Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Clin Infect Dis ; 73(11): e4154-e4165, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559099

ABSTRACT

BACKGROUND: Children and older adults with coronavirus disease 2019 (COVID-19) display a distinct spectrum of disease severity yet the risk factors aren't well understood. We sought to examine the expression pattern of angiotensin-converting enzyme 2 (ACE2), the cell-entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the role of lung progenitor cells in children and older patients. METHODS: We retrospectively analyzed clinical features in a cohort of 299 patients with COVID-19. The expression and distribution of ACE2 and lung progenitor cells were systematically examined using a combination of public single-cell RNA-seq data sets, lung biopsies, and ex vivo infection of lung tissues with SARS-CoV-2 pseudovirus in children and older adults. We also followed up patients who had recovered from COVID-19. RESULTS: Compared with children, older patients (>50 years.) were more likely to develop into serious pneumonia with reduced lymphocytes and aberrant inflammatory response (P = .001). The expression level of ACE2 and lung progenitor cell markers were generally decreased in older patients. Notably, ACE2 positive cells were mainly distributed in the alveolar region, including SFTPC positive cells, but rarely in airway regions in the older adults (P < .01). The follow-up of discharged patients revealed a prolonged recovery from pneumonia in the older (P < .025). CONCLUSIONS: Compared to children, ACE2 positive cells are generally decreased in older adults and mainly presented in the lower pulmonary tract. The lung progenitor cells are also decreased. These risk factors may impact disease severity and recovery from pneumonia caused by SARS-Cov-2 infection in older patients.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Stem Cells , Aged , Child , Humans , Lung/cytology , Middle Aged , RNA-Seq , Retrospective Studies , Severity of Illness Index
2.
Curr Pharm Des ; 27(41): 4223-4231, 2021.
Article in English | MEDLINE | ID: covidwho-1502208

ABSTRACT

Coronavirus disease-2019 (COVID-19) is a respiratory tract infection accompanied by severe or fatal pneumonia-like symptoms and sometimes death. It has posed to be an ongoing global health emergency caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to a sudden outbreak and a large number of infections and deaths, it became a major concern all over the world. The options available as effective therapeutics should be urgently exercised to handle this pandemic. So far, no specific and accurate anti- SARS-CoV-2 treatment is recommended because of the absence of sufficient clinical evidence. In such cases, the clinical use of available drugs is always considered to be on top priority. A broad-spectrum antiviral agent, remdesivir, is found effective in many cases and recommended by many clinicians in many countries. This drug acts as a potential inhibitor of viral RNA-dependent RNA polymerase protein and thus likely to be efficacious in SARS-CoV-2 infection. Tocilizumab is currently recommended by many hospitals as an alternative treatment for critically ill COVID-19 patients. Tocilizumab has been administered to control cytokine storms that occur due to the release of proinflammatory cytokine, including interleukin 6. Chloroquine and hydroxychloroquine are also used in hospitals to handle severe COVID-19 patients. Currently, plasma therapy has been exercised as a therapeutic alternative, especially to handle severe COVID-19 patients. In addition, herbal medicines are expected to play a significant role in the control and prevention of COVID-19. All these therapeutic options have their advantages and limitations. This review highlights the therapeutic potential of these available drugs, along with their mechanism of action and shortcomings. We have provided detailed information on available therapeutic options, which have proved to be effective in improving clinical symptoms of severe COVID-19 patients.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/therapeutic use , COVID-19/therapy , Cytokine Release Syndrome , Humans , Hydroxychloroquine , Immunization, Passive , Pandemics , Phytotherapy
3.
Gut Microbes ; 13(1): 1-9, 2021.
Article in English | MEDLINE | ID: covidwho-1493512

ABSTRACT

Gut microbiome manipulation to alter the gut-lung axis may potentially protect humans against respiratory infections, and clinical trials of probiotics show promise in this regard in healthy adults and children. However, comparable studies are lacking in overweight/obese people, who have increased risks in particular of viral upper respiratory tract infections (URTI). This Addendum further analyses our recent placebo-controlled trial of probiotics in overweight/obese people (focused initially on weight loss) to investigate the impact of probiotics upon the occurrence of URTI symptoms. As well as undergoing loss of weight and improvement in certain metabolic parameters, study participants taking probiotics experienced a 27% reduction in URTI symptoms versus control, with those ≥45 years or BMI ≥30 kg/m2 experiencing greater reductions. This symptom reduction is apparent within 2 weeks of probiotic use. Gut microbiome diversity remained stable throughout the study in probiotic-treated participants. Our data provide support for further trials to assess the potential role of probiotics in preventing viral URTI (and possibly also COVID-19), particularly in overweight/obese people.


Subject(s)
Obesity/complications , Overweight/complications , Probiotics/therapeutic use , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/therapy , Adult , Aged , Double-Blind Method , Gastrointestinal Microbiome , Humans , Middle Aged , Pandemics , Self Report
5.
Front Microbiol ; 12: 653399, 2021.
Article in English | MEDLINE | ID: covidwho-1389208

ABSTRACT

Co-infection with ancillary pathogens is a significant modulator of morbidity and mortality in infectious diseases. There have been limited reports of co-infections accompanying SARS-CoV-2 infections, albeit lacking India specific study. The present study has made an effort toward elucidating the prevalence, diversity and characterization of co-infecting respiratory pathogens in the nasopharyngeal tract of SARS-CoV-2 positive patients. Two complementary metagenomics based sequencing approaches, Respiratory Virus Oligo Panel (RVOP) and Holo-seq, were utilized for unbiased detection of co-infecting viruses and bacteria. The limited SARS-CoV-2 clade diversity along with differential clinical phenotype seems to be partially explained by the observed spectrum of co-infections. We found a total of 43 bacteria and 29 viruses amongst the patients, with 18 viruses commonly captured by both the approaches. In addition to SARS-CoV-2, Human Mastadenovirus, known to cause respiratory distress, was present in a majority of the samples. We also found significant differences of bacterial reads based on clinical phenotype. Of all the bacterial species identified, ∼60% have been known to be involved in respiratory distress. Among the co-pathogens present in our sample cohort, anaerobic bacteria accounted for a preponderance of bacterial diversity with possible role in respiratory distress. Clostridium botulinum, Bacillus cereus and Halomonas sp. are anaerobes found abundantly across the samples. Our findings highlight the significance of metagenomics based diagnosis and detection of SARS-CoV-2 and other respiratory co-infections in the current pandemic to enable efficient treatment administration and better clinical management. To our knowledge this is the first study from India with a focus on the role of co-infections in SARS-CoV-2 clinical sub-phenotype.

6.
Andrology ; 9(1): 39-41, 2021 01.
Article in English | MEDLINE | ID: covidwho-1388168

ABSTRACT

BACKGROUND: The recent report of SARS-CoV-2 presence in semen samples of six patients, including two subjects who were recovering from the clinical disease, re-opened the discussion on possible male genital tract infection, virus shedding in semen, sexual transmission and safety of fertility treatments during the pandemic period. OBJECTIVES: To explore current data and hypothesis on the possible sites of SARS-CoV-2 infection in the male reproduction system. MATERIALS AND METHODS: We reviewed the current literature to describe: a) the evidences on angiotensin-converting enzyme 2 (AC2E) and transmembrane serine protease 2 (TMPRSS2) expression in the testes, accessory glands (including prostate) and the urinary tract; b) other coronaviruses' (SARS and MERS) ability to infect these sites. RESULTS: The co-expression of both ACE2 and TMPRSS2 genes was reported in spermatogonial stem cells, elongated spermatids, in at least a small percentage of prostate hillock cells and in renal tubular cells. Testicular damage was described in autopsies of SARS patients, without evidence of the virus in the specimens. Prostate is a known infection site for MERS-CoV. SARS-CoV-2 was detected in urines. DISCUSSION: There are still al lot of open questions on the effects of SARS-CoV-2 infection on the male reproductive tract. The presence of receptors is not a proof that the testis provides a site for viral infection and it is still unknown if SARS-CoV-2 is capable to pass the blood-testis barrier. The possibility of a prostate involvement has not been investigated yet: we have no data, but theoretically it cannot be excluded. Moreover, the RNA detected in semen could have been just a residual of urinary shedding. CONCLUSION: Opening our prospective beyond the testis could be the key to better understand the possibility of a semen-related viral transmission as well as COVID19 short and long-term effects on male reproductive function.


Subject(s)
COVID-19/virology , SARS-CoV-2/isolation & purification , Semen/virology , Testis/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/metabolism , COVID-19/transmission , Humans , Male , Receptors, Virus/metabolism , Serine Endopeptidases/metabolism , Testis/metabolism , Testis/pathology , Virus Internalization , Virus Shedding
8.
J Exp Med ; 218(8)2021 08 02.
Article in English | MEDLINE | ID: covidwho-1387679

ABSTRACT

Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomics and biomarker-based tracking in serial patient nasopharyngeal samples and experiments with airway epithelial organoids. SARS-CoV-2 initially replicated exponentially, with a doubling time of ∼6 h, and induced interferon-stimulated genes (ISGs) in the upper respiratory tract, which rose with viral replication and peaked just as viral load began to decline. Rhinovirus infection before SARS-CoV-2 exposure accelerated ISG responses and prevented SARS-CoV-2 replication. Conversely, blocking ISG induction during SARS-CoV-2 infection enhanced viral replication from a low infectious dose. These results show that the activity of ISG-mediated defenses at the time of SARS-CoV-2 exposure impacts infection progression and that the heterologous antiviral response induced by a different virus can protect against SARS-CoV-2.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity, Innate/physiology , Nasopharynx/virology , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Case-Control Studies , Chemokine CXCL10/metabolism , Disease Susceptibility/immunology , Female , Gene Expression Profiling , Host-Pathogen Interactions/physiology , Humans , Interferons/genetics , Interferons/immunology , Interferons/metabolism , Male , Middle Aged , Picornaviridae Infections/immunology , Picornaviridae Infections/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Load , Virus Replication
9.
FEBS Open Bio ; 11(9): 2390-2399, 2021 09.
Article in English | MEDLINE | ID: covidwho-1380362

ABSTRACT

Biomolecular condensates are microdroplets that form inside cells and serve to selectively concentrate proteins, RNAs and other molecules for a variety of physiological functions, but can contribute to cancer, neurodegenerative diseases and viral infections. The formation of these condensates is driven by weak, transient interactions between molecules. These weak associations can operate at the level of whole protein domains, elements of secondary structure or even moieties composed of just a few atoms. Different types of condensates do not generally combine to form larger microdroplets, suggesting that each uses a distinct class of attractive interactions. Here, we address whether polyproline II (PPII) helices mediate condensate formation. By combining with PPII-binding elements such as GYF, WW, profilin, SH3 or OCRE domains, PPII helices help form lipid rafts, nuclear speckles, P-body-like neuronal granules, enhancer complexes and other condensates. The number of PPII helical tracts or tandem PPII-binding domains can strongly influence condensate stability. Many PPII helices have a low content of proline residues, which hinders their identification. Recently, we characterized the NMR spectral properties of a Gly-rich, Pro-poor protein composed of six PPII helices. Based on those results, we predicted that many Gly-rich segments may form PPII helices and interact with PPII-binding domains. This prediction is being tested and could join the palette of verified interactions contributing to biomolecular condensate formation.


Subject(s)
/metabolism , Cell Physiological Phenomena , Peptides/chemistry , Peptides/metabolism , Animals , Humans , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Structure-Activity Relationship
10.
Curr Diabetes Rev ; 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1367728

ABSTRACT

The article has been withdrawn at the request of the authors and editor of the journal Current Diabetes Reviews, due to incoherent content.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submit-ting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

11.
J Med Virol ; 93(9): 5328-5332, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363671

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is one of the recently identified zoonotic coronaviruses. The one-hump camels are believed to play important roles in the evolution and transmission of the virus. The animal-to-animal, as well as the animal-to-human transmission in the context of MERS-CoV infection, were reported. The camels shed the virus in some of their secretions, especially the nasal tract. However, there are many aspects of the transmission cycle of the virus from animals to humans that are still not fully understood. Rodents played important roles in the transmission of many pathogens, including viruses and bacteria. They have been implicated in the evolution of many human coronaviruses, especially HCoV-OC43 and HCoV-HKU1. However, the role of rodents in the transmission of MERS-CoV still requires more exploration. To achieve this goal, we identified MERS-CoV that naturally infected dromedary camel by molecular surveillance. We captured 15 of the common rodents (rats, mice, and jerboa) sharing the habitat with these animals. We collected both oral and rectal swabs from these animals and then tested them by the commercial MERS-CoV real-time-PCR kits using two targets. Despite the detection of the viral shedding in the nasal swabs of some of the dromedary camels, none of the rodents tested positive for the virus during the tenure of this study. We concluded that these species of rodents did not harbor the virus and are most unlikely to contribute to the transmission of the MERS-CoV. However, further large-scale studies are required to confirm the potential roles of rodents in the context of the MERS-CoV transmission cycle, if any.


Subject(s)
Camelus/virology , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Epidemiological Monitoring/veterinary , RNA, Viral/genetics , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nasal Cavity/virology , Rats , Real-Time Polymerase Chain Reaction , Rectum/virology , Rodentia/virology , Saudi Arabia/epidemiology
12.
Int J Mol Sci ; 22(8)2021 Apr 08.
Article in English | MEDLINE | ID: covidwho-1299441

ABSTRACT

Pneumonia due to respiratory infection with most prominently bacteria, but also viruses, fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global threat. As such, a better understanding of pathogen virulence on the one, and the development of innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of men against microbes. Recent data show that the secretome of bacteria consists not only of soluble mediators of virulence but also to a significant proportion of extracellular vesicles-lipid bilayer-delimited particles that form integral mediators of intercellular communication. Extracellular vesicles are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity. In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and their immunogenic potential could pave the way to novel treatment strategies in pneumonia and effective preventive approaches.


Subject(s)
Bacteria/metabolism , Bacterial Outer Membrane/metabolism , Extracellular Vesicles/metabolism , Pneumonia, Bacterial/microbiology , Adaptive Immunity , Animals , Antigens, Bacterial/immunology , Bacteria/immunology , Bacterial Outer Membrane/immunology , Bacterial Vaccines/immunology , Host-Pathogen Interactions/immunology , Humans , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/prevention & control , Respiratory Mucosa/immunology , Respiratory Mucosa/microbiology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Virulence
13.
Clin Microbiol Infect ; 27(10): 1520.e7-1520.e10, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1297038

ABSTRACT

OBJECTIVES: Dexamethasone has become the standard of care for severe coronavirus disease 2019 (COVID-19), but its virological impact is poorly understood. The objectives of this work were to characterize the kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) concentration in the upper respiratory tract (URT) and the antibody response in patients with (D+) and without (D-) dexamethasone treatment. METHODS: Data and biosamples from hospitalized patients with severe COVID-19, enrolled between 4th March and 11th December 2020 in a prospective observational study, were analysed. SARS-CoV-2 virus concentration in serial URT samples was measured using RT-PCR. SARS-CoV-2-specific immunoglobulins A and G (IgA and IgG) were measured in serum samples using S1-ELISA. RESULTS: We compared 101 immunocompetent patients who received dexamethasone (according to the inclusion criteria and dosage determined in the RECOVERY trial) to 93 immunocompetent patients with comparable disease severity from the first months of the pandemic, who had not been treated with dexamethasone or other glucocorticoids. We found no inter-group differences in virus concentration kinetics, duration of presence of viral loads >106 viral copies/mL (D+ median 17 days (IQR 13-24), D- 19 days (IQR 13-29)), or time from symptom onset until seroconversion (IgA: D+ median 11.5 days (IQR 11-12), D- 14 days (IQR 11.5-15.75); IgG: D+ 13 days (IQR 12-14.5), D- 12 days (IQR 11-15)). CONCLUSION: Dexamethasone does not appear to lead to a change in virus clearance or a delay in antibody response in immunocompetent patients hospitalized with severe COVID-19.


Subject(s)
Antibodies, Viral/blood , COVID-19/drug therapy , Dexamethasone/therapeutic use , SARS-CoV-2/isolation & purification , Anti-Inflammatory Agents/therapeutic use , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Hospitalization , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Kinetics , Prospective Studies , RNA, Viral/analysis , Respiratory System/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Seroconversion , Viral Load
14.
Cancers (Basel) ; 13(7)2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1295766

ABSTRACT

Within the previous decades, following the widespread implementation of HPV-related biomarkers and computerization in liquid-based cytology, screening for lower genital tract malignancies has been optimized in several parts of the world. Many organized anogenital cancer prevention systems have reached a point at which efficacy is more a matter of population coverage and less of available infrastructures. Meanwhile, self-sampling modalities in which biologic material (vaginal secretions, urine, etc.) is obtained by the individual and not the clinician and subsequently undergoes examination for HPV biomarkers enjoy appreciating acceptance. Bygone the initial skepticism that vaginal or urine HPV represents "passenger" transient infections, extensive scientific work has been conducted to optimize high-risk HPV (hrHPV) detection from this "novel" biologic material. Nowadays, several state-of-the-art meta-analyses have illustrated that self-sampling techniques involving urine self-sampling represent a feasible alternative strategy with potentially enhanced population coverage possessing excellent performance and sensitivity. Recently published scientific work focusing on urine HPV was reviewed, and after a critical appraisal, the following points should be considered in the clinical application of hrHPV urine measurements; (i) use of first-void urine (FVU) and purpose-designed collection devices; (ii) using a preservation medium to avoid human/HPV DNA degradation during extraction and storage; (iii) using polymerase chain reaction (PCR) based assays, ideally with genotyping capabilities; (iv) processing of a sufficient volume of whole urine; and (v) the use of an analytically sensitive HPV test/recovery of cell-free HPV DNA in addition to cell-associated DNA.

15.
Methods Mol Biol ; 2099: 137-159, 2020.
Article in English | MEDLINE | ID: covidwho-1292550

ABSTRACT

Since 2012, monthly cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to cause severe respiratory disease that is fatal in ~35% of diagnosed individuals. The ongoing threat to global public health and the need for novel therapeutic countermeasures have driven the development of animal models that can reproducibly replicate the pathology associated with MERS-CoV in human infections. The inability of MERS-CoV to replicate in the respiratory tracts of mice, hamsters, and ferrets stymied initial attempts to generate small animal models. Identification of human dipeptidyl peptidase IV (hDPP4) as the receptor for MERS-CoV infection opened the door for genetic engineering of mice. Precise molecular engineering of mouse DPP4 (mDPP4) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology maintained inherent expression profiles, and limited MERS-CoV susceptibility to tissues that naturally express mDPP4, notably the lower respiratory tract wherein MERS-CoV elicits severe pulmonary pathology. Here, we describe the generation of the 288-330+/+ MERS-CoV mouse model in which mice were made susceptible to MERS-CoV by modifying two amino acids on mDPP4 (A288 and T330), and the use of adaptive evolution to generate novel MERS-CoV isolates that cause fatal respiratory disease. The 288-330+/+ mice are currently being used to evaluate novel drug, antibody, and vaccine therapeutic countermeasures for MERS-CoV. The chapter starts with a historical perspective on the emergence of MERS-CoV and animal models evaluated for MERS-CoV pathogenesis, and then outlines the development of the 288-330+/+ mouse model, assays for assessing a MERS-CoV pulmonary infection in a mouse model, and describes some of the challenges associated with using genetically engineered mice.


Subject(s)
Coronavirus Infections/virology , Dipeptidyl Peptidase 4/genetics , Disease Models, Animal , Mice/genetics , Middle East Respiratory Syndrome Coronavirus/physiology , Respiratory Distress Syndrome/virology , Animals , CRISPR-Cas Systems , Coronavirus Infections/pathology , Dipeptidyl Peptidase 4/metabolism , Disease Susceptibility , Female , Genetic Engineering , Humans , Lung/virology , Male , Mice, Inbred C57BL , Respiratory Distress Syndrome/pathology
16.
Clin Infect Dis ; 73(1): 148-150, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1289914

ABSTRACT

The factors that contribute to transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by children are unclear. We analyzed viral load at the time of diagnosis in 53 children and 352 adults with coronavirus disease 2019 (COVID-19) in the first 5 days post symptom onset. No significant differences in SARS-CoV-2 RNA loads were seen between children and adults.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , RNA, Viral , Respiratory System , Viral Load
17.
Med Hypotheses ; 153: 110628, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1272625

ABSTRACT

Presently, it remains unclear why the prevalence of lung diseases, namely chronic obstructive pulmonary disease (COPD), is much lower than other medical comorbidities and the general population among patients with coronavirus disease 2019 (COVID-19). If COVID-19 is a respiratory disease, why is COPD not the leading risk factor for contracting COVID-19? The same odd phenomenon was also observed with other pathogenic human coronaviruses causing severe acute respiratory distress syndrome (SARS) and Middle East respiratory syndrome (MERS), but not other respiratory viral infections such as influenza and respiratory syncytial viruses. One commonly proposed reason for the low COPD rates among COVID-19 patients is the usage of inhaled corticosteroids or bronchodilators that may protect against COVID-19. However, another possible reason not discussed elsewhere is that lungs in a diseased state may not be conducive for the severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) to establish COVID-19. For one, COPD causes mucous plugging in large and small airways, which may hinder SARS-CoV-2 from reaching deeper parts of the lungs (i.e., alveoli). Thus, SARS-CoV-2 may only localize to the upper respiratory tract of persons with COPD, causing mild or asymptomatic infections requiring no hospital attention. Even if SARS-CoV-2 reaches the alveoli, cells therein are probably under a heavy burden of endoplasmic reticulum (ER) stress and extensively damaged where it may not support efficient viral replication. As a result, limited SARS-CoV-2 virions would be produced in diseased lungs, preventing the development of COVID-19.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , Lung , Prevalence , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , SARS-CoV-2
18.
Clin Immunol ; 229: 108782, 2021 08.
Article in English | MEDLINE | ID: covidwho-1265656

ABSTRACT

Endemic human coronaviruses (hCoVs) are common causative agents of respiratory tract infections, affecting especially children. However, in the ongoing SARS-CoV-2 pandemic, children are the least affected age-group. The objective of this study was to investigate the magnitude of endemic hCoVs antibodies in Finnish children and adults, and pre-pandemic antibody cross-reactivity with SARS-CoV-2. Antibody levels against endemic hCoVs start to rise at a very early age, reaching to overall 100% seroprevalence. No difference in the antibody levels was detected for OC43 but the magnitude of 229E-specific antibodies was significantly higher in the sera of children. OC43 and 229E hCoV antibody levels of children correlated significantly with each other and with the level of cross-reactive SARS-CoV-2 antibodies, whereas these correlations completely lacked in adults. Although none of the sera showed SARS-CoV-2 neutralization, the higher overall hCoV cross-reactivity observed in children might, at least partially, contribute in controlling SARS-CoV-2 infection in this population.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , SARS-CoV-2/immunology , Adult , Antibody Specificity , COVID-19/immunology , COVID-19/virology , Child , Child, Preschool , Cross Reactions , Endemic Diseases , Enzyme-Linked Immunosorbent Assay , Finland/epidemiology , Humans , Infant , Middle Aged , Seroepidemiologic Studies
19.
J Dr Nurs Pract ; 2021 Jun 09.
Article in English | MEDLINE | ID: covidwho-1264240

ABSTRACT

BACKGROUND: Severe acute respiratory infection Coronavirus 2 (SARS-CoV-2) infection has spread all over the world since December 2019. Treatment of the syndrome represents an important challenge for all physicians. Spread prevention relies on a correct diagnosis which is performed with nasopharyngeal swabs. OBJECTIVE: To describe the proper execution of the swab with a few simple steps. METHODS: Figures and video recording. RESULTS: A few simple steps are presented within this paper in order to perform easily nasopharyngeal swab for SARS-Cov-2 diagnosis and for other possible infectious diseases of the airways tract. CONCLUSIONS AND IMPLICATION FOR NURSING: Nasopharyngeal swab may be performed in an easier way than usually thought. This method may also be used for any other microorganism detection. By following simple steps, a correct diagnosis can easily be obtained.

20.
United European Gastroenterol J ; 9(7): 787-796, 2021 09.
Article in English | MEDLINE | ID: covidwho-1260575

ABSTRACT

BACKGROUND: The novel Coronavirus (SARS-CoV-2) has caused almost 2 million deaths worldwide. Both Food and Drug Administration and European Medicines Agency have recently approved the first COVID-19 vaccines, and a few more are going to be approved soon. METHODS: Several different approaches have been used to stimulate the immune system in mounting a humoral response. As more traditional approaches are under investigation (inactivated virus vaccines, protein subunit vaccines, recombinant virus vaccines), more recent and innovative strategies have been tried (non-replicating viral vector vaccines, RNA based vaccines, DNA based vaccines). RESULTS: Since vaccinations campaigns started in December 2020 in both the US and Europe, gastroenterologists will be one of the main sources of information regarding SARS-CoV 2 vaccination for patients in their practice, including vulnerable patients such as those with Inflammatory Bowel Disease (IBD), patients with chronic liver disease, and GI cancer patients. CONCLUSIONS: Thus, we must ourselves be well educated and updated in order to provide unambiguous counseling to these categories of vulnerable patients. In this commentary, we aim to provide a comprehensive review of both approved COVID-19 vaccines and the ones still under development, and explore potential risks, benefits and prioritization of vaccination.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , /therapeutic use , /therapeutic use , Gastroenterology , Gastrointestinal Neoplasms/therapy , Humans , Inflammatory Bowel Diseases/therapy , Liver Diseases/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL