± 11.49 mm, which was significantly reduced compared with that in the control group (103.82 ± 11.29 mm, p < 0.001). The mean thicknesses of spleen between observation group and control group were 29.97 ± 4.04 mm and 32.45 ± 4.49 mm, respectively, and the difference was significant (p < 0.001). However, no significant difference was observed in the size of spleen between common pneumonia and severe pneumonia (p > 0.05). In addition, the decreased count of T lymphocyte was observed in part of recovered patients. The counts of T suppressor lymphocytes in patients with severe pneumonia were significantly decreased compared with those with moderate pneumonia (p = 0.005). Therefore, these data indicate that SARS-CoV-2 infection affects the size of spleen and T lymphocytes.


Subject(s)
COVID-19/immunology , SARS-CoV-2 , Spleen/pathology , T-Lymphocytes/immunology , Adult , Aged , Female , Humans , Lymphocyte Count , Male , Middle Aged , Young Adult
2.
Sci Immunol ; 6(60)2021 06 18.
Article in English | MEDLINE | ID: covidwho-1276879

ABSTRACT

The nutrient-sensing mammalian target of rapamycin (mTOR) is integral to cell fate decisions after T cell activation. Sustained mTORC1 activity favors the generation of terminally differentiated effector T cells instead of follicular helper and memory T cells. This is particularly pertinent for T cell responses of older adults who have sustained mTORC1 activation despite dysfunctional lysosomes. Here, we show that lysosome-deficient T cells rely on late endosomes rather than lysosomes as an mTORC1 activation platform, where mTORC1 is activated by sensing cytosolic amino acids. T cells from older adults have an increased expression of the plasma membrane leucine transporter SLC7A5 to provide a cytosolic amino acid source. Hence, SLC7A5 and VPS39 deficiency (a member of the HOPS complex promoting early to late endosome conversion) substantially reduced mTORC1 activities in T cells from older but not young individuals. Late endosomal mTORC1 is independent of the negative-feedback loop involving mTORC1-induced inactivation of the transcription factor TFEB that controls expression of lysosomal genes. The resulting sustained mTORC1 activation impaired lysosome function and prevented lysosomal degradation of PD-1 in CD4+ T cells from older adults, thereby inhibiting their proliferative responses. VPS39 silencing of human T cells improved their expansion to pertussis and to SARS-CoV-2 peptides in vitro. Furthermore, adoptive transfer of CD4+ Vps39-deficient LCMV-specific SMARTA cells improved germinal center responses, CD8+ memory T cell generation, and recall responses to infection. Thus, curtailing late endosomal mTORC1 activity is a promising strategy to enhance T cell immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Endosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , SARS-CoV-2/metabolism , Signal Transduction/genetics , Adoptive Transfer/methods , Adult , Aged , Aged, 80 and over , Animals , Autophagy-Related Proteins/deficiency , Autophagy-Related Proteins/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , COVID-19/virology , Cells, Cultured , Female , Forkhead Box Protein O1/deficiency , Forkhead Box Protein O1/genetics , Healthy Volunteers , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/immunology , Transfection , Vesicular Transport Proteins/deficiency , Vesicular Transport Proteins/genetics , Young Adult
3.
J Immunol ; 206(11): 2527-2535, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1227097

ABSTRACT

The T cell response is an important detection index in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine development. The present study was undertaken to determine the T cell epitopes in the spike (S) protein of SARS-CoV-2 that dominate the T cell responses in SARS-CoV-2-infected patients. PBMCs from rhesus macaques vaccinated with a DNA vaccine encoding the full-length S protein were isolated, and an ELISPOT assay was used to identify the recognized T cell epitopes among a total of 158 18-mer and 10-aa-overlapping peptides spanning the full-length S protein. Six multipeptide-based epitopes located in the S1 region, with four of the six located in the receptor-binding domain, were defined as the most frequently recognized epitopes in macaques. The conservation of the epitopes across species was also verified, and peptide mixtures for T cell response detection were established. Six newly defined T cell epitopes were found in the current study, which may provide a novel potential target for T cell response detection and the diagnosis and vaccine design of SARS-CoV-2 based on multipeptide subunit-based epitopes.


Subject(s)
Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Macaca mulatta
4.
Front Immunol ; 12: 627285, 2021.
Article in English | MEDLINE | ID: covidwho-1120044

ABSTRACT

Introduction: Cross-reactivity to SARS-CoV-2 antigenic peptides has been detected on T-cells from pre-pandemic donors due to recognition of conserved protein fragments within members of the coronavirus's family. Further, preexisting antibodies recognizing SARS-CoV-2 with conserved epitopes in the spike region have been now seen in uninfected individuals. High-dose Intravenous Immunoglobulin (IVIg), derived from thousands of healthy donors, contains natural IgG antibodies against various antigens which can be detected both within the IVIg preparations and in the serum of IVIg-receiving patients. Whether IVIg preparations from pre-pandemic donors also contain antibodies against pre-pandemic coronaviruses or autoreactive antibodies that cross-react with SARS-CoV-2 antigenic epitopes, is unknown. Methods: 13 samples from 5 commercial IVIg preparations from pre-pandemic donors (HyQvia (Baxalta Innovations GmbH); Privigen (CSL Behring); Intratect (Biotest AG); IgVena (Kedrion S.p.A); and Flebogamma (Grifols S.A.) were blindly screened using a semi-quantitative FDA-approved and validated enzyme-linked immunosorbent assay (ELISA) (Euroimmun, Lubeck, Germany). Results: Nine of thirteen preparations (69.2%), all from two different manufactures, were antibody-positive based on the defined cut-off positivity (index of sample OD to calibrator OD > 1.1). From one manufacturer, 7/7 lots (100%) and from another 2/3 lots (67%), tested positive for cross-reacting antibodies. 7/9 of the positive preparations (77%) had titers as seen in asymptomatically infected individuals or recent COVID19-recovered patients, while 2/9 (23%) had higher titers, comparable to those seen in patients with active symptomatic COVID-19 infection (index > 2.2). Conclusion: Pre-pandemic IVIg donors have either natural autoantibodies or pre-pandemic cross-reactive antibodies against antigenic protein fragments conserved among the "common cold" - related coronaviruses. The findings are important in: (a) assessing true anti-SARS-CoV-2-IgG seroprevalence avoiding false positivity in IVIg-receiving patients; (b) exploring potential protective benefits in patients with immune-mediated conditions and immunodeficiencies receiving acute or chronic maintenance IVIg therapy, and (c) validating data from a recent controlled study that showed significantly lower in-hospital mortality in the IVIg- treated group.


Subject(s)
Antibodies, Viral/immunology , Autoimmunity , COVID-19/immunology , Immunoglobulins, Intravenous/immunology , SARS-CoV-2/immunology , Seasons , COVID-19/epidemiology , Cross Reactions , Epitopes/immunology , Humans , Spike Glycoprotein, Coronavirus/immunology
5.
J Biomol Struct Dyn ; : 1-26, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-1081511

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the most cryptic pandemic outbreak of the 21st century, has gripped more than 1.8 million people to death and infected almost eighty six million. As it is a new variant of SARS, there is no approved drug or vaccine available against this virus. This study aims to predict some promising cytotoxic T lymphocyte epitopes in the SARS-CoV-2 proteome utilizing immunoinformatic approaches. Firstly, we identified 21 epitopes from 7 different proteins of SARS-CoV-2 inducing immune response and checked for allergenicity and conservancy. Based on these factors, we selected the top three epitopes, namely KAYNVTQAF, ATSRTLSYY, and LTALRLCAY showing functional interactions with the maximum number of MHC alleles and no allergenicity. Secondly, the 3D model of selected epitopes and HLA-A*29:02 were built and Molecular Docking simulation was performed. Most interestingly, the best two epitopes predicted by docking are part of two different structural proteins of SARS-CoV-2, namely Membrane Glycoprotein (ATSRTLSYY) and Nucleocapsid Phosphoprotein (KAYNVTQAF), which are generally target of choice for vaccine designing. Upon Molecular Docking, interactions between selected epitopes and HLA-A*29:02 were further validated by 50 ns Molecular Dynamics (MD) simulation. Analysis of RMSD, Rg, SASA, number of hydrogen bonds, RMSF, MM-PBSA, PCA, and DCCM from MD suggested that ATSRTLSYY is the most stable and promising epitope than KAYNVTQAF epitope. Moreover, we also identified B-cell epitopes for each of the antigenic proteins of SARS CoV-2. Findings of our work will be a good resource for wet lab experiments and will lessen the timeline for vaccine construction.Communicated by Ramaswamy H. Sarma.

6.
Nature ; 590(7847): 635-641, 2021 02.
Article in English | MEDLINE | ID: covidwho-1019856

ABSTRACT

Some patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe pneumonia and acute respiratory distress syndrome1 (ARDS). Distinct clinical features in these patients have led to speculation that the immune response to virus in the SARS-CoV-2-infected alveolus differs from that in other types of pneumonia2. Here we investigate SARS-CoV-2 pathobiology by characterizing the immune response in the alveoli of patients infected with the virus. We collected bronchoalveolar lavage fluid samples from 88 patients with SARS-CoV-2-induced respiratory failure and 211 patients with known or suspected pneumonia from other pathogens, and analysed them using flow cytometry and bulk transcriptomic profiling. We performed single-cell RNA sequencing on 10 bronchoalveolar lavage fluid samples collected from patients with severe coronavirus disease 2019 (COVID-19) within 48 h of intubation. In the majority of patients with SARS-CoV-2 infection, the alveolar space was persistently enriched in T cells and monocytes. Bulk and single-cell transcriptomic profiling suggested that SARS-CoV-2 infects alveolar macrophages, which in turn respond by producing T cell chemoattractants. These T cells produce interferon-γ to induce inflammatory cytokine release from alveolar macrophages and further promote T cell activation. Collectively, our results suggest that SARS-CoV-2 causes a slowly unfolding, spatially limited alveolitis in which alveolar macrophages containing SARS-CoV-2 and T cells form a positive feedback loop that drives persistent alveolar inflammation.


Subject(s)
COVID-19/immunology , COVID-19/virology , Macrophages, Alveolar/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , COVID-19/genetics , Cohort Studies , Humans , Interferon-gamma/immunology , Interferons/immunology , Interferons/metabolism , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Pneumonia, Viral/genetics , RNA-Seq , SARS-CoV-2/immunology , Signal Transduction/immunology , Single-Cell Analysis , T-Lymphocytes/metabolism , Time Factors
7.
Exp Eye Res ; 203: 108433, 2021 02.
Article in English | MEDLINE | ID: covidwho-1002524

ABSTRACT

Although severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection have emerged globally, findings related to ocular involvement and reported cases are quite limited. Immune reactions against viral infections are closely related to viral and host proteins sequence similarity. Molecular Mimicry has been described for many different viruses; sequence similarities of viral and human tissue proteins may trigger autoimmune reactions after viral infections due to similarities between viral and human structures. With this study, we aimed to investigate the protein sequence similarity of SARS CoV-2 with retinal proteins and retinal pigment epithelium (RPE) surface proteins. Retinal proteins involved in autoimmune retinopathy and retinal pigment epithelium surface transport proteins were analyzed in order to infer their structural similarity to surface glycoprotein (S), nucleocapsid phosphoprotein (N), membrane glycoprotein (M), envelope protein (E), ORF1ab polyprotein (orf1ab) proteins of SARS CoV-2. Protein similarity comparisons, 3D protein structure prediction, T cell epitopes-MHC binding prediction, B cell epitopes-MHC binding prediction and the evaluation of the antigenicity of peptides assessments were performed. The protein sequence analysis was made using the Pairwise Sequence Alignment and the LALIGN program. 3D protein structure estimates were made using Swiss Model with default settings and analyzed with TM-align web server. T-cell epitope identification was performed using the Immune Epitope Database and Analysis (IEDB) resource Tepitool. B cell epitopes based on sequence characteristics of the antigen was performed using amino acid scales and HMMs with the BepiPred 2.0 web server. The predicted peptides/epitopes in terms of antigenicity were examined using the default settings with the VaxiJen v2.0 server. Analyses showed that, there is a meaningful similarities between 6 retinal pigment epithelium surface transport proteins (MRP-4, MRP-5, RFC1, SNAT7, TAUT and MATE) and the SARS CoV-2 E protein. Immunoreactive epitopic sites of these proteins which are similar to protein E epitope can create an immune stimulation on T cytotoxic and T helper cells and 6 of these 9 epitopic sites are also vaxiJen. These result imply that autoimmune cross-reaction is likely between the studied RPE proteins and SARS CoV-2 E protein. The structure of SARS CoV-2, its proteins and immunologic reactions against these proteins remain largely unknown. Understanding the structure of SARS CoV-2 proteins and demonstration of similarity with human proteins are crucial to predict an autoimmune response associated with immunity against host proteins and its clinical manifestations as well as possible adverse effects of vaccination.


