Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Curr Med Chem ; 28(41): 8559-8594, 2021.
Article in English | MEDLINE | ID: covidwho-1690554

ABSTRACT

There is a new public health crisis threatening the world with the emergence and spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease was later named novel coronavirus disease or COVID-19. It was then declared a pandemic by the World Health Organization on March 11, 2020. The virus originated in bats and was transmitted to humans through unknown intermediary animals in Wuhan, Hubei province, China, in December 2019. As of February 5, 2021, 103 million laboratory-confirmed cases and nearly 2.3 million deaths were reported globally. The number of death tolls continues to rise, and a large number of countries have been forced to maintain social distance in public place and enforce lockdown. As per literature, coronavirus is transmitted human to human or human to animal via airborne droplets. Coronavirus enters the human cell through the membrane ACE-2 exopeptidase receptor. WHO, ECDC, and ICMR advised avoiding public places and close contact with infected persons and pet animals. To date, there is no evidence of any effective treatment for COVID-19. The main therapies being used to treat the disease are antiviral drugs, chloroquine/hydroxychloroquine, and respiratory therapy. Although several therapies have been proposed, quarantine is the only intervention that appears to be effective in decreasing the contagion rate. We conducted a literature review of publicly available information to summarize knowledge about the pathogen and the current epidemic. In the present literature review, the causative agent of the pandemic, epidemiology, pathogenesis, and diagnostic techniques are discussed. Further, currently used treatment, preventive strategies along with vaccine trials and computational tools are all described in detail.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Communicable Disease Control , Humans , Hydroxychloroquine , Pandemics
2.
Rev Med Virol ; 31(5): 1-13, 2021 09.
Article in English | MEDLINE | ID: covidwho-1574052

ABSTRACT

Anti-tumour necrosis factor (TNF) biologicals, Dexamethasone and rIL-7 are of considerable interest in treating COVID-19 patients who are in danger of, or have become, seriously ill. Yet reducing sepsis mortality by lowering circulating levels of TNF lost favour when positive endpoints in earlier simplistic models could not be reproduced in well-conducted human trials. Newer information with anti-TNF biologicals has encouraged reintroducing this concept for treating COVID-19. Viral models have had encouraging outcomes, as have the effects of anti-TNF biologicals on community-acquired COVID-19 during their long-term use to treat chronic inflammatory states. The positive outcome of a large scale trial of dexamethasone, and its higher potency late in the disease, harmonises well with its capacity to enhance levels of IL-7Rα, the receptor for IL-7, a cytokine that enhances lymphocyte development and is increased during the cytokine storm. Lymphoid germinal centres required for antibody-based immunity can be harmed by TNF, and restored by reducing TNF. Thus the IL-7- enhancing activity of dexamethasone may explain its higher potency when lymphocytes are depleted later in the infection, while employing anti-TNF, for several reasons, is much more logical earlier in the infection. This implies dexamethasone could prove to be synergistic with rIL-7, currently being trialed as a COVID-19 therapeutic. The principles behind these COVID-19 therapies are consistent with the observed chronic hypoxia through reduced mitochondrial function, and also the increased severity of this disease in ApoE4-positive individuals. Many of the debilitating persistent aspects of this disease are predictably susceptible to treatment with perispinal etanercept, since they have cerebral origins.


Subject(s)
COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Dexamethasone/administration & dosage , Interleukin-17/administration & dosage , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , COVID-19/genetics , COVID-19/immunology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/immunology , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
3.
Molecules ; 25(8)2020 Apr 18.
Article in English | MEDLINE | ID: covidwho-1450861

ABSTRACT

(1) Background: Viral respiratory infections cause life-threatening diseases in millions of people worldwide every year. Human coronavirus and several picornaviruses are responsible for worldwide epidemic outbreaks, thus representing a heavy burden to their hosts. In the absence of specific treatments for human viral infections, natural products offer an alternative in terms of innovative drug therapies. (2) Methods: We analyzed the antiviral properties of the leaves and stem bark of the mulberry tree (Morus spp.). We compared the antiviral activity of Morus spp. on enveloped and nonenveloped viral pathogens, such as human coronavirus (HCoV 229E) and different members of the Picornaviridae family-human poliovirus 1, human parechovirus 1 and 3, and human echovirus 11. The antiviral activity of 12 water and water-alcohol plant extracts of the leaves and stem bark of three different species of mulberry-Morus alba var. alba, Morus alba var. rosa, and Morus rubra-were evaluated. We also evaluated the antiviral activities of kuwanon G against HCoV-229E. (3) Results: Our results showed that several extracts reduced the viral titer and cytopathogenic effects (CPE). Leaves' water-alcohol extracts exhibited maximum antiviral activity on human coronavirus, while stem bark and leaves' water and water-alcohol extracts were the most effective on picornaviruses. (4) Conclusions: The analysis of the antiviral activities of Morus spp. offer promising applications in antiviral strategies.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Morus/chemistry , Plant Extracts/pharmacology , Respiratory Tract Infections/drug therapy , Antiviral Agents/therapeutic use , Cell Line , Cytopathogenic Effect, Viral/drug effects , Flavonoids/pharmacology , Humans , Mass Spectrometry , Microbial Sensitivity Tests , Picornaviridae/drug effects , Plant Bark/chemistry , Plant Extracts/therapeutic use , Plant Leaves/chemistry
4.
Biomol NMR Assign ; 15(2): 335-340, 2021 10.
Article in English | MEDLINE | ID: covidwho-1442184

ABSTRACT

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.


Subject(s)
5' Untranslated Regions , Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2/genetics , Inverted Repeat Sequences/genetics
5.
Curr Stem Cell Res Ther ; 16(4): 465-480, 2021.
Article in English | MEDLINE | ID: covidwho-1435707

ABSTRACT

The cause of Coronavirus Disease 2019 (COVID-19) known as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, formerly designated 2019-nCoV) was first discovered in December 2019 in Wuhan, China. It then spread rapidly worldwide. Investigation for the discovery of drugs to cure this disease continues. The currently accepted treatments are supportive, but there is no specific disease curing intervention found yet. Since mid-February, therapies involving Mesenchymal Stem/Stromal Cells (MSCs) have been proposed for the treatment of patients with COVID-19. In light of these recent developments, this review will focus on: i) the mechanism of SARS-CoV-2 action and the subsequent pathology in COVID-19, ii) the proposed mechanism( s) of outcome-improving action of MSCs or MSC-derived extracellular vesicles in COVID-19 pneumonia, iii) registered MSC-based clinical trials and interventions for the treatment of COVID-19, iv) published case studies/series/trials reporting the use of MSC-based treatments in COVID-19 cases, and finally v) the need for authority regulations and clinical guidelines for MSCbased treatment strategies for COVID-19.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation/standards , Mesenchymal Stem Cells/cytology , Practice Guidelines as Topic , Extracellular Vesicles/metabolism , Humans , SARS-CoV-2/pathogenicity
6.
Lancet Respir Med ; 9(8): 924-932, 2021 08.
Article in English | MEDLINE | ID: covidwho-1413874

ABSTRACT

BACKGROUND: Evidence suggests a role for excessive inflammation in COVID-19 complications. Colchicine is an oral anti-inflammatory medication beneficial in gout, pericarditis, and coronary disease. We aimed to investigate the effect of colchicine on the composite of COVID-19-related death or hospital admission. METHODS: The present study is a phase 3, randomised, double-blind, adaptive, placebo-controlled, multicentre trial. The study was done in Brazil, Canada, Greece, South Africa, Spain, and the USA, and was led by the Montreal Heart Institute. Patients with COVID-19 diagnosed by PCR testing or clinical criteria who were not being treated in hospital were eligible if they were at least 40 years old and had at least one high-risk characteristic. The randomisation list was computer-generated by an unmasked biostatistician, and masked randomisation was centralised and done electronically through an automated interactive web-response system. The allocation sequence was unstratified and used a 1:1 ratio with a blocking schema and block sizes of six. Patients were randomly assigned to receive orally administered colchicine (0·5 mg twice per day for 3 days and then once per day for 27 days thereafter) or matching placebo. The primary efficacy endpoint was the composite of death or hospital admission for COVID-19. Vital status at the end of the study was available for 97·9% of patients. The analyses were done according to the intention-to-treat principle. The COLCORONA trial is registered with ClinicalTrials.gov (NCT04322682) and is now closed to new participants. FINDINGS: Trial enrolment began in March 23, 2020, and was completed in Dec 22, 2020. A total of 4488 patients (53·9% women; median age 54·0 years, IQR 47·0-61·0) were enrolled and 2235 patients were randomly assigned to colchicine and 2253 to placebo. The primary endpoint occurred in 104 (4·7%) of 2235 patients in the colchicine group and 131 (5·8%) of 2253 patients in the placebo group (odds ratio [OR] 0·79, 95·1% CI 0·61-1·03; p=0·081). Among the 4159 patients with PCR-confirmed COVID-19, the primary endpoint occurred in 96 (4·6%) of 2075 patients in the colchicine group and 126 (6·0%) of 2084 patients in the placebo group (OR 0·75, 0·57-0·99; p=0·042). Serious adverse events were reported in 108 (4·9%) of 2195 patients in the colchicine group and 139 (6·3%) of 2217 patients in the placebo group (p=0·051); pneumonia occurred in 63 (2·9%) of 2195 patients in the colchicine group and 92 (4·1%) of 2217 patients in the placebo group (p=0·021). Diarrhoea was reported in 300 (13·7%) of 2195 patients in the colchicine group and 161 (7·3%) of 2217 patients in the placebo group (p<0·0001). INTERPRETATION: In community-treated patients including those without a mandatory diagnostic test, the effect of colchicine on COVID-19-related clinical events was not statistically significant. Among patients with PCR-confirmed COVID-19, colchicine led to a lower rate of the composite of death or hospital admission than placebo. Given the absence of orally administered therapies to prevent COVID-19 complications in community-treated patients and the benefit of colchicine in patients with PCR-proven COVID-19, this safe and inexpensive anti-inflammatory agent could be considered for use in those at risk of complications. Notwithstanding these considerations, replication in other studies of PCR-positive community-treated patients is recommended. FUNDING: The Government of Quebec, the Bill & Melinda Gates Foundation, the National Heart, Lung, and Blood Institute of the US National Institutes of Health, the Montreal Heart Institute Foundation, the NYU Grossman School of Medicine, the Rudin Family Foundation, and philanthropist Sophie Desmarais.


Subject(s)
COVID-19 , Colchicine , Administration, Oral , Ambulatory Care/methods , Ambulatory Care/statistics & numerical data , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/epidemiology , Colchicine/administration & dosage , Colchicine/adverse effects , Double-Blind Method , Drug Monitoring/methods , Female , Hospitalization/statistics & numerical data , Humans , Intention to Treat Analysis , Male , Middle Aged , Outcome Assessment, Health Care , Risk Assessment , SARS-CoV-2/isolation & purification
7.
Int J Mol Sci ; 22(3)2021 Jan 31.
Article in English | MEDLINE | ID: covidwho-1383877

ABSTRACT

Extracellular vesicles (EVs), such as exosomes, are newly recognized fundamental, universally produced natural nanoparticles of life that are seemingly involved in all biologic processes and clinical diseases. Due to their universal involvements, understanding the nature and also the potential therapeutic uses of these nanovesicles requires innovative experimental approaches in virtually every field. Of the EV group, exosome nanovesicles and larger companion micro vesicles can mediate completely new biologic and clinical processes dependent on the intercellular transfer of proteins and most importantly selected RNAs, particularly miRNAs between donor and targeted cells to elicit epigenetic alterations inducing functional cellular changes. These recipient acceptor cells are nearby (paracrine transfers) or far away after distribution via the circulation (endocrine transfers). The major properties of such vesicles seem to have been conserved over eons, suggesting that they may have ancient evolutionary origins arising perhaps even before cells in the primordial soup from which life evolved. Their potential ancient evolutionary attributes may be responsible for the ability of some modern-day exosomes to withstand unusually harsh conditions, perhaps due to unique membrane lipid compositions. This is exemplified by ability of the maternal milk exosomes to survive passing the neonatal acid/enzyme rich stomach. It is postulated that this resistance also applies to their durable presence in phagolysosomes, thus suggesting a unique intracellular release of their contained miRNAs. A major discussed issue is the generally poorly realized superiority of these naturally evolved nanovesicles for therapies when compared to human-engineered artificial nanoparticles, e.g., for the treatment of diseases like cancers.


Subject(s)
Cell- and Tissue-Based Therapy , Exosomes/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/genetics , Neoplasms/therapy , Humans , Nanoparticles/therapeutic use
8.
Turk J Biol ; 44(3): 273-282, 2020.
Article in English | MEDLINE | ID: covidwho-1389591

ABSTRACT

Discovery of novel and broad-acting immunomodulators is of critical importance for the prevention and treatment of disorders occurring due to overexuberant immune responseincluding SARS-CoV-2 triggered cytokine storm leading to lung pathology and mortality during the ongoing viral pandemic. Mesenchymal stem/stromal cells (MSCs), highly regarded for their regenerative capacities, also possessesremarkable immunoregulatory functions affecting all types of innate and adaptive immune cells. Owing to that, MSCs have been heavily investigated in clinic for the treatment of autoimmune and inflammatory diseases along with transplant rejection. Extensive research in the last decaderevealed that MSCs carry out most of their functions through paracrine factors which are soluble mediators and extracellular vesicles (EVs). EVs, including exosomes and microvesicles, are an efficient way of intercellular communication due to their unique ability to carry biological messages such as transcription factors, growth factors, cytokines, mRNAs and miRNAs over long distances. EVs originate through direct budding of the cell membrane or the endosomal secretion pathway and they consist of the cytosolic and membrane components of their parent cell. Therefore, they are able to mimic the characteristics of the parent cell, affecting the target cells upon binding or internalization. EVs secreted by MSCs are emerging as a cell-free alternative to MSC-based therapies. MSC EVs are being tested in preclinical and clinical settings where they exhibit exceptional immunosuppressivecapacity. They regulate the migration, proliferation, activation and polarization of various immune cells, promoting a tolerogenic immune response while inhibiting inflammatory response. Being as effective immunomodulators as their parent cells, MSC EVs are also preferable over MSC-based therapies due to their lower risk of immunogenicity, tumorigenicity and overall superior safety. In this review, we present the outcomes of preclinical and clinical studies utilizing MSC EVs as therapeutic agents for the treatment of a wide variety of immunological disorders.

9.
Addiction ; 116(9): 2559-2571, 2021 09.
Article in English | MEDLINE | ID: covidwho-1334376

ABSTRACT

This narrative review provides a summary of the impact of tobacco smoking on the respiratory system and the benefits of smoking cessation. Tobacco smoking is one of the leading preventable causes of death world-wide and a major risk factor for lung cancer and chronic obstructive pulmonary disease. Smoking is also associated with an increased risk of respiratory infections and appears to be related to poorer outcomes among those with COVID-19. Non-smokers with second-hand smoke exposure also experience significant adverse respiratory effects. Smoking imposes enormous health- and non-health-related costs to societies. The benefits of smoking cessation, in both prevention and management of respiratory disease, have been known for decades and, to this day, cessation support remains one of the most important cost-effective interventions that health professionals can provide to people who smoke. Cessation at any age confers substantial health benefits, even in smokers with established morbidities. As other treatments for chronic respiratory disease advance and survival rates increase, smoking cessation treatment will become even more relevant. While smoking cessation interventions are available, the offer of these by clinicians and uptake by patients remain limited.


Subject(s)
Lung Diseases/complications , Lung Diseases/pathology , Smoking Cessation , Tobacco Use Disorder/complications , Tobacco Use Disorder/pathology , Humans , Lung/pathology , Lung Diseases/prevention & control , Tobacco Use Disorder/therapy
10.
Biochimie ; 179: 266-274, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1326918

ABSTRACT

Obese patients who often present metabolic dysfunction-associated fatty liver disease (MAFLD) are at risk of severe presentation of coronavirus disease 2019 (COVID-19). These patients are more likely to be hospitalized and receive antiviral agents and other drugs required to treat acute respiratory distress syndrome and systemic inflammation, combat bacterial and fungal superinfections and reverse multi-organ failure. Among these pharmaceuticals, antiretrovirals such as lopinavir/ritonavir and remdesivir, antibiotics and antifungal agents can induce drug-induced liver injury (DILI), whose mechanisms are not always understood. In the present article, we hypothesize that obese COVID-19 patients with MAFLD might be at higher risk for DILI than non-infected healthy individuals or MAFLD patients. These patients present several concomitant factors, which individually can favour DILI: polypharmacy, systemic inflammation at risk of cytokine storm, fatty liver and sometimes nonalcoholic steatohepatitis (NASH) as well as insulin resistance and other diseases linked to obesity. Hence, in obese COVID-19 patients, some drugs might cause more severe (and/or more frequent) DILI, while others might trigger the transition of fatty liver to NASH, or worsen pre-existing steatosis, necroinflammation and fibrosis. We also present the main mechanisms whereby drugs can be more hepatotoxic in MAFLD including impaired activity of xenobiotic-metabolizing enzymes, mitochondrial dysfunction, altered lipid homeostasis and oxidative stress. Although comprehensive investigations are needed to confirm our hypothesis, we believe that the current epidemic of obesity and related metabolic diseases has extensively contributed to increase the number of cases of DILI in COVID-19 patients, which may have participated in presentation severity and death.


Subject(s)
COVID-19/complications , Chemical and Drug Induced Liver Injury , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Chemical and Drug Induced Liver Injury/physiopathology , Humans , Liver/drug effects , Liver/physiopathology
11.
Mil Med ; 186(5-6): 129-131, 2021 05 03.
Article in English | MEDLINE | ID: covidwho-1322641

ABSTRACT

At the outset of the 2019 coronavirus disease (COVID-19) pandemic, New York City faced the highest burden of COVID-19 cases in the United States. In response, the U.S. Federal Government deployed medical providers from various uniformed services to treat patients with COVID-19 at the Jacob Javits Convention Center in New York City. There quickly arose a need for psychiatric services for patients with COVID-19 and psychological support for medical staff. Psychiatrists were tasked with establishing a consult-liaison psychiatry service in this unique environment. The authors detail the establishment of a novel consultation-liaison psychiatry service in a large convention center and explore lessons learned from this experience with the aim to empower uniformed psychiatrists to prepare for and deliver patient-focused care in pandemic settings.


Subject(s)
COVID-19 , Psychiatry , COVID-19/drug therapy , Humans , New York , Referral and Consultation , SARS-CoV-2 , United States
12.
Emerg Microbes Infect ; 10(1): 1320-1330, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1266083

ABSTRACT

Ebola virus (EBOV) is a negative single-stranded RNA virus within the Filoviridae family and the causative agent of Ebola virus disease (EVD). Nonhuman primates (NHPs), including cynomolgus and rhesus macaques, are considered the gold standard animal model to interrogate mechanisms of EBOV pathogenesis. However, despite significant genetic similarity (>90%), NHP species display different clinical presentation following EBOV infection, notably a ∼1-2 days delay in disease progression. Consequently, evaluation of therapeutics is generally conducted in rhesus macaques, whereas cynomolgus macaques are utilized to determine efficacy of preventative treatments, notably vaccines. This observation is in line with reported differences in disease severity and host responses between these two NHP following infection with simian varicella virus, influenza A and SARS-CoV-2. However, the molecular underpinnings of these differential outcomes following viral infections remain poorly defined. In this study, we compared published transcriptional profiles obtained from cynomolgus and rhesus macaques infected with the EBOV-Makona Guinea C07 using bivariate and regression analyses to elucidate differences in host responses. We report the presence of a shared core of differentially expressed genes (DEGs) reflecting EVD pathology, including aberrant inflammation, lymphopenia, and coagulopathy. However, the magnitudes of change differed between the two macaque species. These findings suggest that the differential clinical presentation of EVD in these two species is mediated by altered transcriptional responses.


Subject(s)
Gene Expression Regulation/immunology , Hemorrhagic Fever, Ebola/veterinary , Macaca fascicularis , Macaca mulatta , Monkey Diseases/immunology , Transcription, Genetic/immunology , Animals , COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/mortality , Humans , Immunity , Monkey Diseases/genetics , Monkey Diseases/mortality , RNA, Viral/metabolism , SARS-CoV-2 , Species Specificity
13.
Front Public Health ; 9: 671788, 2021.
Article in English | MEDLINE | ID: covidwho-1264395

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by a new coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently spreading all over the world. In this paper, we developed a practical model for identifying the features of cytokine storm, which is common in acute infectious diseases and harmful manifestation of COVID-19, by distinguishing major and minor clinical events. This model is particularly suitable for identifying febrile and infectious diseases like COVID-19. Based on this model, features of cytokine storm and pathogenesis of COVID-19 have been proposed to be a consequence of the disequilibrated cytokine network resulting from increased biological activity of transforming growth factor-ß (TGF-ß), which induces certain clinical manifestations such as fatigue, fever, dry cough, pneumonia, abatement and losing of olfactory, and taste senses in some patients. Research and clarification of the pathogenesis of COVID-19 will contribute to precision treatment. Various anti-TGF-ß therapies may be explored as potential COVID-19 treatment. This novel model will be helpful in reducing the widespread mortality of COVID-19.


Subject(s)
COVID-19 , Coronavirus Infections , COVID-19/drug therapy , Cytokine Release Syndrome , Humans , SARS-CoV-2
14.
Tohoku J Exp Med ; 254(2): 71-80, 2021 06.
Article in English | MEDLINE | ID: covidwho-1262562

ABSTRACT

Olfactory disorders are one of the characteristic symptoms of the coronavirus disease of 2019 (COVID-19), which causes infection and inflammation of the upper and lower respiratory tract. To our knowledge, there are no treatments for COVID-19-related olfactory disorder. Here, we report five olfactory disorder cases in COVID-19, treated using the Japanese traditional (Kampo) medicine, kakkontokasenkyushin'i. We treated five patients with mild COVID-19 at an isolation facility using Kampo medicine, depending on their symptoms. Patients with the olfactory disorder presented with a blocked nose, nasal discharge or taste impairment. Physical examination using Kampo medicine showed similar findings, such as a red tongue with red spots and sublingual vein congestion, which presented as blood stasis and inflammation; thus, we prescribed the Kampo medicine, kakkontokasenkyushin'i. After administration, the numeric rating scale scores of the smell impairment improved within 3 days from 9 to 3 in case 1, from 10 to 0 in case 2, from 9 to 0 in case 3, from 5 to 0 in case 4, and from 9 to 0 within 5 days in case 5. Following the treatment, other common cold symptoms were also alleviated. Kakkontokasenkyushin'i can be used for treating nasal congestion, rhinitis, and inflammation in the nasal mucosa. The olfactory disorder in COVID-19 has been reportedly associated with inflammation and congestion, especially in the olfactory bulb and olfactory cleft. Kakkontokasenkyushin'i may be one of the treatment alternatives for the olfactory disorder with rhinitis in patients with COVID-19.


Subject(s)
COVID-19/drug therapy , Medicine, Kampo/methods , Olfaction Disorders/drug therapy , Plant Preparations/therapeutic use , Adolescent , Adult , COVID-19/complications , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Female , Humans , Japan , Male , Olfaction Disorders/complications , Olfaction Disorders/virology , Plant Preparations/chemistry , Plant Preparations/pharmacology , Rhinitis/complications , Rhinitis/drug therapy , Rhinitis/virology , SARS-CoV-2/physiology , Smell/drug effects , Treatment Outcome , Young Adult
15.
Crit Care Explor ; 3(6): e0441, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1262253

ABSTRACT

OBJECTIVES: To evaluate factors predictive of clinical progression among coronavirus disease 2019 patients following admission, and whether continuous, automated assessments of patient status may contribute to optimal monitoring and management. DESIGN: Retrospective cohort for algorithm training, testing, and validation. SETTING: Eight hospitals across two geographically distinct regions. PATIENTS: Two-thousand fifteen hospitalized coronavirus disease 2019-positive patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Anticipating Respiratory failure in Coronavirus disease (ARC), a clinically interpretable, continuously monitoring prognostic model of acute respiratory failure in hospitalized coronavirus disease 2019 patients, was developed and validated. An analysis of the most important clinical predictors aligns with key risk factors identified by other investigators but contributes new insights regarding the time at which key factors first begin to exhibit aberrency and distinguishes features predictive of acute respiratory failure in coronavirus disease 2019 versus pneumonia caused by other types of infection. Departing from prior work, ARC was designed to update continuously over time as new observations (vitals and laboratory test results) are recorded in the electronic health record. Validation against data from two geographically distinct health systems showed that the proposed model achieved 75% specificity and 77% sensitivity and predicted acute respiratory failure at a median time of 32 hours prior to onset. Over 80% of true-positive alerts occurred in non-ICU settings. CONCLUSIONS: Patients admitted to non-ICU environments with coronavirus disease 2019 are at ongoing risk of clinical progression to severe disease, yet it is challenging to anticipate which patients will develop acute respiratory failure. A continuously monitoring prognostic model has potential to facilitate anticipatory rather than reactive approaches to escalation of care (e.g., earlier initiation of treatments for severe disease or structured monitoring and therapeutic interventions for high-risk patients).

16.
Regen Ther ; 18: 152-160, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1260854

ABSTRACT

The Covid-19 disease has recently become one of the biggest challenges globally, and there is still no specific medication. Findings showed the immune system in severe Covid-19 patients loses regulatory control of pro-inflammatory cytokines, especially IL-6 production, called the "Cytokine storm" process. This process can cause injury to vital organs, including lungs, kidneys, liver, and ultimately death if not inhibited. While many treatments have been proposed to reduce cytokine storm, but the safety and effectiveness of each of them are still in doubt. Mesenchymal stem cells (MSCs) are multipotent cells with self-renewal potential capable of suppressing overactive immune responses and leading to tissue restoration and repair. These immuno-modulatory properties of MSCs and their derivatives (like exosomes) can improve the condition of Covid-19 patients with serious infectious symptoms caused by adaptive immune system dysfunction. Many clinical trials have been conducted in this field using various MSCs around the world. Some of these have been published and summarized in the present article, while many have not yet been completed. Based on these available data, MSCs can reduce inflammatory cytokines, increase oxygen saturation, regenerate lung tissue and improve clinical symptoms in Covid-19 patients. The review article aims to collect available clinical data in more detail and investigate the role of MSCs in reducing cytokine storms as well as improving clinical parameters of Covid-19 patients for use in future clinical studies.

17.
18.
Chest ; 160(1): 74-84, 2021 07.
Article in English | MEDLINE | ID: covidwho-1258346

ABSTRACT

BACKGROUND: Severity of illness in COVID-19 is consistently lower in women. A focus on sex as a biological factor may suggest a potential therapeutic intervention for this disease. We assessed whether adding progesterone to standard of care (SOC) would improve clinical outcomes of hospitalized men with moderate to severe COVID-19. RESEARCH QUESTION: Does short-term subcutaneous administration of progesterone safely improve clinical outcome in hypoxemic men hospitalized with COVID-19? STUDY DESIGN AND METHODS: We conducted a pilot, randomized, open-label, controlled trial of subcutaneous progesterone in men hospitalized with confirmed moderate to severe COVID-19. Patients were randomly assigned to receive SOC plus progesterone (100 mg subcutaneously twice daily for up to 5 days) or SOC alone. In addition to assessment of safety, the primary outcome was change in clinical status on day 7. Length of hospital stay and number of days on supplemental oxygen were key secondary outcomes. RESULTS: Forty-two patients were enrolled from April 2020 to August 2020; 22 were randomized to the control group and 20 to the progesterone group. Two patients from the progesterone group withdrew from the study before receiving progesterone. There was a 1.5-point overall improvement in median clinical status score on a seven-point ordinal scale from baseline to day 7 in patients in the progesterone group as compared with control subjects (95% CI, 0.0-2.0; P = .024). There were no serious adverse events attributable to progesterone. Patients treated with progesterone required three fewer days of supplemental oxygen (median, 4.5 vs 7.5 days) and were hospitalized for 2.5 fewer days (median, 7.0 vs 9.5 days) as compared with control subjects. INTERPRETATION: Progesterone at a dose of 100 mg, twice daily by subcutaneous injection in addition to SOC, may represent a safe and effective approach for treatment in hypoxemic men with moderate to severe COVID-19. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT04365127; URL: www.clinicaltrials.gov.


Subject(s)
COVID-19 , Progesterone/administration & dosage , SARS-CoV-2/isolation & purification , COVID-19/physiopathology , COVID-19/therapy , Clinical Protocols/standards , Drug Monitoring , Humans , Hypoxia/diagnosis , Hypoxia/etiology , Injections, Subcutaneous , Male , Middle Aged , Oxygen Inhalation Therapy/methods , Pilot Projects , Progestins/administration & dosage , Severity of Illness Index , Treatment Outcome
19.
Adv Ther ; 38(7): 3550-3588, 2021 07.
Article in English | MEDLINE | ID: covidwho-1252244

ABSTRACT

People with multiple sclerosis (MS) are at risk for infections that can result in amplification of baseline symptoms and possibly trigger clinical relapses. Vaccination can prevent infection through the activation of humoral and cellular immune responses. This is particularly pertinent in the era of emerging novel vaccines against severe acute respiratory syndrome coronavirus 2, the virus that causes coronavirus disease 2019 (COVID-19). MS disease-modifying therapies (DMTs), which affect the immune system, may impact immune responses to COVID-19 vaccines in people with MS. The objective of this article is to provide information on immune system responses to vaccinations and review previous studies of vaccine responses in people with MS to support the safety and importance of receiving currently available and emerging COVID-19 vaccines. Immunological studies have shown that coordinated interactions between T and B lymphocytes of the adaptive immune system are key to successful generation of immunological memory and production of neutralizing antibodies following recognition of vaccine antigens by innate immune cells. CD4+ T cells are essential to facilitate CD8+ T cell and B cell activation, while B cells drive and sustain T cell memory. Data suggest that some classes of DMT, including type 1 interferons and glatiramer acetate, may not significantly impair the response to vaccination. DMTs-such as sphingosine-1-phosphate receptor modulators, which sequester lymphocytes from circulation; alemtuzumab; and anti-CD20 therapies, which rely on depleting populations of immune cells-have been shown to attenuate responses to conventional vaccines. Currently, three COVID-19 vaccines have been granted emergency use authorization in the USA on the basis of promising interim findings of ongoing trials. Because analyses of these vaccines in people with MS are not available, decisions regarding COVID-19 vaccination and DMT choice should be informed by data and expert consensus, and personalized with considerations for disease burden, risk of infection, and other factors.


Subject(s)
COVID-19 , Multiple Sclerosis , COVID-19 Vaccines , Glatiramer Acetate , Humans , SARS-CoV-2
20.
Nucleic Acids Res ; 49(W1): W174-W184, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1249328

ABSTRACT

Combinatorial therapies that target multiple pathways have shown great promises for treating complex diseases. DrugComb (https://drugcomb.org/) is a web-based portal for the deposition and analysis of drug combination screening datasets. Since its first release, DrugComb has received continuous updates on the coverage of data resources, as well as on the functionality of the web server to improve the analysis, visualization and interpretation of drug combination screens. Here, we report significant updates of DrugComb, including: (i) manual curation and harmonization of more comprehensive drug combination and monotherapy screening data, not only for cancers but also for other diseases such as malaria and COVID-19; (ii) enhanced algorithms for assessing the sensitivity and synergy of drug combinations; (iii) network modelling tools to visualize the mechanisms of action of drugs or drug combinations for a given cancer sample and (iv) state-of-the-art machine learning models to predict drug combination sensitivity and synergy. These improvements have been provided with more user-friendly graphical interface and faster database infrastructure, which make DrugComb the most comprehensive web-based resources for the study of drug sensitivities for multiple diseases.


Subject(s)
Algorithms , Databases, Factual , Drug Evaluation, Preclinical , Drug Therapy, Combination , Internet , COVID-19/drug therapy , Data Visualization , Datasets as Topic , Drug Synergism , Hemorrhagic Fever, Ebola/drug therapy , Humans , Machine Learning , Malaria/drug therapy , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL