Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 759
Filter
Add filters

Document Type
Year range
1.
Eur J Neurol ; 28(10): 3384-3395, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1608838

ABSTRACT

BACKGROUND AND PURPOSE: Information regarding multiple sclerosis (MS) patients with the 2019 novel coronavirus disease (COVID-19) is scarce. The study objective was to describe the incidence and characteristics of MS patients with COVID-19, to identify susceptibility and severity risk factors and to assess the proportion of positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serologies according to disease-modifying treatments. METHODS: This was a retrospective study of an MS cohort analysing data collected between February and May 2020. Cases were identified through an email survey and clinical visits. The relationship of demographic and MS characteristics with COVID-19 and of the disease-modifying treatments with SARS-CoV-2 serostatus were examined. RESULTS: Data from 48 suspected cases out of 758 valid respondents and from 45 COVID-19 cases identified through clinical visits were collected. Incidence was 6.3%. Nineteen (20.3%) patients were hospitalized and two (2.2%) died. Multivariable models determined that age (odds ratio [OR] per 10 years 0.53, 95% confidence interval [CI] 0.34-0.85), contact with a confirmed case (OR 197.02, 95% CI 56.36-688.79), residence in Barcelona (OR 2.23, 95% CI 1.03-4.80), MS duration (OR per 5 years 1.41, 95% CI 1.09-1.83) and time on anti-CD20 treatment (OR per 2 years 3.48, 95% CI 1.44-8.45) were independent factors for presenting COVID-19 and age (OR per 10 years 2.71, 95% CI 1.13-6.53) for a severe COVID-19. Out of the 79 (84.9%) with serological test, 45.6% generated antibodies, but only 17.6% of those on anti-CD20 therapies. Lymphopaenia or immunoglobulin levels did not relate to COVID-19. CONCLUSIONS: Multiple sclerosis patients present similar incidence, risk factors and outcomes for COVID-19 as the general population. Patients treated with an anti-CD20 therapy for a longer period of time might be at a higher risk of COVID-19 and less than 20% generate an antibody response. Only age was related to severity.


Subject(s)
COVID-19 , Multiple Sclerosis , Child , Humans , Multiple Sclerosis/epidemiology , Retrospective Studies , Risk Factors , SARS-CoV-2
2.
J Immunotoxicol ; 18(1): 23-29, 2021 12.
Article in English | MEDLINE | ID: covidwho-1593522

ABSTRACT

The coronavirus SARS-CoV-2 of 2019 (COVID-19) causes a pandemic that has been diagnosed in more than 70 million people worldwide. Mild-to-moderate COVID-19 symptoms include coughing, fever, myalgia, shortness of breath, and acute inflammatory lung injury (ALI). In contrast, acute respiratory distress syndrome (ARDS) and respiratory failure occur in patients diagnosed with severe COVID-19. ARDS is mediated, at least in part, by a dysregulated inflammatory response due to excessive levels of circulating cytokines, a condition known as the "cytokine-storm syndrome." Currently, there are FDA-approved therapies that attenuate the dysregulated inflammation that occurs in COVID-19 patients, such as dexamethasone or other corticosteroids and IL-6 inhibitors, including sarilumab, tocilizumab, and siltuximab. However, the efficacy of these treatments have been shown to be inconsistent. Compounds that activate the vagus nerve-mediated cholinergic anti-inflammatory reflex, such as the α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuate ARDS/inflammatory lung injury by decreasing the extracellular levels of high mobility group box-1 (HMGB1) in the airways and the circulation. It is possible that HMGB1 may be an important mediator of the "cytokine-storm syndrome." Notably, high plasma levels of HMGB1 have been reported in patients diagnosed with severe COVID-19, and there is a significant negative correlation between HMGB1 plasma levels and clinical outcomes. Nicotine can activate the cholinergic anti-inflammatory reflex, which attenuates the up-regulation and the excessive release of pro-inflammatory cytokines/chemokines. Therefore, we hypothesize that low molecular weight compounds that activate the cholinergic anti-inflammatory reflex, such as nicotine or GTS-21, may represent a potential therapeutic approach to attenuate the dysregulated inflammatory responses in patients with severe COVID-19.


Subject(s)
Benzylidene Compounds/pharmacology , COVID-19/drug therapy , Cholinergic Agents/pharmacology , Inflammation/drug therapy , Nicotine/metabolism , Pyridines/pharmacology , SARS-CoV-2/physiology , Tobacco Use Disorder/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Cigarette Smoking/adverse effects , Dexamethasone/therapeutic use , HMGB1 Protein/blood , Humans , Pandemics , alpha7 Nicotinic Acetylcholine Receptor/agonists
3.
Rev Med Virol ; 31(5): 1-13, 2021 09.
Article in English | MEDLINE | ID: covidwho-1574052

ABSTRACT

Anti-tumour necrosis factor (TNF) biologicals, Dexamethasone and rIL-7 are of considerable interest in treating COVID-19 patients who are in danger of, or have become, seriously ill. Yet reducing sepsis mortality by lowering circulating levels of TNF lost favour when positive endpoints in earlier simplistic models could not be reproduced in well-conducted human trials. Newer information with anti-TNF biologicals has encouraged reintroducing this concept for treating COVID-19. Viral models have had encouraging outcomes, as have the effects of anti-TNF biologicals on community-acquired COVID-19 during their long-term use to treat chronic inflammatory states. The positive outcome of a large scale trial of dexamethasone, and its higher potency late in the disease, harmonises well with its capacity to enhance levels of IL-7Rα, the receptor for IL-7, a cytokine that enhances lymphocyte development and is increased during the cytokine storm. Lymphoid germinal centres required for antibody-based immunity can be harmed by TNF, and restored by reducing TNF. Thus the IL-7- enhancing activity of dexamethasone may explain its higher potency when lymphocytes are depleted later in the infection, while employing anti-TNF, for several reasons, is much more logical earlier in the infection. This implies dexamethasone could prove to be synergistic with rIL-7, currently being trialed as a COVID-19 therapeutic. The principles behind these COVID-19 therapies are consistent with the observed chronic hypoxia through reduced mitochondrial function, and also the increased severity of this disease in ApoE4-positive individuals. Many of the debilitating persistent aspects of this disease are predictably susceptible to treatment with perispinal etanercept, since they have cerebral origins.


Subject(s)
COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Dexamethasone/administration & dosage , Interleukin-17/administration & dosage , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , COVID-19/genetics , COVID-19/immunology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/immunology , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
4.
Clin Infect Dis ; 73(11): 2073-2082, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1560084

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an urgent need for the development of effective therapies for coronavirus disease 2019 (COVID-19). METHODS: We first tested SARS-CoV-2-specific T-cell (CοV-2-ST) immunity and expansion in unexposed donors, COVID-19-infected individuals (convalescent), asymptomatic polymerase chain reaction (PCR)-positive subjects, vaccinated individuals, non-intensive care unit (ICU) hospitalized patients, and ICU patients who either recovered and were discharged (ICU recovered) or had a prolonged stay and/or died (ICU critical). CoV-2-STs were generated from all types of donors and underwent phenotypic and functional assessment. RESULTS: We demonstrate causal relationship between the expansion of endogenous CoV-2-STs and the disease outcome; insufficient expansion of circulating CoV-2-STs identified hospitalized patients at high risk for an adverse outcome. CoV-2-STs with a similarly functional and non-alloreactive, albeit highly cytotoxic, profile against SARS-CoV-2 could be expanded from both convalescent and vaccinated donors generating clinical-scale, SARS-CoV-2-specific T-cell products with functional activity against both the unmutated virus and its B.1.1.7 and B.1.351 variants. In contrast, critical COVID-19 patient-originating CoV-2-STs failed to expand, recapitulating the in vivo failure of CoV-2-specific T-cell immunity to control the infection. CoV-2-STs generated from asymptomatic PCR-positive individuals presented only weak responses, whereas their counterparts originating from exposed to other seasonal coronaviruses subjects failed to kill the virus, thus disempowering the hypothesis of protective cross-immunity. CONCLUSIONS: Overall, we provide evidence on risk stratification of hospitalized COVID-19 patients and the feasibility of generating powerful CoV-2-ST products from both convalescent and vaccinated donors as an "off-the shelf" T-cell immunotherapy for high-risk patients.

5.
Clin Infect Dis ; 73(11): e4082-e4089, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559187

ABSTRACT

BACKGROUND: Leronlimab, a monoclonal antibody blocker of C-C chemokine receptor type 5 originally developed to treat human immunodeficiency virus infection, was administered as an open-label compassionate-use therapeutic for coronavirus disease 2019 (COVID-19). METHODS: Twenty-three hospitalized severe/critical COVID-19 patients received 700 mg leronlimab subcutaneously, repeated after 7 days in 17 of 23 patients still hospitalized. Eighteen of 23 received other experimental treatments, including convalescent plasma, hydroxychloroquine, steroids, and/or tocilizumab. Five of 23 received leronlimab after blinded, placebo-controlled trials of remdesivir, sarilumab, selinexor, or tocilizumab. Outcomes and results were extracted from medical records. RESULTS: Mean age was 69.5 ±â€…14.9 years; 20 had significant comorbidities. At baseline, 22 were receiving supplemental oxygen (3 high flow, 7 mechanical ventilation). Blood showed markedly elevated inflammatory markers (ferritin, D-dimer, C-reactive protein) and an elevated neutrophil-to-lymphocyte ratio. By day 30 after initial dosing, 17 were recovered, 2 were still hospitalized, and 4 had died. Of the 7 intubated at baseline, 4 were fully recovered off oxygen, 2 were still hospitalized, and 1 had died. CONCLUSIONS: Leronlimab appeared safe and well tolerated. The high recovery rate suggested benefit, and those with lower inflammatory markers had better outcomes. Some, but not all, patients appeared to have dramatic clinical responses, indicating that unknown factors may determine responsiveness to leronlimab. Routine inflammatory and cell prognostic markers did not markedly change immediately after treatment, although interleukin-6 tended to fall. In some persons, C-reactive protein clearly dropped only after the second leronlimab dose, suggesting that a higher loading dose might be more effective. Future controlled trials will be informative.

6.
Mediterr J Rheumatol ; 31(Suppl 2): 295-297, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1539055

ABSTRACT

Patients with various inflammatory diseases of the gastrointestinal tract, skin, liver, kidneys, and musculoskeletal system-connective tissues, often undergo different anti-inflammatory therapies to maintain remission and avoid serious and/or life-threatening complications. Available data so far show an increased rate of hospitalization in such patients during the COVID19 pandemic. The key points of our position statement are summarized below: Patients with inflammatory diseases who receive moderate or high-risk anti-inflammatory therapies might be considered as an increased risk group for severe COVID-19 and appropriate measures should be taken in order to protect them. Initiation of immuno-suppressive/modulatory therapies should be done with caution, taking into account the severity of the underlying inflammatory disease, the type of anti-inflammatory treatment, and the risk of exposure to the SARS-CoV-2 virus. Discontinuation of anti-inflammatory therapies in patients who have not been exposed to or infected with the SARS-CoV-2 virus is not recommended. In patients who become infected with SARS-CoV-2, anti-inflammatory therapies should be discontinued, except in special cases. Specialty physicians should actively participate in the Interdisciplinary Teams caring for patients with inflammatory diseases during COVID19 infection.

7.
J Clin Med ; 10(8)2021 Apr 07.
Article in English | MEDLINE | ID: covidwho-1526820

ABSTRACT

In the context of the coronavirus disease 2019 (COVID-19) pandemic, we aimed to evaluate the impact of anti-cytokine therapies (AT) in kidney transplant recipients requiring hospitalization due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This is an observational retrospective study, which included patients from March to May 2020. An inverse probability of treatment weighting from a propensity score to receive AT was used in all statistical analyses, and we applied a bootstrap procedure in order to calculate an estimation of the 2.5th and 97.5th percentiles of odds ratio (OR). outcomes were measured using an ordinal scale determination (OSD). A total of 33 kidney recipients required hospitalization and 54% of them received at least one AT, mainly tocilizumab (42%), followed by anakinra (12%). There was no statistical effect in terms of intensive care unit (ICU) admission, respiratory secondary infections (35% vs. 7%) or mortality (16% vs. 13%) comparing patients that received AT with those who did not. Nevertheless, patients who received AT presented better outcomes during hospitalization in terms of OSD ≥5 ((OR 0.31; 2.5th, 97.5th percentiles (0.10; 0.72)). These analyses indicate, as a plausible hypothesis, that the use of AT in kidney transplant recipients presenting with COVID-19 could be beneficial, even though multicenter randomized control trials using these therapies in transplanted patients are needed.

8.
Pain Rep ; 6(1): e891, 2021.
Article in English | MEDLINE | ID: covidwho-1501238

ABSTRACT

Introduction: Multimodal treatment is recognized as the optimal paradigm for the management of chronic pain (CP). Careful balance between pharmacological and physical/psychological approaches is thus desirable but can be easily disrupted. Objectives: This study aimed at exploring the impact of the COVID-19 pandemic on pharmacological and physical/psychological treatments of CP. Methods: A Pan-Canadian cross-sectional web-based study was conducted between April 16th and May 31st 2020 among adults living with CP when the country was in the ascending slope of the first COVID-19 pandemic wave. Results: A total of 2864 participants shared their treatment experience (mean age: 49.7 years and women: 83.5%). Among medication users (n = 2533), 38.3% reported changes in their pharmacological pain treatment. The main reasons were as follows: (1) changes in pain symptoms, (2) lack of access to prescribers/cancellation of medical appointments, and (3) increased medication intake in compensation for stopping physical/psychological treatments because of the pandemic. Among participants who used physical/psychological pain management approaches before the pandemic (n = 2467), 68.3% had to modify their treatments or self-management strategies. Common reasons were lack of access to clinics/exercise facilities and the need to compensate for having to stop another type of physical/psychological treatment because of the pandemic-related public health safety measures. Conclusions: Our study underlines the negative impact of the COVID-19 pandemic on access to pain relief, which is considered a fundamental human right. Results will help to justify resource allocation and inform the development of interventions to be better prepared for waves to come and future health crises.

9.
Biomol NMR Assign ; 15(2): 335-340, 2021 10.
Article in English | MEDLINE | ID: covidwho-1442184

ABSTRACT

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.


Subject(s)
5' Untranslated Regions , Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2/genetics , Inverted Repeat Sequences/genetics
10.
Curr Stem Cell Res Ther ; 16(4): 465-480, 2021.
Article in English | MEDLINE | ID: covidwho-1435707

ABSTRACT

The cause of Coronavirus Disease 2019 (COVID-19) known as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, formerly designated 2019-nCoV) was first discovered in December 2019 in Wuhan, China. It then spread rapidly worldwide. Investigation for the discovery of drugs to cure this disease continues. The currently accepted treatments are supportive, but there is no specific disease curing intervention found yet. Since mid-February, therapies involving Mesenchymal Stem/Stromal Cells (MSCs) have been proposed for the treatment of patients with COVID-19. In light of these recent developments, this review will focus on: i) the mechanism of SARS-CoV-2 action and the subsequent pathology in COVID-19, ii) the proposed mechanism( s) of outcome-improving action of MSCs or MSC-derived extracellular vesicles in COVID-19 pneumonia, iii) registered MSC-based clinical trials and interventions for the treatment of COVID-19, iv) published case studies/series/trials reporting the use of MSC-based treatments in COVID-19 cases, and finally v) the need for authority regulations and clinical guidelines for MSCbased treatment strategies for COVID-19.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation/standards , Mesenchymal Stem Cells/cytology , Practice Guidelines as Topic , Extracellular Vesicles/metabolism , Humans , SARS-CoV-2/pathogenicity
11.
Curr Stem Cell Res Ther ; 16(4): 406-413, 2021.
Article in English | MEDLINE | ID: covidwho-1435705

ABSTRACT

COVID-19 pandemic is a global health crisis of the 21st Century. There are currently no approved vaccines and no particular anti-viral treatment for coronavirus disease. As COVID-19 has a broad range of illnesses, it is necessary to find a safe and effective therapeutic method for COVID-19. An attractive approach for treating COVID-19 is cell therapy. Cell therapy aims to inject new and healthy stem cells into a patient's body, to repair the damaged cells and tissues. Stem cell therapy is one of the most studied and important approaches in the treatment of COVID-19 these days. The significant clinical outcome was observed by the adoptive transfer of stem cells, specifically mesenchymal stem cells. This study reviews the characteristics of stem cells and clinical trials that have used stem cells in treating COVID-19.


Subject(s)
COVID-19/drug therapy , COVID-19/therapy , Cell- and Tissue-Based Therapy , Mesenchymal Stem Cells/immunology , SARS-CoV-2/pathogenicity , COVID-19/virology , Cell- and Tissue-Based Therapy/methods , Humans , Mesenchymal Stem Cell Transplantation/methods
12.
Curr Cardiol Rev ; 17(4): e230421189016, 2021.
Article in English | MEDLINE | ID: covidwho-1435702

ABSTRACT

In December 2019, a novel COVID-19 infection caused by SARS-CoV-2 has emerged as a global emergency. In a few months, the pathogen has infected millions of people in the world. Primarily SARS-CoV-2 infects the pulmonary system which ultimately leads to ARDS and lung failure. The majority of patients develop milder symptoms but the infection turns severe in a huge number of people, which ultimately results in enhanced mortality in COVID-19 patients. Co-morbid conditions, primarily cardiovascular complications and diabetes, have been reported to show a strong correlation with COVID-19 severity. Further, the onset of myocardial injury secondary to pulmonary damage has been observed in critically ill patients who have never reported heart-related ailments before. Due to drastic health risks associated with virus infection, the unprecedented disruption in normal business throughout the world has caused economic misery. Apparently, newer treatments are urgently needed to combat the virus particularly to reduce the severity burden. Therefore, understanding the crosstalk between lung and heart during COVID-19 might give us better clarity for early diagnosis followed by appropriate treatment in patients with the likelihood of developing severe symptoms. Accordingly, the present review highlights the potential mechanisms that may explain the crosstalk between lung and heart so that effective treatment/management strategies can be evolved swiftly in this direction.


Subject(s)
COVID-19 , Heart Diseases , Heart , Heart Diseases/virology , Humans , Lung/pathology , Lung/virology , SARS-CoV-2
13.
J Med Virol ; 93(10): 5839-5845, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1432415

ABSTRACT

Undoubtedly, cancer patients have suffered the most from the COVID-19 pandemic process. However, cancer is a heterogeneous disease, and each patient has responded differently to COVID-19. We aimed to describe the clinical characteristics and outcomes of patients with cancer and COVID-19. We retrospectively reviewed 45 cancer patients hospitalized in the Cerrahpasa Medical Faculty COVID-19 department from March 23 to October 23, 2020. We analyzed the demographic characteristics, symptoms, laboratory findings, treatment, prognosis, and cancer subtypes of patients and mortality who were hospitalized for COVID-19. Between March 23 and October 23, 2020, 45 hospitalized cancer patients who had laboratory-confirmed COVID-19 infection were included, with a median age of 60 years (range: 23-92). Patients were divided into two groups a survivor and a non-survivor. Symptoms, demographic information, comorbidities, treatments for COVID-19, and laboratory findings of the two groups were evaluated separately. Two parameters were found, which showed a significant difference between non-survivors and survivors displaying a disadvantage for COPD and low platelet count (p = 0.044-0.038). The mortality rate of all patients was 66%. The presence of comorbidities such as COPD and low platelet count in cancer patients with COVID-19 infection may draw the attention of physicians.


Subject(s)
COVID-19/epidemiology , Neoplasms/epidemiology , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , COVID-19/therapy , Female , Hospital Mortality , Humans , Male , Middle Aged , Neoplasms/classification , Prognosis , Retrospective Studies , Risk Factors , SARS-CoV-2 , Turkey/epidemiology
14.
Lancet Respir Med ; 9(8): 924-932, 2021 08.
Article in English | MEDLINE | ID: covidwho-1413874

ABSTRACT

BACKGROUND: Evidence suggests a role for excessive inflammation in COVID-19 complications. Colchicine is an oral anti-inflammatory medication beneficial in gout, pericarditis, and coronary disease. We aimed to investigate the effect of colchicine on the composite of COVID-19-related death or hospital admission. METHODS: The present study is a phase 3, randomised, double-blind, adaptive, placebo-controlled, multicentre trial. The study was done in Brazil, Canada, Greece, South Africa, Spain, and the USA, and was led by the Montreal Heart Institute. Patients with COVID-19 diagnosed by PCR testing or clinical criteria who were not being treated in hospital were eligible if they were at least 40 years old and had at least one high-risk characteristic. The randomisation list was computer-generated by an unmasked biostatistician, and masked randomisation was centralised and done electronically through an automated interactive web-response system. The allocation sequence was unstratified and used a 1:1 ratio with a blocking schema and block sizes of six. Patients were randomly assigned to receive orally administered colchicine (0·5 mg twice per day for 3 days and then once per day for 27 days thereafter) or matching placebo. The primary efficacy endpoint was the composite of death or hospital admission for COVID-19. Vital status at the end of the study was available for 97·9% of patients. The analyses were done according to the intention-to-treat principle. The COLCORONA trial is registered with ClinicalTrials.gov (NCT04322682) and is now closed to new participants. FINDINGS: Trial enrolment began in March 23, 2020, and was completed in Dec 22, 2020. A total of 4488 patients (53·9% women; median age 54·0 years, IQR 47·0-61·0) were enrolled and 2235 patients were randomly assigned to colchicine and 2253 to placebo. The primary endpoint occurred in 104 (4·7%) of 2235 patients in the colchicine group and 131 (5·8%) of 2253 patients in the placebo group (odds ratio [OR] 0·79, 95·1% CI 0·61-1·03; p=0·081). Among the 4159 patients with PCR-confirmed COVID-19, the primary endpoint occurred in 96 (4·6%) of 2075 patients in the colchicine group and 126 (6·0%) of 2084 patients in the placebo group (OR 0·75, 0·57-0·99; p=0·042). Serious adverse events were reported in 108 (4·9%) of 2195 patients in the colchicine group and 139 (6·3%) of 2217 patients in the placebo group (p=0·051); pneumonia occurred in 63 (2·9%) of 2195 patients in the colchicine group and 92 (4·1%) of 2217 patients in the placebo group (p=0·021). Diarrhoea was reported in 300 (13·7%) of 2195 patients in the colchicine group and 161 (7·3%) of 2217 patients in the placebo group (p<0·0001). INTERPRETATION: In community-treated patients including those without a mandatory diagnostic test, the effect of colchicine on COVID-19-related clinical events was not statistically significant. Among patients with PCR-confirmed COVID-19, colchicine led to a lower rate of the composite of death or hospital admission than placebo. Given the absence of orally administered therapies to prevent COVID-19 complications in community-treated patients and the benefit of colchicine in patients with PCR-proven COVID-19, this safe and inexpensive anti-inflammatory agent could be considered for use in those at risk of complications. Notwithstanding these considerations, replication in other studies of PCR-positive community-treated patients is recommended. FUNDING: The Government of Quebec, the Bill & Melinda Gates Foundation, the National Heart, Lung, and Blood Institute of the US National Institutes of Health, the Montreal Heart Institute Foundation, the NYU Grossman School of Medicine, the Rudin Family Foundation, and philanthropist Sophie Desmarais.


Subject(s)
COVID-19 , Colchicine , Administration, Oral , Ambulatory Care/methods , Ambulatory Care/statistics & numerical data , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/epidemiology , Colchicine/administration & dosage , Colchicine/adverse effects , Double-Blind Method , Drug Monitoring/methods , Female , Hospitalization/statistics & numerical data , Humans , Intention to Treat Analysis , Male , Middle Aged , Outcome Assessment, Health Care , Risk Assessment , SARS-CoV-2/isolation & purification
15.
Infect Dis Rep ; 13(1): 102-125, 2021 Feb 04.
Article in English | MEDLINE | ID: covidwho-1403576

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel coronavirus that emerged from Wuhan, China in late 2019 causing coronavirus disease-19 (COVID-19). SARS-CoV-2 infection begins by attaching to angiotensin-converting enzyme 2 receptor (ACE2) via the spike glycoprotein, followed by cleavage by TMPRSS2, revealing the viral fusion domain. Other presumptive receptors for SARS-CoV-2 attachment include CD147, neuropilin-1 (NRP1), and Myeloid C-lectin like receptor (CLR), each of which might play a role in the systemic viral spread. The pathology of SARS-CoV-2 infection ranges from asymptomatic to severe acute respiratory distress syndrome, often displaying a cytokine storm syndrome, which can be life-threatening. Despite progress made, the detailed mechanisms underlying SARS-CoV-2 interaction with the host immune system remain unclear and are an area of very active research. The process's key players include viral non-structural proteins and open reading frame products, which have been implicated in immune antagonism. The dysregulation of the innate immune system results in reduced adaptive immune responses characterized by rapidly diminishing antibody titers. Several treatment options for COVID-19 are emerging, with immunotherapies, peptide therapies, and nucleic acid vaccines showing promise. This review discusses the advances in the immunopathology of SARS-CoV-2, vaccines and therapies under investigation to counter the effects of this virus, as well as viral variants.

17.
Nat Commun ; 12(1): 668, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1387328

ABSTRACT

Except remdesivir, no specific antivirals for SARS-CoV-2 infection are currently available. Here, we characterize two small-molecule-compounds, named GRL-1720 and 5h, containing an indoline and indole moiety, respectively, which target the SARS-CoV-2 main protease (Mpro). We use VeroE6 cell-based assays with RNA-qPCR, cytopathic assays, and immunocytochemistry and show both compounds to block the infectivity of SARS-CoV-2 with EC50 values of 15 ± 4 and 4.2 ± 0.7 µM for GRL-1720 and 5h, respectively. Remdesivir permitted viral breakthrough at high concentrations; however, compound 5h completely blocks SARS-CoV-2 infection in vitro without viral breakthrough or detectable cytotoxicity. Combination of 5h and remdesivir exhibits synergism against SARS-CoV-2. Additional X-ray structural analysis show that 5h forms a covalent bond with Mpro and makes polar interactions with multiple active site amino acid residues. The present data suggest that 5h might serve as a lead Mpro inhibitor for the development of therapeutics for SARS-CoV-2 infection.


Subject(s)
COVID-19/drug therapy , Coronavirus Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Viral Proteases/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Humans , Indoles/pharmacology , Pyridines/pharmacology , Vero Cells , Viral Proteases/metabolism
18.
Br J Clin Pharmacol ; 87(9): 3439-3450, 2021 09.
Article in English | MEDLINE | ID: covidwho-1373788

ABSTRACT

AIM: We hypothesized that viral kinetic modelling could be helpful to prioritize rational drug combinations for COVID-19. The aim of this research was to use a viral cell cycle model of SARS-CoV-2 to explore the potential impact drugs, or combinations of drugs, that act at different stages in the viral life cycle might have on various metrics of infection outcome relevant in the early stages of COVID-19 disease. METHODS: Using a target-cell limited model structure that has been used to characterize viral load dynamics from COVID-19 patients, we performed simulations to inform on the combinations of therapeutics targeting specific rate constants. The endpoints and metrics included viral load area under the curve (AUC), duration of viral shedding and epithelial cells infected. Based on the known kinetics of the SARS-CoV-2 life cycle, we rank ordered potential targeted approaches involving repurposed, low-potency agents. RESULTS: Our simulations suggest that targeting multiple points central to viral replication within infected host cells or release from those cells is a viable strategy for reducing both viral load and host cell infection. In addition, we observed that the time-window opportunity for a therapeutic intervention to effect duration of viral shedding exceeds the effect on sparing epithelial cells from infection or impact on viral load AUC. Furthermore, the impact on reduction on duration of shedding may extend further in patients who exhibit a prolonged shedder phenotype. CONCLUSIONS: Our work highlights the use of model-informed drug repurposing approaches to better rationalize effective treatments for COVID-19.


Subject(s)
COVID-19 , Drug Repositioning , SARS-CoV-2 , COVID-19/drug therapy , Drug Combinations , Humans , Kinetics , SARS-CoV-2/drug effects
19.
Front Mol Biosci ; 8: 671263, 2021.
Article in English | MEDLINE | ID: covidwho-1344278

ABSTRACT

SARS-CoV-2 belongs to the family of enveloped, single-strand RNA viruses known as Betacoronavirus in Coronaviridae, first reported late 2019 in China. It has since been circulating world-wide, causing the COVID-19 epidemic with high infectivity and fatality rates. As of the beginning of April 2021, pandemic SARS-CoV-2 has infected more than 130 million people and led to more than 2.84 million deaths. Given the severity of the epidemic, scientists from academia and industry are rushing to identify antiviral strategies to combat the disease. There are several strategies in antiviral drugs for coronaviruses including empirical testing of known antiviral drugs, large-scale phenotypic screening of compound libraries and target-based drug discovery. To date, an increasing number of drugs have been shown to have anti-coronavirus activities in vitro and in vivo, but only remdesivir and several neutralizing antibodies have been approved by the US FDA for treating COVID-19. However, remdesivir's clinical effects are controversial and new antiviral drugs are still urgently needed. We will discuss the current status of the drug discovery efforts against COVID-19 and potential future directions. With the ever-increasing movability of human population and globalization of world economy, emerging and reemerging viral infectious diseases seriously threaten public health. Particularly the past and ongoing outbreaks of coronaviruses cause respiratory, enteric, hepatic and neurological diseases in infected animals and human (Woo et al., 2009). The human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1) usually cause common cold with mild, self-limiting upper respiratory tract infections. By contrast, the emergence of three deadly human betacoronaviruses, middle east respiratory syndrome coronavirus (MERS) (Zaki et al., 2012), severe acute respiratory syndrome coronavirus (SARS-CoV) (Lee et al., 2003), the SARS-CoV-2 (Jin et al., 2020a) highlight the need to identify new treatment strategies for viral infections. SARS-CoV-2 is the etiological agent of COVID-19 disease named by World Health Organization (WHO) (Zhu N. et al., 2020). This disease manifests as either an asymptomatic infection or a mild to severe pneumonia. This pandemic disease causes extent morbidity and mortality in the whole world, especially regions out of China. Similar to SARS and MERS, the SARS CoV-2 genome encodes four structural proteins, sixteen non-structural proteins (nsp) and accessory proteins. The structural proteins include spike (S), envelope (E), membrane (M), nucleoprotein (N). The spike glycoprotein directly recognizes and engages cellular receptors during viral entry. The four non-structural proteins including papain-like protease (PLpro), 3-chymotrypsin-like protease (3CLpro), helicase, and RNA-dependent RNA polymerase (RdRp) are key enzymes involved in viral transcription and replication. The spike and the four key enzymes were considered attractive targets to develop antiviral agents (Zumla et al., 2016). The catalytic sites of the four enzymes of SARS-CoV2 share high similarities with SARS CoV and MERS in genomic sequences (Morse et al., 2020). Besides, the structures of the key drug-binding pockets are highly conserved among the three coronaviruses (Morse et al., 2020). Therefore, it follows naturally that existing anti-SARS-CoV and anti-MERS drugs targeting these enzymes can be repurposed for SARS-CoV-2. Based on previous studies in SARS-CoV and MERS-CoV, it is anticipated a number of therapeutics can be used to control or prevent emerging infectious disease COVID-19 (Li and de Clercq, 2020; Wang et al., 2020c; Ita, 2021), these include small-molecule drugs, peptides, and monoclonal antibodies. Given the urgency of the SARS-CoV-2 outbreak, here we discuss the discovery and development of new therapeutics for SARS-CoV-2 infection based on the strategies from which the new drugs are derived.

20.
Curr Med Chem ; 28(19): 3803-3824, 2021.
Article in English | MEDLINE | ID: covidwho-1344210

ABSTRACT

The novel coronavirus (SARS-CoV-2) pandemic has created a global public health emergency. The pandemic is causing substantial morbidity, mortality and significant economic loss. Currently, no approved treatments for COVID-19 are available, and it is likely to takes at least 12-18 months to develop a new vaccine. Therefore, there is an urgent need to find new therapeutics that can be progressed to clinical development as soon as possible. Repurposing regulatory agency-approved drugs and experimental drugs with known safety profiles can provide important repositories of compounds that can be fast-tracked to clinical development. Globally, over 500 clinical trials involving repurposed drugs have been registered, and over 150 have been initiated, including some backed by the World Health Organisation (WHO). This review is intended as a guide to research into small-molecule therapies to treat COVID-19; it discusses the SARS-CoV-2 infection cycle and identifies promising viral therapeutic targets, reports on a number of promising pre-approved small-molecule drugs with reference to over 150 clinical trials worldwide, and offers a perspective on the future of the field.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , Drug Repositioning , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...