Subject(s)
Amino Acid Sequence , Autoimmune Diseases/virology , Eye Proteins/chemistry , Retinal Diseases/virology , SARS-CoV-2/chemistry , Sequence Homology , Viral Proteins/chemistry , COVID-19/epidemiology , Computational Biology , Coronavirus Envelope Proteins/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Eye Infections, Viral/virology , Humans , Membrane Glycoproteins/chemistry , Phosphoproteins/chemistry , Polyproteins/chemistry , Retinal Pigment Epithelium/chemistry , Viral Matrix Proteins/chemistry
8.
Sci Rep ; 10(1): 22375, 2020 12 23.
Article in English | MEDLINE | ID: covidwho-997939

ABSTRACT

The global population is at present suffering from a pandemic of Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The goal of this study was to use artificial intelligence (AI) to predict blueprints for designing universal vaccines against SARS-CoV-2, that contain a sufficiently broad repertoire of T-cell epitopes capable of providing coverage and protection across the global population. To help achieve these aims, we profiled the entire SARS-CoV-2 proteome across the most frequent 100 HLA-A, HLA-B and HLA-DR alleles in the human population, using host-infected cell surface antigen presentation and immunogenicity predictors from the NEC Immune Profiler suite of tools, and generated comprehensive epitope maps. We then used these epitope maps as input for a Monte Carlo simulation designed to identify statistically significant "epitope hotspot" regions in the virus that are most likely to be immunogenic across a broad spectrum of HLA types. We then removed epitope hotspots that shared significant homology with proteins in the human proteome to reduce the chance of inducing off-target autoimmune responses. We also analyzed the antigen presentation and immunogenic landscape of all the nonsynonymous mutations across 3,400 different sequences of the virus, to identify a trend whereby SARS-COV-2 mutations are predicted to have reduced potential to be presented by host-infected cells, and consequently detected by the host immune system. A sequence conservation analysis then removed epitope hotspots that occurred in less-conserved regions of the viral proteome. Finally, we used a database of the HLA haplotypes of approximately 22,000 individuals to develop a "digital twin" type simulation to model how effective different combinations of hotspots would work in a diverse human population; the approach identified an optimal constellation of epitope hotspots that could provide maximum coverage in the global population. By combining the antigen presentation to the infected-host cell surface and immunogenicity predictions of the NEC Immune Profiler with a robust Monte Carlo and digital twin simulation, we have profiled the entire SARS-CoV-2 proteome and identified a subset of epitope hotspots that could be harnessed in a vaccine formulation to provide a broad coverage across the global population.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Machine Learning , Pandemics/prevention & control , Proteome , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/immunology , Algorithms , Alleles , Amino Acid Sequence , COVID-19/virology , Drug Evaluation, Preclinical/methods , Epitopes, T-Lymphocyte/immunology , HLA Antigens/genetics , Haplotypes , Humans , Immunogenicity, Vaccine , Mutation , Proteomics/methods , SARS-CoV-2/genetics , Software
9.
Front Immunol ; 11: 607069, 2020.
Article in English | MEDLINE | ID: covidwho-993358

