Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Clin Infect Dis ; 74(4): 715-718, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1702854

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins were measured in longitudinal plasma samples collected from 13 participants who received two doses of mRNA-1273 vaccine. Eleven of 13 participants showed detectable levels of SARS-CoV-2 protein as early as day 1 after first vaccine injection. Clearance of detectable SARS-CoV-2 protein correlated with production of immunoglobulin G (IgG) and immunoglobulin A (IgA).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin A , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/genetics
2.
Lancet Infect Dis ; 21(10): 1383-1394, 2021 10.
Article in English | MEDLINE | ID: covidwho-1621119

ABSTRACT

BACKGROUND: Given the scale of the ongoing COVID-19 pandemic, the development of vaccines based on different platforms is essential, particularly in light of emerging viral variants, the absence of information on vaccine-induced immune durability, and potential paediatric use. We aimed to assess the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a novel molecular clamp (spike glycoprotein-clamp [sclamp]). METHODS: We did a phase 1, double-blind, placebo-controlled, block-randomised trial of the sclamp subunit vaccine in a single clinical trial site in Brisbane, QLD, Australia. Healthy adults (aged ≥18 to ≤55 years) who had tested negative for SARS-CoV-2, reported no close contact with anyone with active or previous SARS-CoV-2 infection, and tested negative for pre-existing SARS-CoV-2 immunity were included. Participants were randomly assigned to one of five treatment groups and received two doses via intramuscular injection 28 days apart of either placebo, sclamp vaccine at 5 µg, 15 µg, or 45 µg, or one dose of sclamp vaccine at 45 µg followed by placebo. Participants and study personnel, except the dose administration personnel, were masked to treatment. The primary safety endpoints included solicited local and systemic adverse events in the 7 days after each dose and unsolicited adverse events up to 12 months after dosing. Here, data are reported up until day 57. Primary immunogenicity endpoints were antigen-specific IgG ELISA and SARS-CoV-2 microneutralisation assays assessed at 28 days after each dose. The study is ongoing and registered with ClinicalTrials.gov, NCT04495933. FINDINGS: Between June 23, 2020, and Aug 17, 2020, of 314 healthy volunteers screened, 120 were randomly assigned (n=24 per group), and 114 (95%) completed the study up to day 57 (mean age 32·5 years [SD 10·4], 65 [54%] male, 55 [46%] female). Severe solicited reactions were infrequent and occurred at similar rates in participants receiving placebo (two [8%] of 24) and the SARS-CoV-2 sclamp vaccine at any dose (three [3%] of 96). Both solicited reactions and unsolicited adverse events occurred at a similar frequency in participants receiving placebo and the SARS-CoV-2 sclamp vaccine. Solicited reactions occurred in 19 (79%) of 24 participants receiving placebo and 86 (90%) of 96 receiving the SARS-CoV-2 sclamp vaccine at any dose. Unsolicited adverse events occurred in seven (29%) of 24 participants receiving placebo and 35 (36%) of 96 participants receiving the SARS-CoV-2 sclamp vaccine at any dose. Vaccination with SARS-CoV-2 sclamp elicited a similar antigen-specific response irrespective of dose: 4 weeks after the initial dose (day 29) with 5 µg dose (geometric mean titre [GMT] 6400, 95% CI 3683-11 122), with 15 µg dose (7492, 4959-11 319), and the two 45 µg dose cohorts (8770, 5526-13 920 in the two-dose 45 µg cohort; 8793, 5570-13 881 in the single-dose 45 µg cohort); 4 weeks after the second dose (day 57) with two 5 µg doses (102 400, 64 857-161 676), with two 15 µg doses (74 725, 51 300-108 847), with two 45 µg doses (79 586, 55 430-114 268), only a single 45 µg dose (4795, 2858-8043). At day 57, 67 (99%) of 68 participants who received two doses of sclamp vaccine at any concentration produced a neutralising immune response, compared with six (25%) of 24 who received a single 45 µg dose and none of 22 who received placebo. Participants receiving two doses of sclamp vaccine elicited similar neutralisation titres, irrespective of dose: two 5 µg doses (GMT 228, 95% CI 146-356), two 15 µg doses (230, 170-312), and two 45 µg doses (239, 187-307). INTERPRETATION: This first-in-human trial shows that a subunit vaccine comprising mammalian cell culture-derived, MF59-adjuvanted, molecular clamp-stabilised recombinant spike protein elicits strong immune responses with a promising safety profile. However, the glycoprotein 41 peptide present in the clamp created HIV diagnostic assay interference, a possible barrier to widespread use highlighting the criticality of potential non-spike directed immunogenicity during vaccine development. Studies are ongoing with alternative molecular clamp trimerisation domains to ameliorate this response. FUNDING: Coalition for Epidemic Preparedness Innovations, National Health and Medical Research Council, Queensland Government, and further philanthropic sources listed in the acknowledgments.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Squalene/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Australia , Female , Healthy Volunteers , Humans , Male , Pandemics/prevention & control , Polysorbates , Vaccination/adverse effects , Young Adult
3.
Clin Infect Dis ; 73(10): 1927-1939, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1522145

ABSTRACT

Large-scale deployment of safe and durably effective vaccines can curtail the coronavirus disease-2019 (COVID-19) pandemic. However, the high vaccine efficacy (VE) reported by ongoing phase 3 placebo-controlled clinical trials is based on a median follow-up time of only about 2 months, and thus does not pertain to long-term efficacy. To evaluate the duration of protection while allowing trial participants timely access to efficacious vaccine, investigators can sequentially cross participants over from the placebo arm to the vaccine arm. Here, we show how to estimate potentially time-varying placebo-controlled VE in this type of staggered vaccination of participants. In addition, we compare the performance of blinded and unblinded crossover designs in estimating long-term VE.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , Pandemics , SARS-CoV-2
4.
Emerg Microbes Infect ; 10(1): 365-375, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1490458

ABSTRACT

Concerns about vaccine safety are an important reason for vaccine hesitancy, however, limited information is available on whether common adverse reactions following vaccination affect the immune response. Data from three clinical trials of recombinant vaccines were used in this post hoc analysis to assess the correlation between inflammation-related solicited adverse reactions (ISARs, including local pain, redness, swelling or induration and systematic fever) and immune responses after vaccination. In the phase III trial of the bivalent HPV-16/18 vaccine (Cecolin®), the geometric mean concentrations (GMCs) for IgG anti-HPV-16 and -18 (P<0.001) were significantly higher in participants with any ISAR following vaccination than in those without an ISAR. Local pain, induration, swelling and systemic fever were significantly correlated with higher GMCs for IgG anti-HPV-16 and/or anti-HPV-18, respectively. Furthermore, the analyses of the immunogenicity bridging study of Cecolin® and the phase III trial of a hepatitis E vaccine yielded similar results. Based on these results, we built a scoring model to quantify the inflammation reactions and found that the high score of ISAR indicates the strong vaccine-induced antibody level. In conclusion, this study suggests inflammation-related adverse reactions following vaccination potentially indicate a stronger immune response.


Subject(s)
Hepatitis E/immunology , Human papillomavirus 16/immunology , Human papillomavirus 18/immunology , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Vaccines, Synthetic/immunology , Viral Hepatitis Vaccines/immunology , Adolescent , Adult , Aged , Antibodies, Viral/immunology , Female , Hepatitis E/prevention & control , Hepatitis E/virology , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Humans , Immunity , Immunoglobulin G/immunology , Male , Middle Aged , Papillomavirus Infections/prevention & control , Papillomavirus Infections/virology , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/adverse effects , Papillomavirus Vaccines/genetics , Vaccination/adverse effects , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Viral Hepatitis Vaccines/administration & dosage , Viral Hepatitis Vaccines/adverse effects , Viral Hepatitis Vaccines/genetics , Young Adult
5.
Gut ; 70(5): 865-875, 2021 05.
Article in English | MEDLINE | ID: covidwho-1388530

ABSTRACT

OBJECTIVE: Antitumour necrosis factor (anti-TNF) drugs impair protective immunity following pneumococcal, influenza and viral hepatitis vaccination and increase the risk of serious respiratory infections. We sought to determine whether infliximab-treated patients with IBD have attenuated serological responses to SARS-CoV-2 infections. DESIGN: Antibody responses in participants treated with infliximab were compared with a reference cohort treated with vedolizumab, a gut-selective anti-integrin α4ß7 monoclonal antibody that is not associated with impaired vaccine responses or increased susceptibility to systemic infections. 6935 patients were recruited from 92 UK hospitals between 22 September and 23 December 2020. RESULTS: Rates of symptomatic and proven SARS-CoV-2 infection were similar between groups. Seroprevalence was lower in infliximab-treated than vedolizumab-treated patients (3.4% (161/4685) vs 6.0% (134/2250), p<0.0001). Multivariable logistic regression analyses confirmed that infliximab (vs vedolizumab; OR 0.66 (95% CI 0.51 to 0.87), p=0.0027) and immunomodulator use (OR 0.70 (95% CI 0.53 to 0.92), p=0.012) were independently associated with lower seropositivity. In patients with confirmed SARS-CoV-2 infection, seroconversion was observed in fewer infliximab-treated than vedolizumab-treated patients (48% (39/81) vs 83% (30/36), p=0.00044) and the magnitude of anti-SARS-CoV-2 reactivity was lower (median 0.8 cut-off index (0.2-5.6) vs 37.0 (15.2-76.1), p<0.0001). CONCLUSIONS: Infliximab is associated with attenuated serological responses to SARS-CoV-2 that were further blunted by immunomodulators used as concomitant therapy. Impaired serological responses to SARS-CoV-2 infection might have important implications for global public health policy and individual anti-TNF-treated patients. Serological testing and virus surveillance should be considered to detect suboptimal vaccine responses, persistent infection and viral evolution to inform public health policy. TRIAL REGISTRATION NUMBER: ISRCTN45176516.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , Gastrointestinal Agents/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Infliximab/therapeutic use , SARS-CoV-2/immunology , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Prospective Studies , Serologic Tests , United Kingdom/epidemiology
6.
Lancet Infect Dis ; 21(9): 1257-1270, 2021 09.
Article in English | MEDLINE | ID: covidwho-1371556

ABSTRACT

BACKGROUND: CoV2 preS dTM is a stabilised pre-fusion spike protein vaccine produced in a baculovirus expression system being developed against SARS-CoV-2. We present interim safety and immunogenicity results of the first-in-human study of the CoV2 preS dTM vaccine with two different adjuvant formulations. METHODS: This phase 1-2, randomised, double-blind study is being done in healthy, SARS-CoV-2-seronegative adults in ten clinical research centres in the USA. Participants were stratified by age (18-49 years and ≥50 years) and randomly assigned using an interactive response technology system with block randomisation (blocks of varying size) to receive one dose (on day 1) or two doses (on days 1 and 22) of placebo or candidate vaccine, containing low-dose (effective dose 1·3 µg) or high-dose (2·6 µg) antigen with adjuvant AF03 (Sanofi Pasteur) or AS03 (GlaxoSmithKline) or unadjuvanted high-dose antigen (18-49 years only). Primary endpoints were safety, assessed up to day 43, and immunogenicity, measured as SARS-C0V-2 neutralising antibodies (geometric mean titres), assessed on days 1, 22, and 36 serum samples. Safety was assessed according to treatment received in the safety analysis set, which included all randomly assigned participants who received at least one dose. Neutralising antibody titres were assessed in the per-protocol analysis set for immunogenicity, which included participants who received at least one dose, met all inclusion and exclusion criteria, had no protocol deviation, had negative results in the neutralisation test at baseline, and had at least one valid post-dose serology sample. This planned interim analysis reports data up to 43 days after the first vaccination; participants in the trial will be followed up for 12 months after the last study injection. This trial is registered with ClinicalTrials.gov, NCT04537208, and is ongoing. FINDINGS: Between Sept 3 and Sept 29, 2020, 441 individuals (299 aged 18-49 years and 142 aged ≥50 years) were randomly assigned to one of the 11 treatment groups. The interim safety analyses included 439 (>99%) of 441 randomly assigned participants (299 aged 18-49 years and 140 aged ≥50 years). Neutralising antibody titres were analysed in 326 (74%) of 441 participants (235 [79%] of 299 aged 18-49 years and 91 [64%] of 142 aged ≥50 years). There were no vaccine-related unsolicited immediate adverse events, serious adverse events, medically attended adverse events classified as severe, or adverse events of special interest. Among all study participants, solicited local and systemic reactions of any grade after two vaccine doses were reported in 81% (95% CI 61-93; 21 of 26) of participants in the low-dose plus AF03 group, 93% (84-97; 74 of 80) in the low-dose plus AS03 group, 89% (70-98; 23 of 26) in the high-dose plus AF03 group, 95% (88-99; 81 of 85) in the high-dose plus AS03 group, 29% (10-56; five of 17) in the unadjuvanted high-dose group, and 21% (8-40; six of 29) in the placebo group. A single vaccine dose did not generate neutralising antibody titres above placebo levels in any group at days 22 or 36. Among participants aged 18-49 years, neutralising antibody titres after two vaccine doses were 13·1 (95% CI 6·40-26·9) in the low-dose plus AF03 group, 20·5 (13·1-32·1) in the low-dose plus AS03 group, 43·2 (20·6-90·4) in the high-dose plus AF03 group, 75·1 (50·5-112·0) in the high-dose plus AS03 group, 5·00 (not calculated) in the unadjuvanted high-dose group, and 5·00 (not calculated) in the placebo group. Among participants aged 50 years or older, neutralising antibody titres after two vaccine doses were 8·62 (1·90-39·0) in the low-dose plus AF03 group, 12·9 (7·09-23·4) in the low-dose plus AS03 group, 12·3 (4·35-35·0) in the high-dose plus AF03 group, 52·3 (25·3-108·0) in the high-dose plus AS03 group, and 5·00 (not calculated) in the placebo group. INTERPRETATION: The lower than expected immune responses, especially in the older age groups, and the high reactogenicity after dose two were probably due to higher than anticipated host-cell protein content and lower than planned antigen doses in the formulations tested, which was discovered during characterisation studies on the final bulk drug substance. Further development of the AS03-adjuvanted candidate vaccine will focus on identifying the optimal antigen formulation and dose. FUNDING: Sanofi Pasteur and Biomedical Advanced Research and Development Authority.


Subject(s)
Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunogenicity, Vaccine , Recombinant Proteins/administration & dosage , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/drug effects , Antibodies, Viral/drug effects , COVID-19 Vaccines/immunology , Double-Blind Method , Female , Humans , Male , Middle Aged , Recombinant Proteins/immunology , Spike Glycoprotein, Coronavirus , United States/epidemiology
7.
Chin Med J (Engl) ; 134(11): 1289-1298, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1343718

ABSTRACT

BACKGROUND: The significant morbidity and mortality resulted from the infection of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) call for urgent development of effective and safe vaccines. We report the immunogenicity and safety of an inactivated SARS-CoV-2 vaccine, KCONVAC, in healthy adults. METHODS: Phase 1 and phase 2 randomized, double-blind, and placebo-controlled trials of KCONVAC were conducted in healthy Chinese adults aged 18 to 59 years. The participants in the phase 1 trial were randomized to receive two doses, one each on Days 0 and 14, of either KCONVAC (5 or 10 µg/dose) or placebo. The participants in the phase 2 trial were randomized to receive either KCONVAC (at 5 or 10 µg/dose) or placebo on Days 0 and 14 (0/14 regimen) or Days 0 and 28 (0/28 regimen). In the phase 1 trial, the primary safety endpoint was the proportion of participants experiencing adverse reactions/events within 28 days following the administration of each dose. In the phase 2 trial, the primary immunogenicity endpoints were neutralization antibody seroconversion and titer and anti-receptor-binding domain immunoglobulin G seroconversion at 28 days after the second dose. RESULTS: In the phase 1 trial, 60 participants were enrolled and received at least one dose of 5-µg vaccine (n = 24), 10-µg vaccine (n = 24), or placebo (n = 12). In the phase 2 trial, 500 participants were enrolled and received at least one dose of 5-µg vaccine (n = 100 for 0/14 or 0/28 regimens), 10-µg vaccine (n = 100 for each regimen), or placebo (n = 50 for each regimen). In the phase 1 trial, 13 (54%), 11 (46%), and seven (7/12) participants reported at least one adverse event (AE) after receiving 5-, 10-µg vaccine, or placebo, respectively. In the phase 2 trial, 16 (16%), 19 (19%), and nine (18%) 0/14-regimen participants reported at least one AE after receiving 5-, 10-µg vaccine, or placebo, respectively. Similar AE incidences were observed in the three 0/28-regimen treatment groups. No AEs with an intensity of grade 3+ were reported, expect for one vaccine-unrelated serious AE (foot fracture) reported in the phase 1 trial. KCONVAC induced significant antibody responses; 0/28 regimen showed a higher immune responses than that did 0/14 regimen after receiving two vaccine doses. CONCLUSIONS: Both doses of KCONVAC are well tolerated and able to induce robust immune responses in healthy adults. These results support testing 5-µg vaccine in the 0/28 regimen in an upcoming phase 3 efficacy trial. TRIAL REGISTRATION: http://www.chictr.org.cn/index.aspx (No. ChiCTR2000038804, http://www.chictr.org.cn/showproj.aspx?proj=62350; No. ChiCTR2000039462, http://www.chictr.org.cn/showproj.aspx?proj=63353).


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19 Vaccines , Double-Blind Method , Humans , Vaccines, Inactivated/adverse effects
8.
JAMA ; 326(1): 35-45, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1318655

ABSTRACT

Importance: Although effective vaccines against COVID-19 have been developed, additional vaccines are still needed. Objective: To evaluate the efficacy and adverse events of 2 inactivated COVID-19 vaccines. Design, Setting, and Participants: Prespecified interim analysis of an ongoing randomized, double-blind, phase 3 trial in the United Arab Emirates and Bahrain among adults 18 years and older without known history of COVID-19. Study enrollment began on July 16, 2020. Data sets used for the interim analysis of efficacy and adverse events were locked on December 20, 2020, and December 31, 2020, respectively. Interventions: Participants were randomized to receive 1 of 2 inactivated vaccines developed from SARS-CoV-2 WIV04 (5 µg/dose; n = 13 459) and HB02 (4 µg/dose; n = 13 465) strains or an aluminum hydroxide (alum)-only control (n = 13 458); they received 2 intramuscular injections 21 days apart. Main Outcomes and Measures: The primary outcome was efficacy against laboratory-confirmed symptomatic COVID-19 14 days following a second vaccine dose among participants who had no virologic evidence of SARS-CoV-2 infection at randomization. The secondary outcome was efficacy against severe COVID-19. Incidence of adverse events and reactions was collected among participants who received at least 1 dose. Results: Among 40 382 participants randomized to receive at least 1 dose of the 2 vaccines or alum-only control (mean age, 36.1 years; 32 261 [84.4%] men), 38 206 (94.6%) who received 2 doses, contributed at least 1 follow-up measure after day 14 following the second dose, and had negative reverse transcriptase-polymerase chain reaction test results at enrollment were included in the primary efficacy analysis. During a median (range) follow-up duration of 77 (1-121) days, symptomatic COVID-19 was identified in 26 participants in the WIV04 group (12.1 [95% CI, 8.3-17.8] per 1000 person-years), 21 in the HB02 group (9.8 [95% CI, 6.4-15.0] per 1000 person-years), and 95 in the alum-only group (44.7 [95% CI, 36.6-54.6] per 1000 person-years), resulting in a vaccine efficacy, compared with alum-only, of 72.8% (95% CI, 58.1%-82.4%) for WIV04 and 78.1% (95% CI, 64.8%-86.3%) for HB02 (P < .001 for both). Two severe cases of COVID-19 occurred in the alum-only group and none occurred in the vaccine groups. Adverse reactions 7 days after each injection occurred in 41.7% to 46.5% of participants in the 3 groups; serious adverse events were rare and similar in the 3 groups (WIV04: 64 [0.5%]; HB02: 59 [0.4%]; alum-only: 78 [0.6%]). Conclusions and Relevance: In this prespecified interim analysis of a randomized clinical trial, treatment of adults with either of 2 inactivated SARS-CoV-2 vaccines significantly reduced the risk of symptomatic COVID-19, and serious adverse events were rare. Data collection for final analysis is pending. Trial Registration: ClinicalTrials.gov Identifier: NCT04510207; Chinese Clinical Trial Registry: ChiCTR2000034780.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Adult , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Datasets as Topic , Double-Blind Method , Female , Humans , Injections, Intramuscular , Male , Middle Aged , Middle East , Vaccines, Inactivated/immunology
9.
Pharmacy (Basel) ; 9(1)2021 Mar 03.
Article in English | MEDLINE | ID: covidwho-1308394

ABSTRACT

Vaccinations are a safe and effective way to protect against infectious diseases. The World Health Organization estimates vaccines have saved more lives than any other interventions and every year about two to three million deaths are averted worldwide through immunization. To improve vaccination coverage, pharmacists have been increasingly involved in immunization roles in their communities-as advocates, educators, and immunizers. Community pharmacy-based vaccination services have increased both in the number of immunization providers and the number of sites where patients can receive immunizations. In Canada, health care is under provincial legislation-and so, there are distinct differences in scope of pharmacist practice across the country. Prior to the COVID-19 outbreak in early 2020, in Québec, Canada's second-largest province, pharmacists did not have the authority to administer vaccines. To help prepare pharmacists in Québec to become immunizers, we developed and deployed a series of accredited workshops. In these facilitated workshops, pharmacists were able to share best practices that may lead to providing effective vaccination services, identify common competency gaps, discuss effective patient communication skills, and determine how to target the most vulnerable population groups. Participants were also asked to evaluate the workshop. Our results indicate the evaluation was very reliable in measuring participant satisfaction (Cronbach's α = 0.94) and pharmacists commented that the workshops' learning outcomes exceeded their expectations, and the topics covered were relevant and applicable. The evaluation also asked participants to identify weaknesses of training, so future educational interventions can be planned accordingly. We believe this work will contribute to the continual growth and advancement of the pharmacy profession in Canada.

10.
Lancet Infect Dis ; 21(7): 950-961, 2021 07.
Article in English | MEDLINE | ID: covidwho-1290388

ABSTRACT

BACKGROUND: BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine (3 µg or 6 µg) formulated with a toll-like receptor 7/8 agonist molecule (IMDG) adsorbed to alum (Algel). We previously reported findings from a double-blind, multicentre, randomised, controlled phase 1 trial on the safety and immunogenicity of three different formulations of BBV152 (3 µg with Algel-IMDG, 6 µg with Algel-IMDG, or 6 µg with Algel) and one Algel-only control (no antigen), with the first dose administered on day 0 and the second dose on day 14. The 3 µg and 6 µg with Algel-IMDG formulations were selected for this phase 2 study. Herein, we report interim findings of the phase 2 trial on the immunogenicity and safety of BBV152, with the first dose administered on day 0 and the second dose on day 28. METHODS: We did a double-blind, randomised, multicentre, phase 2 clinical trial to evaluate the immunogenicity and safety of BBV152 in healthy adults and adolescents (aged 12-65 years) at nine hospitals in India. Participants with positive SARS-CoV-2 nucleic acid and serology tests were excluded. Participants were randomly assigned (1:1) to receive either 3 µg with Algel-IMDG or 6 µg with Algel-IMDG. Block randomisation was done by use of an interactive web response system. Participants, investigators, study coordinators, study-related personnel, and the sponsor were masked to treatment group allocation. Two intramuscular doses of vaccine were administered on day 0 and day 28. The primary outcome was SARS-CoV-2 wild-type neutralising antibody titres and seroconversion rates (defined as a post-vaccination titre that was at least four-fold higher than the baseline titre) at 4 weeks after the second dose (day 56), measured by use of the plaque-reduction neutralisation test (PRNT50) and the microneutralisation test (MNT50). The primary outcome was assessed in all participants who had received both doses of the vaccine. Cell-mediated responses were a secondary outcome and were assessed by T-helper-1 (Th1)/Th2 profiling at 2 weeks after the second dose (day 42). Safety was assessed in all participants who received at least one dose of the vaccine. In addition, we report immunogenicity results from a follow-up blood draw collected from phase 1 trial participants at 3 months after they received the second dose (day 104). This trial is registered at ClinicalTrials.gov, NCT04471519. FINDINGS: Between Sept 5 and 12, 2020, 921 participants were screened, of whom 380 were enrolled and randomly assigned to the 3 µg with Algel-IMDG group (n=190) or 6 µg with Algel-IMDG group (n=190). Geometric mean titres (GMTs; PRNT50) at day 56 were significantly higher in the 6 µg with Algel-IMDG group (197·0 [95% CI 155·6-249·4]) than the 3 µg with Algel-IMDG group (100·9 [74·1-137·4]; p=0·0041). Seroconversion based on PRNT50 at day 56 was reported in 171 (92·9% [95% CI 88·2-96·2] of 184 participants in the 3 µg with Algel-IMDG group and 174 (98·3% [95·1-99·6]) of 177 participants in the 6 µg with Algel-IMDG group. GMTs (MNT50) at day 56 were 92·5 (95% CI 77·7-110·2) in the 3 µg with Algel-IMDG group and 160·1 (135·8-188·8) in the 6 µg with Algel-IMDG group. Seroconversion based on MNT50 at day 56 was reported in 162 (88·0% [95% CI 82·4-92·3]) of 184 participants in the 3 µg with Algel-IMDG group and 171 (96·6% [92·8-98·8]) of 177 participants in the 6 µg with Algel-IMDG group. The 3 µg with Algel-IMDG and 6 µg with Algel-IMDG formulations elicited T-cell responses that were biased to a Th1 phenotype at day 42. No significant difference in the proportion of participants who had a solicited local or systemic adverse reaction in the 3 µg with Algel-IMDG group (38 [20·0%; 95% CI 14·7-26·5] of 190) and the 6 µg with Algel-IMDG group (40 [21·1%; 15·5-27·5] of 190) was observed on days 0-7 and days 28-35; no serious adverse events were reported in the study. From the phase 1 trial, 3-month post-second-dose GMTs (MNT50) were 39·9 (95% CI 32·0-49·9) in the 3µg with Algel-IMDG group, 69·5 (53·7-89·9) in the 6 µg with Algel-IMDG group, 53·3 (40·1-71·0) in the 6 µg with Algel group, and 20·7 (14·5-29·5) in the Algel alone group. INTERPRETATION: In the phase 1 trial, BBV152 induced high neutralising antibody responses that remained elevated in all participants at 3 months after the second vaccination. In the phase 2 trial, BBV152 showed better reactogenicity and safety outcomes, and enhanced humoral and cell-mediated immune responses compared with the phase 1 trial. The 6 µg with Algel-IMDG formulation has been selected for the phase 3 efficacy trial. FUNDING: Bharat Biotech International. TRANSLATION: For the Hindi translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/immunology , Child , Double-Blind Method , Drug-Related Side Effects and Adverse Reactions/immunology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Th1 Cells/immunology , Th2 Cells/immunology , Vaccination/adverse effects , Young Adult
11.
Int J Infect Dis ; 106: 52-60, 2021 May.
Article in English | MEDLINE | ID: covidwho-1279600

ABSTRACT

OBJECTIVE: In the fight against COVID-19, vaccination is vital in achieving herd immunity. Many Asian countries are starting to vaccinate frontline workers; however, expedited vaccine development has led to hesitancy among the general population. We evaluated the willingness of healthcare workers to receive the COVID-19 vaccine. METHODS: From 12 to 21 December 2020, we recruited 1720 healthcare workers from 6 countries: China, India, Indonesia, Singapore, Vietnam and Bhutan. The self-administrated survey collected information on willingness to vaccinate, perception of COVID-19, vaccine concerns, COVID-19 risk profile, stigma, pro-socialness scale, and trust in health authorities. RESULTS: More than 95% of the healthcare workers surveyed were willing to vaccinate. These respondents were more likely to perceive the pandemic as severe, consider the vaccine safe, have less financial concerns, less stigmatization regarding the vaccine, higher pro-socialness mindset and trust in health authorities. A high perceived pandemic risk index, low vaccine harm index and high pro-socialness index were independent predictors in multivariable analysis. CONCLUSIONS: The majority of healthcare workers in Asia are willing to receive COVID-19 vaccination. Perceived COVID-19 susceptibility, low potential risk of vaccine harm and pro-socialness are the main drivers. These findings may help formulate vaccination strategies in other countries.


Subject(s)
Attitude to Health , COVID-19 Vaccines/immunology , Health Personnel/psychology , Perception , Vaccination/psychology , Adult , Asia , Cross-Sectional Studies , Humans , Immunity, Herd , Male , Pandemics/prevention & control , Social Stigma , Surveys and Questionnaires
12.
PLoS One ; 16(6): e0253120, 2021.
Article in English | MEDLINE | ID: covidwho-1278185

ABSTRACT

BACKGROUND: In the absence of universal testing, effective therapies, or vaccines, identifying risk factors for viral infection, particularly readily modifiable exposures and behaviors, is required to identify effective strategies against viral infection and transmission. METHODS: We conducted a world-wide mobile application-based prospective cohort study available to English speaking adults with a smartphone. We collected self-reported characteristics, exposures, and behaviors, as well as smartphone-based geolocation data. Our main outcome was incident symptoms of viral infection, defined as fevers and chills plus one other symptom previously shown to occur with SARS-CoV-2 infection, determined by daily surveys. FINDINGS: Among 14, 335 participants residing in all 50 US states and 93 different countries followed for a median 21 days (IQR 10-26 days), 424 (3%) developed incident viral symptoms. In pooled multivariable logistic regression models, female biological sex (odds ratio [OR] 1.75, 95% CI 1.39-2.20, p<0.001), anemia (OR 1.45, 95% CI 1.16-1.81, p = 0.001), hypertension (OR 1.35, 95% CI 1.08-1.68, p = 0.007), cigarette smoking in the last 30 days (OR 1.86, 95% CI 1.35-2.55, p<0.001), any viral symptoms among household members 6-12 days prior (OR 2.06, 95% CI 1.67-2.55, p<0.001), and the maximum number of individuals the participant interacted with within 6 feet in the past 6-12 days (OR 1.15, 95% CI 1.06-1.25, p<0.001) were each associated with a higher risk of developing viral symptoms. Conversely, a higher subjective social status (OR 0.87, 95% CI 0.83-0.93, p<0.001), at least weekly exercise (OR 0.57, 95% CI 0.47-0.70, p<0.001), and sanitizing one's phone (OR 0.79, 95% CI 0.63-0.99, p = 0.037) were each associated with a lower risk of developing viral symptoms. INTERPRETATION: While several immutable characteristics were associated with the risk of developing viral symptoms, multiple immediately modifiable exposures and habits that influence risk were also observed, potentially identifying readily accessible strategies to mitigate risk in the COVID-19 era.


Subject(s)
COVID-19/prevention & control , Fever/diagnosis , SARS-CoV-2/isolation & purification , Self Report/statistics & numerical data , Adult , COVID-19/epidemiology , COVID-19/virology , Female , Fever/epidemiology , Humans , Incidence , Logistic Models , Male , Middle Aged , Multivariate Analysis , Pandemics , Prospective Studies , Risk Factors , SARS-CoV-2/physiology , Smartphone , United States/epidemiology
13.
Eur Respir J ; 59(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1277909

ABSTRACT

BACKGROUND: Rapid tests to evaluate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell responses are urgently needed to decipher protective immunity and aid monitoring vaccine-induced immunity. METHODS: Using a rapid whole blood assay requiring a minimal amount of blood, we measured qualitatively and quantitatively SARS-CoV-2-specific CD4 T-cell responses in 31 healthcare workers using flow cytometry. RESULTS: 100% of COVID-19 convalescent participants displayed a detectable SARS-CoV-2-specific CD4 T-cell response. SARS-CoV-2-responding cells were also detected in 40.9% of participants with no COVID-19-associated symptoms or who tested PCR-negative. Phenotypic assessment indicated that, in COVID-19 convalescent participants, SARS-CoV-2 CD4 responses displayed an early differentiated memory phenotype with limited capacity to produce interferon (IFN)-γ. Conversely, in participants with no reported symptoms, SARS-CoV-2 CD4 responses were enriched in late differentiated cells, coexpressing IFN-γ and tumour necrosis factor-α and also Granzyme B. CONCLUSIONS: This proof-of-concept study presents a scalable alternative to peripheral blood mononuclear cell-based assays to enumerate and phenotype SARS-CoV-2-responding T-cells, thus representing a practical tool to monitor adaptive immunity due to natural infection or vaccine trials.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Leukocytes, Mononuclear , Phenotype , T-Lymphocytes
14.
Rheumatol Int ; 41(8): 1441-1445, 2021 08.
Article in English | MEDLINE | ID: covidwho-1274816

ABSTRACT

Patients with rheumatic and musculoskeletal (RMD) diseases may be at higher risks for COVID-19 infection. Data on the safety of the adenoviral vector-borne ChAdOx1 nCoV-19 and the heat-inactivated BBV152 Vaccines in this group are limited. 724 patients with RMD who had received at least one dose of either the ChAdOx1 or the BBV152 were audited to find out post-vaccination adverse effect (AE) or disease flares. The AE rates in patients with autoimmune rheumatic disease (AIRD) were compared with those with non-AIRD RMDs. The mean age of the cohort was 59.9 (± 10.43) years with a female (n = 581; 80.24%) majority. 523 (70.8%) had AIRD. The ChAdOx1 and the BBV152 vaccines were received by 624 (86.18%) and 77 (10.63%), respectively. 23 (3.17%) were unaware of which vaccine they had received. 238 (32.87%) of patients had at least one comorbidity. 436 (60.22%) participants [306 (59.64%) of those with AIRD and 130 (61.61%) with other RMDs] had at least one adverse effect (AE). Four patients reported flare of arthritis that resolved within 5 days. No patient had any severe AE or required hospitalization. All AEs were self-limiting. Both the ChAdOx1 and the BBV152 vaccines appear safe in RMDs. AEs do not differ between patients with AIRD or non-AIRD. This information can help negate vaccine hesitancy amongst all stakeholders.


Subject(s)
Autoimmunity , COVID-19 Vaccines/administration & dosage , Rheumatic Diseases/immunology , Aged , Autoimmunity/drug effects , COVID-19 Vaccines/adverse effects , Cross-Sectional Studies , Female , Humans , Immunocompromised Host , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Rheumatic Diseases/diagnosis , Rheumatic Diseases/drug therapy , Vaccination , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects
15.
Eur J Epidemiol ; 36(7): 753-762, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1265532

ABSTRACT

The Human Immunomics Initiative (HII), a joint project between the Harvard T.H. Chan School of Public Health and the Human Vaccines Project (HVP), focuses on studying immunity and the predictability of immuneresponsiveness to vaccines in aging populations. This paper describes the hypotheses and methodological approaches of this new collaborative initiative. Central to our thinking is the idea that predictors of age-related non-communicable diseases are the same as predictors for infectious diseases like COVID-19 and influenza. Fundamental to our approach is to differentiate between chronological, biological and immune age, and to use existing large-scale population cohorts. The latter provide well-typed phenotypic data on individuals' health status over time, readouts of routine clinical biochemical biomarkers to determine biological age, and bio-banked plasma samples to deep phenotype humoral immune responses as biomarkers of immune age. The first phase of the program involves 1. the exploration of biological age, humoral biomarkers of immune age, and genetics in a large multigenerational cohort, and 2. the subsequent development of models of immunity in relation to health status in a second, prospective cohort of an aging population. In the second phase, vaccine responses and efficacy of licensed COVID-19 vaccines in the presence and absence of influenza-, pneumococcal- and pertussis vaccines routinely offered to elderly, will be studied in older aged participants of prospective population-based cohorts in different geographical locations who will be selected for representing distinct biological and immune ages. The HII research program is aimed at relating vaccine responsiveness to biological and immune age, and identifying aging-related pathways crucial to enhance vaccine effectiveness in aging populations.


Subject(s)
Aging/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/diagnosis , COVID-19/prevention & control , Clinical Protocols , Female , Health Status , Humans , Immunity, Humoral , Male , Middle Aged , Phenotype , Program Development , Research Design , Young Adult
16.
BMC Public Health ; 21(1): 1103, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1262501

ABSTRACT

BACKGROUND: There are no pharmacological interventions currently available to prevent the transmission of SARS-CoV-2 or to treat COVID-19. The development of vaccines against COVID-19 is essential to contain the pandemic. we conducted a cross-sectional survey of Shanghai residents to understand residents' willingness to be vaccinated with any future COVID-19 vaccines and take measures to further improve vaccination coverage. METHODS: We conducted a cross-sectional survey using self-administered anonymous questionnaires from 1 July to 8 September 2020. The main outcome was willingness of participants, and any children or older individuals living with them, to receive future COVID-19 vaccines. Logistic regression analyses were used to explore potential factors associated with vaccination willingness. RESULTS: A total of 1071 participants were asked about their willingness to receive future COVID-19 vaccines, for themselves and at least 747 children and 375 older individuals (≥60 years old) living with them. The highest proportion of expected willingness to vaccinate was among participants (88.6%), followed by children (85.3%) and older individuals (84.0%). The main reasons for reluctance to vaccinate among 119 participants were doubts regarding vaccine safety (60.0%) and efficacy (28.8%). Participants with a self-reported history of influenza vaccination were more likely to accept COVID-19 vaccines for themselves [adjusted odds ratio (OR) = 1.83; 95% confidence interval (CI): 1.19-2.82], their children (adjusted OR = 2.08; 95%CI: 1.30-3.33), and older individuals in their household (adjusted OR = 2.12; 95%CI: 1.14-3.99). Participants with older individuals in their families were less willing to vaccinate themselves (adjusted OR = 0.59; 95%CI: 0.40-0.87) and their children (adjusted OR = 0.58; 95%CI: 0.38-0.89). CONCLUSIONS: Participants were more reluctant to accept COVID-19 vaccines for older individuals living with them. The presence of older individuals in the home also affected willingness of participants and their children to be vaccinated.


Subject(s)
COVID-19 , Influenza Vaccines , Vaccines , COVID-19 Vaccines , Child , China/epidemiology , Cross-Sectional Studies , Humans , Middle Aged , SARS-CoV-2 , Vaccination
17.
BMC Infect Dis ; 21(1): 544, 2021 Jun 09.
Article in English | MEDLINE | ID: covidwho-1262498

ABSTRACT

BACKGROUND: SARS-CoV-2 is a recently emerged pandemic coronavirus (CoV) capable of causing severe respiratory illness. However, a significant number of infected people present as asymptomatic or pauci-symptomatic. In this prospective assessment of at-risk healthcare workers (HCWs) we seek to determine whether pre-existing antibody or T cell responses to previous seasonal human coronavirus (HCoV) infections affect immunological or clinical responses to SARS-CoV-2 infection or vaccination. METHODS: A cohort of 300 healthcare workers, confirmed negative for SARS-CoV-2 exposure upon study entry, will be followed for up to 1 year with monthly serology analysis of IgM and IgG antibodies against the spike proteins of SARS-CoV-2 and the four major seasonal human coronavirus - HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63. Participants will complete monthly questionnaires that ask about Coronavirus Disease 2019 (COVID-19) exposure risks, and a standardized, validated symptom questionnaire (scoring viral respiratory disease symptoms, intensity and severity) at least twice monthly and any day when any symptoms manifest. SARS-CoV-2 PCR testing will be performed any time participants develop symptoms consistent with COVID-19. For those individuals that seroconvert and/or test positive by SARS-CoV-2 PCR, or receive the SARS-CoV-2 vaccine, additional studies of T cell activation and cytokine production in response to SARS-CoV-2 peptide pools and analysis of Natural Killer cell numbers and function will be conducted on that participant's cryopreserved baseline peripheral blood mononuclear cells (PBMCs). Following the first year of this study we will further analyze those participants having tested positive for COVID-19, and/or having received an authorized/licensed SARS-CoV-2 vaccine, quarterly (year 2) and semi-annually (years 3 and 4) to investigate immune response longevity. DISCUSSION: This study will determine the frequency of asymptomatic and pauci-symptomatic SARS-CoV-2 infection in a cohort of at-risk healthcare workers. Baseline and longitudinal assays will determine the frequency and magnitude of anti-spike glycoprotein antibodies to the seasonal HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63, and may inform whether pre-existing antibodies to these human coronaviruses are associated with altered COVID-19 disease course. Finally, this study will evaluate whether pre-existing immune responses to seasonal HCoVs affect the magnitude and duration of antibody and T cell responses to SARS-CoV-2 vaccination, adjusting for demographic covariates.


Subject(s)
COVID-19/immunology , Health Personnel/statistics & numerical data , SARS-CoV-2/immunology , Seroconversion , Vaccination/statistics & numerical data , Antibodies, Viral/blood , Antibodies, Viral/immunology , Asymptomatic Infections , COVID-19 Vaccines/immunology , Coronavirus/immunology , Cross Reactions , Humans , Prospective Studies , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
18.
Pragmat Obs Res ; 12: 37-47, 2021.
Article in English | MEDLINE | ID: covidwho-1256180

ABSTRACT

BACKGROUND: Acceptance of a vaccine or hesitancy towards it have great public health implications as they partly determine the extent to which people are exposed to infections that could have otherwise been prevented. The present study examined the willingness of primary and secondary school teachers, bank employees, and university instructors in southern Ethiopia to take a Covid-19 vaccine and the factors associated with their willingness. METHODS: An institutional-based cross-sectional study design was used with a quantitative research approach. Primary data were gathered mainly through the use of a survey research method in which a self-administered questionnaire was distributed to randomly selected research participants in Wolaita Sodo town. Data analysis was conducted using statistical techniques, including percentages, frequency distributions, and logistic regression analysis. RESULTS: Research participants generally had a low (46.1%) willingness to take a COVID-19 vaccine. The main reason for most (37%) respondents' hesitancy to take the vaccine is found to be the concern over the safety and/or the side effects of the vaccine (37%), followed by doubt about the vaccine's effectiveness (20.7%), and lack of adequate information (12.7%). Moreover, 38.9% of survey participants revealed that they would like to take a COVID-19 vaccine other than AstraZeneca whereas 61.1% of respondents replied that they do not want to take any kind of COVID-19 vaccine. Furthermore, respondents' willingness to take a COVID-19 vaccine is significantly associated with attitude towards the vaccine (OR = 2.830; 95% CI = 1.834-4.368), belief that Covid-19 exists in the study area (OR = 0.221; 95% CI = 0.083-0.589), the perception that prevalence and death rate reports of the government are real (OR = 0.365; 95% CI = 0.197-0.676), status of chronic diseases (OR = 2.883; 95%CI = 1.039-7.999), and having a close relative/friend ever infected by COVID-19 (OR = 2.602; 95% CI = 1.117-6.063). CONCLUSION: The findings of the research demonstrated that there is generally low willingness to take a COVID-19 vaccine among university instructors, bank employees, and primary and secondary school teachers in southern Ethiopia. Therefore, the federal ministry of health, Ethiopian food and drug controlling agency, the media, and all other concerned organizations should create increased awareness about the safety/side effects issues and the need to take the vaccine.

19.
Prev Med Rep ; 23: 101417, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1253480

ABSTRACT

Vaccine hesitancy, especially in the setting of an ongoing COVID-19 pandemic and upcoming flu season, may pose a significant burden on US healthcare systems. The objective of this study was to evaluate the intentions of US adults to receive the influenza vaccine this flu season (2020-2021). A cross-sectional, population-based survey study of US adults age 18 years and older was distributed in early September 2020. The primary outcome was the intention to receive the flu vaccine assessed with a survey instrument based on the Theory of Planned Behavior. Three-hundred sixty-four adults (59.1% female, 66.5% white), completed the survey. Twenty percent of participants had already received the flu vaccine, 54.3% indicated high probability of getting the flu vaccine this flu season, and 49% would get it at a doctor's office. Concerns regarding adverse effects from the flu vaccine was a major barrier to vaccination and family (58.1%) was the primary influencer in participants' decision to get vaccinated. Participants who indicated that getting the vaccine was beneficial to them and that their doctor thinks they should get the flu vaccine were significantly more likely to have the intent of getting vaccinated. Approximately half of US adults believed that the flu vaccine was beneficial to them and indicated intent to receive the vaccine this flu season. Doctors can help educate patients regarding the limited adverse effects of flu vaccines, and include patients and their families in vaccination discussions - because families are influential in the decision-making process - to increase flu vaccination uptake.

20.
Saudi Pharm J ; 29(7): 734-739, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1253275

ABSTRACT

BACKGROUND: COVID-19 is a pacing pandemic that affected health systems, economy, and social life in the whole world. Currently, there is no treatment for it, but the world is in a race that yielded, in a relatively short time than usual, several approved, promising vaccines in the middle of a storm of debates because of the speed of their production and approval. OBJECTIVE: This study assessed the willingness of Middle Eastern Arab publics to receive COVID-19 vaccines and investigated the factors behind any reluctance to receive them. METHODS: A self-administered questionnaire was distributed through social media applications in four Arab countries (Jordan, Saudi Arabia, Lebanon, and Iraq). Participants' demographics, medical history, their experience with COVID-19, and their willingness to receive the available vaccines were obtained and analyzed. RESULTS: A total of 2,925 completed forms were included. Only 25% of the participants were willing to receive a vaccine while 33% were hesitant. Iraqis were the most willing to receive it while Jordanians were the least (35% and 17% of each country, respectively). Interestingly, 60% of the acceptors were ready to pay for the vaccine if not covered by governments. It was also found that American vaccines were preffered by 50% of the acceptors. However, 30% of acceptors were unsure of which vaccine is the best and 11% stated that any vaccine is good. Social media were the major source of information about COVID-19 and its vaccines. Finally, predictors of acceptance of the vaccines included living in Saudi Arabia and Iraq, being unmarried, having monthly income > $1,000, holding a medical degree, having high fear from COVID-19, feeling of being at risk of getting infected with COVID-19, and previous reception of influenza vaccine, whereas predictors of refusal included female sex and previous infection with COVID-19. CONCLUSION: Middle Eastern Arabs are less likely to accept receiving the COVID-19 vaccines compared with non-Arabs. Health authorities in these countries are advised to intensify their awareness-raising activities about the vaccines while ensuring fair distribution of them.

SELECTION OF CITATIONS
SEARCH DETAIL