ABSTRACT

Upon recognition of microbial DNA or self-DNA, the cyclic-GMP-AMP synthase (cGAS) of the host catalyzes the production of the cyclic dinucleotide cGAMP. cGAMP is the main activator of STING, stimulator of interferon genes, leading to interferon synthesis through the STING-TBK1-IRF3 pathway. STING is also a hub for activation of NF-κB and autophagy. The present review details the striking similarities between T and B cell responses in severe coronavirus disease 2019 (COVID-19) and both animal or human models of STING gain of function (SAVI syndromes: STING-associated vasculopathy with onset in infancy). Those similarities may be further clues for a delayed activation of STING in severe COVID-19 patients, due to DNA damages following severe acute respiratory syndrome coronaviruses (SARS-CoV-2) infection and unusual role of STING in SARS-CoV-2 control. In early stages, Th2 differentiation are noticed in both severe COVID-19 and SAVI syndromes; then, CD4+ and CD8+ T cells functional exhaustion/senescent patterns due to TCR hyper-responsiveness are observed. T cell delayed over-responses can contribute to pneumonitis and delayed cytokine secretion with over-production of IL-6. Last, STING over-activation induces progressive CD4+ and CD8+ T lymphopenia in SAVI syndromes, which parallels what is observed in severe COVID-19. ACE2, the main receptor of SARS-CoV-2, is rarely expressed in immune cells, and it has not been yet proven that some human lymphocytes could be infected by SARS-CoV-2 through CD147 or CD26. However, STING, expressed in humans T cells, might be triggered following excessive transfer of cGAMP from infected antigen presenting cells into activated CD4+ and CD8+ T cells lymphocytes. Indeed, those lymphocytes highly express the cGAMP importer SLC19A1. Whereas STING is not expressed in human B cells, B cells counts are much less affected, either in COVID-19 or SAVI syndromes. The recognition of delayed STING over-activation in severe COVID-19 patients could prompt to target STING with specific small molecules inhibitors already designed and/or aspirin, which inhibits cGAS.


Subject(s)
B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Membrane Proteins/immunology , SARS-CoV-2/immunology , Th2 Cells/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , B-Lymphocytes/pathology , Basigin/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , Dipeptidyl Peptidase 4/immunology , Humans , Interferon Regulatory Factor-3/immunology , Nucleotidyltransferases/immunology , Signal Transduction/immunology , Th2 Cells/pathology
10.
PLoS One ; 15(12): e0239566, 2020.
Article in English | MEDLINE | ID: covidwho-966891

ABSTRACT

The ongoing pandemic of SARS-CoV-2 has brought tremendous crisis on global health care systems and industrial operations that dramatically affect the economic and social life of numerous individuals worldwide. Understanding anti-SARS-CoV-2 immune responses in population with different genetic backgrounds and tracking the viral evolution are crucial for successful vaccine design. In this study, we reported the generation of CD8 T cell epitopes by a total of 80 alleles of three major class I HLAs using NetMHC 4.0 algorithm for the SARS-CoV-2 spike protein, which can be targeted by both B cells and T cells. We found diverse capacities of S protein specific epitope presentation by different HLA alleles with very limited number of predicted epitopes for HLA-B*2705, HLA-B*4402 and HLA-B*4403 and as high as 132 epitopes for HLA-A*6601. Our analysis of 1000 S protein sequences from field isolates collected globally over the past few months identified three recurrent point mutations including L5F, D614G and G1124V. Differential effects of these mutations on CD8 T cell epitope generation by corresponding HLA alleles were observed. Finally, our multiple alignment analysis indicated the absence of seasonal CoV induced cross-reactive CD8 T cells to drive these mutations. Our findings suggested that individuals with certain HLA alleles, such as B*44 are more prone to SARS-CoV-2 infection. Studying anti-S protein specific CD8 T cell immunity in diverse genetic background is critical for better control and prevention of the SARS-CoV-2 pandemic.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , COVID-19/virology , HLA Antigens/immunology , Humans , Mutation , Point Mutation , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
11.
Sci Rep ; 10(1): 18995, 2020 11 04.
Article in English | MEDLINE | ID: covidwho-910353

ABSTRACT

The current pandemic is caused by the SARS-CoV-2 virus and large progress in understanding the pathology of the virus has been made since its emergence in late 2019. Several reports indicate short lasting immunity against endemic coronaviruses, which contrasts studies showing that biobanked venous blood contains T cells reactive to SARS-CoV-2 S-protein even before the outbreak in Wuhan. This suggests a preformed T cell memory towards structural proteins in individuals not exposed to SARS-CoV-2. Given the similarity of SARS-CoV-2 to other members of the Coronaviridae family, the endemic coronaviruses appear likely candidates to generate this T cell memory. However, given the apparent poor immunological memory created by the endemic coronaviruses, immunity against other common pathogens might offer an alternative explanation. Here, we utilize a combination of epitope prediction and similarity to common human pathogens to identify potential sources of the SARS-CoV-2 T cell memory. Although beta-coronaviruses are the most likely candidates to explain the pre-existing SARS-CoV-2 reactive T cells in uninfected individuals, the SARS-CoV-2 epitopes with the highest similarity to those from beta-coronaviruses are confined to replication associated proteins-not the host interacting S-protein. Thus, our study suggests that the observed SARS-CoV-2 pre-formed immunity to structural proteins is not driven by near-identical epitopes.


Subject(s)
Coronavirus Infections/immunology , Epitopes/immunology , Immunologic Memory , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Viral Structural Proteins/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Betacoronavirus/immunology , COVID-19 , Epitopes/chemistry , Humans , Pandemics , SARS-CoV-2 , Viral Structural Proteins/chemistry
12.
Immunity ; 53(5): 1095-1107.e3, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-907818

ABSTRACT

Developing effective strategies to prevent or treat coronavirus disease 2019 (COVID-19) requires understanding the natural immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used an unbiased, genome-wide screening technology to determine the precise peptide sequences in SARS-CoV-2 that are recognized by the memory CD8+ T cells of COVID-19 patients. In total, we identified 3-8 epitopes for each of the 6 most prevalent human leukocyte antigen (HLA) types. These epitopes were broadly shared across patients and located in regions of the virus that are not subject to mutational variation. Notably, only 3 of the 29 shared epitopes were located in the spike protein, whereas most epitopes were located in ORF1ab or the nucleocapsid protein. We also found that CD8+ T cells generally do not cross-react with epitopes in the four seasonal coronaviruses that cause the common cold. Overall, these findings can inform development of next-generation vaccines that better recapitulate natural CD8+ T cell immunity to SARS-CoV-2.


Subject(s)
Betacoronavirus/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Betacoronavirus/isolation & purification , COVID-19 , Convalescence , Coronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Nucleocapsid Proteins , Epitope Mapping , Epitopes, T-Lymphocyte , Female , Humans , Immunodominant Epitopes , Immunologic Memory , Male , Middle Aged , Nucleocapsid Proteins/immunology , Pandemics , Phosphoproteins , Pneumonia, Viral/diagnosis , Polyproteins , SARS-CoV-2 , Viral Proteins/immunology , Young Adult
13.
bioRxiv ; 2020 Sep 15.
Article in English | MEDLINE | ID: covidwho-807972

ABSTRACT

Adoptive cell therapy with viral-specific T cells has been successfully used to treat life-threatening viral infections, supporting the application of this approach against COVID-19. We expanded SARS-CoV-2 T-cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observed that the choice of cytokines modulates the expansion, phenotype and hierarchy of antigenic recognition by SARS-CoV-2 T-cells. Culture with IL-2/4/7 but not other cytokine-driven conditions resulted in >1000 fold expansion in SARS-CoV-2 T-cells with a retained phenotype, function and hierarchy of antigenic recognition when compared to baseline (pre-expansion) samples. Expanded CTLs were directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T-cells could not be efficiently expanded from the peripheral blood of non-exposed controls. Since corticosteroids are used for the management of severe COVID-19, we developed an efficient strategy to inactivate the glucocorticoid receptor gene ( NR3C1 ) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

14.
Biology (Basel) ; 9(9)2020 Sep 18.
Article in English | MEDLINE | ID: covidwho-789329

ABSTRACT

The outbreak of 2019-novel coronavirus (SARS-CoV-2) that causes severe respiratory infection (COVID-19) has spread in China, and the World Health Organization has declared it a pandemic. However, no approved drug or vaccines are available, and treatment is mainly supportive and through a few repurposed drugs. The urgency of the situation requires the development of SARS-CoV-2-based vaccines. Immunoinformatic and molecular modelling are time-efficient methods that are generally used to accelerate the discovery and design of the candidate peptides for vaccine development. In recent years, the use of multiepitope vaccines has proved to be a promising immunization strategy against viruses and pathogens, thus inducing more comprehensive protective immunity. The current study demonstrated a comprehensive in silico strategy to design stable multiepitope vaccine construct (MVC) from B-cell and T-cell epitopes of essential SARS-CoV-2 proteins with the help of adjuvants and linkers. The integrated molecular dynamics simulations analysis revealed the stability of MVC and its interaction with human Toll-like receptors (TLRs), which trigger an innate and adaptive immune response. Later, the in silico cloning in a known pET28a vector system also estimated the possibility of MVC expression in Escherichia coli. Despite that this study lacks validation of this vaccine construct in terms of its efficacy, the current integrated strategy encompasses the initial multiple epitope vaccine design concepts. After validation, this MVC can be present as a better prophylactic solution against COVID-19.

15.
Sci Rep ; 10(1): 14179, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-741695

ABSTRACT

A novel coronavirus (SARS-CoV-2) emerged from China in late 2019 and rapidly spread across the globe, infecting millions of people and generating societal disruption on a level not seen since the 1918 influenza pandemic. A safe and effective vaccine is desperately needed to prevent the continued spread of SARS-CoV-2; yet, rational vaccine design efforts are currently hampered by the lack of knowledge regarding viral epitopes targeted during an immune response, and the need for more in-depth knowledge on betacoronavirus immunology. To that end, we developed a computational workflow using a series of open-source algorithms and webtools to analyze the proteome of SARS-CoV-2 and identify putative T cell and B cell epitopes. Utilizing a set of stringent selection criteria to filter peptide epitopes, we identified 41 T cell epitopes (5 HLA class I, 36 HLA class II) and 6 B cell epitopes that could serve as promising targets for peptide-based vaccine development against this emerging global pathogen. To our knowledge, this is the first study to comprehensively analyze all 10 (structural, non-structural and accessory) proteins from SARS-CoV-2 using predictive algorithms to identify potential targets for vaccine development.


Subject(s)
Betacoronavirus/immunology , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Host-Pathogen Interactions/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Viral Proteins/immunology , Amino Acid Sequence , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Betacoronavirus/classification , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Computational Biology/methods , Coronavirus Infections/metabolism , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , Genome, Viral , Genomics/methods , Humans , Models, Molecular , Pandemics , Peptides/chemistry , Peptides/immunology , Phylogeny , Pneumonia, Viral/metabolism , SARS-CoV-2 , Structure-Activity Relationship , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vaccines, Subunit/immunology , Viral Proteins/chemistry , Viral Vaccines/immunology
16.
Science ; 370(6512): 89-94, 2020 10 02.
Article in English | MEDLINE | ID: covidwho-695026

ABSTRACT

Many unknowns exist about human immune responses to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. SARS-CoV-2-reactive CD4+ T cells have been reported in unexposed individuals, suggesting preexisting cross-reactive T cell memory in 20 to 50% of people. However, the source of those T cells has been speculative. Using human blood samples derived before the SARS-CoV-2 virus was discovered in 2019, we mapped 142 T cell epitopes across the SARS-CoV-2 genome to facilitate precise interrogation of the SARS-CoV-2-specific CD4+ T cell repertoire. We demonstrate a range of preexisting memory CD4+ T cells that are cross-reactive with comparable affinity to SARS-CoV-2 and the common cold coronaviruses human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Thus, variegated T cell memory to coronaviruses that cause the common cold may underlie at least some of the extensive heterogeneity observed in coronavirus disease 2019 (COVID-19) disease.


Subject(s)
Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte/immunology , Immunologic Memory , Pneumonia, Viral/immunology , Betacoronavirus/genetics , Blood Donors , COVID-19 , Cross Reactions , Epitope Mapping , Epitopes, T-Lymphocyte/genetics , Genome, Viral , Humans , Open Reading Frames , Pandemics , SARS-CoV-2 , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL