Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 608
Filter
1.
PLoS Pathog ; 16(10): e1008942, 2020 10.
Article in English | MEDLINE | ID: covidwho-2021974

ABSTRACT

Human metapneumovirus (hMPV) is a leading cause of viral respiratory infection in children, and can cause severe lower respiratory tract infection in infants, the elderly, and immunocompromised patients. However, there remain no licensed vaccines or specific treatments for hMPV infection. Although the hMPV fusion (F) protein is the sole target of neutralizing antibodies, the immunological properties of hMPV F remain poorly understood. To further define the humoral immune response to the hMPV F protein, we isolated two new human monoclonal antibodies (mAbs), MPV458 and MPV465. Both mAbs are neutralizing in vitro and were determined to target a unique antigenic site using competitive biolayer interferometry. We determined both MPV458 and MPV465 have higher affinity for monomeric hMPV F than trimeric hMPV F. MPV458 was co-crystallized with hMPV F, and the mAb primarily interacts with an alpha helix on the F2 region of the hMPV F protein. Surprisingly, the major epitope for MPV458 lies within the trimeric interface of the hMPV F protein, suggesting significant breathing of the hMPV F protein must occur for host immune recognition of the novel epitope. In addition, significant glycan interactions were observed with a somatically mutated light chain framework residue. The data presented identifies a novel epitope on the hMPV F protein for epitope-based vaccine design, and illustrates a new mechanism for human antibody neutralization of viral glycoproteins.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Pneumovirus/immunology , Antibodies, Neutralizing/pharmacology , Epitopes/immunology , Humans , Metapneumovirus/immunology , Paramyxoviridae Infections/virology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology
2.
PLoS One ; 16(4): e0250780, 2021.
Article in English | MEDLINE | ID: covidwho-1833531

ABSTRACT

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is the molecular target for many vaccines and antibody-based prophylactics aimed at bringing COVID-19 under control. Such a narrow molecular focus raises the specter of viral immune evasion as a potential failure mode for these biomedical interventions. With the emergence of new strains of SARS-CoV-2 with altered transmissibility and immune evasion potential, a critical question is this: how easily can the virus escape neutralizing antibodies (nAbs) targeting the spike RBD? To answer this question, we combined an analysis of the RBD structure-function with an evolutionary modeling framework. Our structure-function analysis revealed that epitopes for RBD-targeting nAbs overlap one another substantially and can be evaded by escape mutants with ACE2 affinities comparable to the wild type, that are observed in sequence surveillance data and infect cells in vitro. This suggests that the fitness cost of nAb-evading mutations is low. We then used evolutionary modeling to predict the frequency of immune escape before and after the widespread presence of nAbs due to vaccines, passive immunization or natural immunity. Our modeling suggests that SARS-CoV-2 mutants with one or two mildly deleterious mutations are expected to exist in high numbers due to neutral genetic variation, and consequently resistance to vaccines or other prophylactics that rely on one or two antibodies for protection can develop quickly -and repeatedly- under positive selection. Predicted resistance timelines are comparable to those of the decay kinetics of nAbs raised against vaccinal or natural antigens, raising a second potential mechanism for loss of immunity in the population. Strategies for viral elimination should therefore be diversified across molecular targets and therapeutic modalities.


Subject(s)
COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/genetics , COVID-19/metabolism , Epitopes/immunology , Evolution, Molecular , Humans , Immune Evasion/immunology , Models, Molecular , Neutralization Tests/methods , Peptidyl-Dipeptidase A/metabolism , Protein Binding/genetics , Protein Domains/genetics , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
3.
Vaccines (Basel) ; 8(2)2020 Mar 29.
Article in English | MEDLINE | ID: covidwho-1726034

ABSTRACT

In December 2019, the outbreak of pneumonia caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a serious pandemic in China and other countries worldwide. So far, more than 460,000 confirmed cases were diagnosed in nearly 190 countries, causing globally over 20,000 deaths. Currently, the epidemic is still spreading and there is no effective means to prevent the infection. Vaccines are proved to be the most effective and economical means to prevent and control infectious diseases. Several countries, companies, and institutions announced their programs and progress on vaccine development against the virus. While most of the vaccines are under design and preparation, there are some that have entered efficacy evaluation in animals and initial clinical trials. This review mainly focused on the progress and our prospects on field of vaccine development against SARS-CoV-2.

5.
Lancet Infect Dis ; 21(10): 1383-1394, 2021 10.
Article in English | MEDLINE | ID: covidwho-1621119

ABSTRACT

BACKGROUND: Given the scale of the ongoing COVID-19 pandemic, the development of vaccines based on different platforms is essential, particularly in light of emerging viral variants, the absence of information on vaccine-induced immune durability, and potential paediatric use. We aimed to assess the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a novel molecular clamp (spike glycoprotein-clamp [sclamp]). METHODS: We did a phase 1, double-blind, placebo-controlled, block-randomised trial of the sclamp subunit vaccine in a single clinical trial site in Brisbane, QLD, Australia. Healthy adults (aged ≥18 to ≤55 years) who had tested negative for SARS-CoV-2, reported no close contact with anyone with active or previous SARS-CoV-2 infection, and tested negative for pre-existing SARS-CoV-2 immunity were included. Participants were randomly assigned to one of five treatment groups and received two doses via intramuscular injection 28 days apart of either placebo, sclamp vaccine at 5 µg, 15 µg, or 45 µg, or one dose of sclamp vaccine at 45 µg followed by placebo. Participants and study personnel, except the dose administration personnel, were masked to treatment. The primary safety endpoints included solicited local and systemic adverse events in the 7 days after each dose and unsolicited adverse events up to 12 months after dosing. Here, data are reported up until day 57. Primary immunogenicity endpoints were antigen-specific IgG ELISA and SARS-CoV-2 microneutralisation assays assessed at 28 days after each dose. The study is ongoing and registered with ClinicalTrials.gov, NCT04495933. FINDINGS: Between June 23, 2020, and Aug 17, 2020, of 314 healthy volunteers screened, 120 were randomly assigned (n=24 per group), and 114 (95%) completed the study up to day 57 (mean age 32·5 years [SD 10·4], 65 [54%] male, 55 [46%] female). Severe solicited reactions were infrequent and occurred at similar rates in participants receiving placebo (two [8%] of 24) and the SARS-CoV-2 sclamp vaccine at any dose (three [3%] of 96). Both solicited reactions and unsolicited adverse events occurred at a similar frequency in participants receiving placebo and the SARS-CoV-2 sclamp vaccine. Solicited reactions occurred in 19 (79%) of 24 participants receiving placebo and 86 (90%) of 96 receiving the SARS-CoV-2 sclamp vaccine at any dose. Unsolicited adverse events occurred in seven (29%) of 24 participants receiving placebo and 35 (36%) of 96 participants receiving the SARS-CoV-2 sclamp vaccine at any dose. Vaccination with SARS-CoV-2 sclamp elicited a similar antigen-specific response irrespective of dose: 4 weeks after the initial dose (day 29) with 5 µg dose (geometric mean titre [GMT] 6400, 95% CI 3683-11 122), with 15 µg dose (7492, 4959-11 319), and the two 45 µg dose cohorts (8770, 5526-13 920 in the two-dose 45 µg cohort; 8793, 5570-13 881 in the single-dose 45 µg cohort); 4 weeks after the second dose (day 57) with two 5 µg doses (102 400, 64 857-161 676), with two 15 µg doses (74 725, 51 300-108 847), with two 45 µg doses (79 586, 55 430-114 268), only a single 45 µg dose (4795, 2858-8043). At day 57, 67 (99%) of 68 participants who received two doses of sclamp vaccine at any concentration produced a neutralising immune response, compared with six (25%) of 24 who received a single 45 µg dose and none of 22 who received placebo. Participants receiving two doses of sclamp vaccine elicited similar neutralisation titres, irrespective of dose: two 5 µg doses (GMT 228, 95% CI 146-356), two 15 µg doses (230, 170-312), and two 45 µg doses (239, 187-307). INTERPRETATION: This first-in-human trial shows that a subunit vaccine comprising mammalian cell culture-derived, MF59-adjuvanted, molecular clamp-stabilised recombinant spike protein elicits strong immune responses with a promising safety profile. However, the glycoprotein 41 peptide present in the clamp created HIV diagnostic assay interference, a possible barrier to widespread use highlighting the criticality of potential non-spike directed immunogenicity during vaccine development. Studies are ongoing with alternative molecular clamp trimerisation domains to ameliorate this response. FUNDING: Coalition for Epidemic Preparedness Innovations, National Health and Medical Research Council, Queensland Government, and further philanthropic sources listed in the acknowledgments.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Squalene/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Australia , Female , Healthy Volunteers , Humans , Male , Pandemics/prevention & control , Polysorbates , Vaccination/adverse effects , Young Adult
7.
Front Pharmacol ; 12: 652335, 2021.
Article in English | MEDLINE | ID: covidwho-1526785

ABSTRACT

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has a disastrous effect on mankind due to the contagious and rapid nature of its spread. Although vaccines for SARS-CoV-2 have been successfully developed, the proven, effective, and specific therapeutic molecules are yet to be identified for the treatment. The repurposing of existing drugs and recognition of new medicines are continuously in progress. Efforts are being made to single out plant-based novel therapeutic compounds. As a result, some of these biomolecules are in their testing phase. During these efforts, the whole-genome sequencing of SARS-CoV-2 has given the direction to explore the omics systems and approaches to overcome this unprecedented health challenge globally. Genome, proteome, and metagenome sequence analyses have helped identify virus nature, thereby assisting in understanding the molecular mechanism, structural understanding, and disease propagation. The multi-omics approaches offer various tools and strategies for identifying potential therapeutic biomolecules for COVID-19 and exploring the plants producing biomolecules that can be used as biopharmaceutical products. This review explores the available multi-omics approaches and their scope to investigate the therapeutic promises of plant-based biomolecules in treating SARS-CoV-2 infection.

8.
Emerg Microbes Infect ; 10(1): 578-588, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1490460

ABSTRACT

Mycobacterium tuberculosis (M. tuberculosis) is the pathogen which causes tuberculosis (TB), a significant human public health threat. Co-infection of M. tuberculosis and the human immunodeficiency virus (HIV), emergence of drug resistant M. tuberculosis, and failure to develop highly effective TB vaccines have limited control of the TB epidemic. Trained immunity is an enhanced innate immune response which functions independently of the adaptive/acquired immune system and responds non-specifically to reinfection with invading agents. Recently, several studies have found trained immunity has the capability to control and eliminate M. tuberculosis infection. Over the past decades, however, the consensus was adaptive immunity is the only protective mechanism by which hosts inhibit M. tuberculosis growth. Furthermore, autophagy plays an essential role in the development of trained immunity. Further investigation of trained immunity, M. tuberculosis infection, and the role of autophagy in this process provide new possibilities for vaccine development. In this review, we present the general characteristics of trained immunity and autophagy. We additionally summarize several examples where initiation of trained immunity contributes to the prevention of M. tuberculosis infection and propose future directions for research in this area.


Subject(s)
Autophagy , Immunity, Innate , Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines/immunology , Tuberculosis/immunology , Tuberculosis/prevention & control , Adaptive Immunity , Animals , Humans , Immunologic Memory , Vaccination
9.
Emerg Microbes Infect ; 10(1): 365-375, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1490458

ABSTRACT

Concerns about vaccine safety are an important reason for vaccine hesitancy, however, limited information is available on whether common adverse reactions following vaccination affect the immune response. Data from three clinical trials of recombinant vaccines were used in this post hoc analysis to assess the correlation between inflammation-related solicited adverse reactions (ISARs, including local pain, redness, swelling or induration and systematic fever) and immune responses after vaccination. In the phase III trial of the bivalent HPV-16/18 vaccine (Cecolin®), the geometric mean concentrations (GMCs) for IgG anti-HPV-16 and -18 (P<0.001) were significantly higher in participants with any ISAR following vaccination than in those without an ISAR. Local pain, induration, swelling and systemic fever were significantly correlated with higher GMCs for IgG anti-HPV-16 and/or anti-HPV-18, respectively. Furthermore, the analyses of the immunogenicity bridging study of Cecolin® and the phase III trial of a hepatitis E vaccine yielded similar results. Based on these results, we built a scoring model to quantify the inflammation reactions and found that the high score of ISAR indicates the strong vaccine-induced antibody level. In conclusion, this study suggests inflammation-related adverse reactions following vaccination potentially indicate a stronger immune response.


Subject(s)
Hepatitis E/immunology , Human papillomavirus 16/immunology , Human papillomavirus 18/immunology , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Vaccines, Synthetic/immunology , Viral Hepatitis Vaccines/immunology , Adolescent , Adult , Aged , Antibodies, Viral/immunology , Female , Hepatitis E/prevention & control , Hepatitis E/virology , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Humans , Immunity , Immunoglobulin G/immunology , Male , Middle Aged , Papillomavirus Infections/prevention & control , Papillomavirus Infections/virology , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/adverse effects , Papillomavirus Vaccines/genetics , Vaccination/adverse effects , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Viral Hepatitis Vaccines/administration & dosage , Viral Hepatitis Vaccines/adverse effects , Viral Hepatitis Vaccines/genetics , Young Adult
10.
Infect Disord Drug Targets ; 21(4): 541-552, 2021.
Article in English | MEDLINE | ID: covidwho-1496791

ABSTRACT

BACKGROUND: Since December 2019, a novel coronavirus, SARS-CoV-2, has caused global public health issues after being reported for the first time in Wuhan province of China. So far, there have been approximately 14.8 million confirmed cases and 0.614 million deaths due to the SARS-CoV-2 infection globally, and still, numbers are increasing. Although the virus has caused a global public health concern, no effective treatment has been developed. OBJECTIVE: One of the strategies to combat the COVID-19 disease caused by SARS-CoV-2 is the development of vaccines that can make humans immune to these infections. Considering this approach, in this study, an attempt has been made to design epitope-based vaccine for combatting COVID-19 disease by analyzing the complete proteome of the virus by using immuno-informatics tools. METHODS: The protein sequence of the SARS-CoV-2 was retrieved and the individual proteins were checked for their allergic potential. Then, from non-allergen proteins, antigenic epitopes were identified that could bind with MHCII molecules. The epitopes were modeled and docked to predict the interaction with MHCII molecules. The stability of the epitope-MHCII complex was further analyzed by performing a molecular dynamics simulation study. The selected vaccine candidates were also analyzed for their global population coverage and conservancy among SARS-related coronavirus species. RESULTS: The study has predicted 5 peptide molecules that can act as potential candidates for epitope- based vaccine development. Among the 5 selected epitopes, the peptide LRARSVSPK can be the most potent epitope because of its high geometric shape complementarity score, low ACE and very high response towards it by the world population (81.81% global population coverage). Further, molecular dynamic simulation analysis indicated the formation of a stable epitope-MHCII complex. The epitope LRARSVSPK was also found to be highly conserved among the SARS-CoV- -2 isolated from different countries. CONCLUSION: The study has predicted T-cell epitopes that can elicit a robust immune response in the global human population and act as potential vaccine candidates. However, the ability of these epitopes to act as vaccine candidate needs to be validated in wet lab studies.


Subject(s)
COVID-19 , Vaccines , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
Front Med (Lausanne) ; 7: 571597, 2020.
Article in English | MEDLINE | ID: covidwho-1488435

ABSTRACT

The COVID-19 disease is an unprecedented international public health emergency and considerably impacts the global economy and health service system. While awaiting the development of an effective vaccine, searching for the therapy for severe or critical COVID-19 patients is essential for reducing the mortality and alleviating the tension of the health service system. Cytokine release syndrome (CRS) induced by elevated interleukin-6 was recognized to underscore the pathology of severe COVID-19 patients. Inhibiting CRS by agents suppressing IL-6 may relieve symptoms, shorten the hospital stay and reduce the need for oxygen therapy. Although evidence from randomized, double-blinded clinical trials is still lacking, the IL-6R inhibitor tocilizumab (TCZ) has shown some clinical benefits in the treatment of severe COVID-19 patients and have been included in clinical guidelines. In this review, we focused on the possible mechanisms of TCZ in the treatment of CRS and highlighted some significant considerations in the use of TCZ to treat COVID-19 patients.

12.
J Virol ; 95(16): e0061721, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1486509

ABSTRACT

The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 spike protein receptor-binding domain (RBD) is the critical determinant of viral tropism and infectivity. To investigate whether naturally occurring RBD mutations during the early transmission phase have altered the receptor binding affinity and infectivity, we first analyzed in silico the binding dynamics between SARS-CoV-2 RBD mutants and the human angiotensin-converting enzyme 2 (ACE2) receptor. Among 32,123 genomes of SARS-CoV-2 isolates (December 2019 through March 2020), 302 nonsynonymous RBD mutants were identified and clustered into 96 mutant types. The six dominant mutations were analyzed applying molecular dynamics simulations (MDS). The mutant type V367F continuously circulating worldwide displayed higher binding affinity to human ACE2 due to the enhanced structural stabilization of the RBD beta-sheet scaffold. The MDS also indicated that it would be difficult for bat SARS-like CoV to infect humans. However, the pangolin CoV is potentially infectious to humans. The increased infectivity of V367 mutants was further validated by performing receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance, and pseudotyped virus assays. Phylogenetic analysis of the genomes of V367F mutants showed that during the early transmission phase, most V367F mutants clustered more closely with the SARS-CoV-2 prototype strain than the dual-mutation variants (V367F+D614G), which may derivate from recombination. The analysis of critical RBD mutations provides further insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin under negative selection pressure and supports the continuing surveillance of spike mutations to aid in the development of new COVID-19 drugs and vaccines. IMPORTANCE A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the pandemic of COVID-19. The origin of SARS-CoV-2 was associated with zoonotic infections. The spike protein receptor-binding domain (RBD) is identified as the critical determinant of viral tropism and infectivity. Thus, whether mutations in the RBD of the circulating SARS-CoV-2 isolates have altered the receptor binding affinity and made them more infectious has been the research hot spot. Given that SARS-CoV-2 is a novel coronavirus, the significance of our research is in identifying and validating the RBD mutant types emerging during the early transmission phase and increasing human angiotensin-converting enzyme 2 (ACE2) receptor binding affinity and infectivity. Our study provides insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin. The continuing surveillance of RBD mutations with increased human ACE2 affinity in human or other animals is critical to the development of new COVID-19 drugs and vaccines against these variants during the sustained COVID-19 pandemic.


Subject(s)
Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , COVID-19/transmission , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Gene Expression , Host-Pathogen Interactions/genetics , Humans , Kinetics , Molecular Dynamics Simulation , Phenylalanine/chemistry , Phenylalanine/metabolism , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/classification , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , Valine/chemistry , Valine/metabolism , Virulence , Virus Attachment
13.
Minerva Gastroenterol (Torino) ; 67(3): 283-288, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1485664

ABSTRACT

World Gastroenterology Organization define acute on chronic liver failure (ACLF) a syndrome in patients with chronic liver disease with or without previously diagnosed cirrhosis, characterized by acute hepatic decompensation resulting in liver failure and one or more extrahepatic organ failures, associated with increased mortality up to three months. A-56-year-old gentleman with alcohol related liver cirrhosis (ARLC) and history of variceal bleeding with insertion of transjugular intrahepatic porto-systemic stent shunt presented with two days history of fever, dry cough and worsening of the sensory. The severe acute respiratory coronavirus-2 (SARS-CoV-2) nasopharingeal C-reactive protein test was positive. X-ray showed multiple patchy ground glass opacities in both lungs. Despite the therapy, the clinical and laboratory picture deteriorated rapidly. The patient succumbed on day 14 with multi-organ-failure. SARS-Cov-2 infection can overlap with pre-existing chronic liver disease or induce liver damage directly or indirectly. From the data of the literature and from what is inferred from the case report it clearly emerges that alcohol related liver disease (ALD) patients are particularly vulnerable to SARS-Cov-2 infection. Thereafter, some considerations can be deduced from the analysis of the case report. In subjects with pre-existing cirrhosis hepatologists should play more attention to hepatic injury and monitor risk of hepatic failure caused by coronavirus disease 2019 (COVID-19). It is appropriate to promptly define the alcoholic etiology and investigate whether the patient is actively consuming. In fact, withdrawal symptoms may be present, and the prognosis of these patients is also worse. Physicians should be alerted to the possibility of the development of ACLF in this population, hepatotoxic drugs should be avoided, it is recommended to use of hepatoprotective therapy to mitigate the negative impact of COVID-19, and it is mandatory to administer anti COVID-19 vaccine to patients with alcohol related liver cirrhosis.


Subject(s)
Acute-On-Chronic Liver Failure/etiology , Alcoholism/complications , COVID-19/complications , Liver Cirrhosis/complications , Humans , Male , Middle Aged
15.
Annu Rev Immunol ; 39: 667-693, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1457607

ABSTRACT

Traditionally, the innate and adaptive immune systems are differentiated by their specificity and memory capacity. In recent years, however, this paradigm has shifted: Cells of the innate immune system appear to be able to gain memory characteristics after transient stimulation, resulting in an enhanced response upon secondary challenge. This phenomenon has been called trained immunity. Trained immunity is characterized by nonspecific increased responsiveness, mediated via extensive metabolic and epigenetic reprogramming. Trained immunity explains the heterologous effects of vaccines, which result in increased protection against secondary infections. However, in chronic inflammatory conditions, trained immunity can induce maladaptive effects and contribute to hyperinflammation and progression of cardiovascular disease, autoinflammatory syndromes, and neuroinflammation. In this review we summarize the current state of the field of trained immunity, its mechanisms, and its roles in both health and disease.


Subject(s)
Immunologic Memory , Vaccines , Animals , Cell Differentiation , Humans , Immune System , Immunity, Innate
16.
Crit Care Med ; 49(9): e870-e873, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1455369

ABSTRACT

OBJECTIVES: To describe the successful recovery from multiple and life-threatening venous thrombosis after ChAdOx1 nCoV-19 vaccination. DESIGN: Case report. SETTING: University Hospital. PATIENT: Few days after the first dose of the ChAdOx1 nCoV-19 vaccine, a 21-year-old woman experienced massive thrombosis in the deep and superficial cerebral veins together with seizures, neurologic focal deficit, and thrombocytopenia. In the neurointensive care unit, her condition worsened despite early decompressive craniectomy. She developed bilateral segmental pulmonary embolism, left hepatic, and left external iliac venous thrombosis. INTERVENTION: Argatroban (0.5-2.2 µg/kg/min) and high-dose IV immunoglobulin (1 g/kg/d for 2 consecutive days) were initiated on day 6 after admission. With these therapies, there was a gradual resolution of multiple sites of venous thrombosis, and platelet count returned to normal. The patient left the ICU with full consciousness, expressive aphasia, and right hemiparesis. CONCLUSIONS: This case of vaccine-induced immune thrombotic thrombocytopenia shows that a good outcome can be obtained even with multiple and life-threatening venous thrombotic lesions. Argatroban and high-dose IV immunoglobulin along with management of severe cerebral venous thrombosis played a major role in this epilogue.


Subject(s)
Antithrombins/therapeutic use , Arginine/analogs & derivatives , COVID-19 Vaccines/adverse effects , Pipecolic Acids/therapeutic use , Sulfonamides/therapeutic use , Thrombocytopenia/drug therapy , Venous Thrombosis/drug therapy , Arginine/therapeutic use , Cerebral Veins/diagnostic imaging , Drug Therapy, Combination , Female , Fondaparinux/therapeutic use , Humans , Immunoglobulins, Intravenous , Thrombocytopenia/etiology , Tomography, X-Ray Computed , Venous Thrombosis/etiology , Young Adult
17.
Pathogens ; 9(5)2020 Apr 26.
Article in English | MEDLINE | ID: covidwho-1448915

ABSTRACT

Coronaviruses (CoVs) are positive-stranded RNA viruses that infect humans and animals. Infection by CoVs such as HCoV-229E, -NL63, -OC43 and -HKU1 leads to the common cold, short lasting rhinitis, cough, sore throat and fever. However, CoVs such as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and the newest SARS-CoV-2 (the causative agent of COVID-19) lead to severe and deadly diseases with mortality rates ranging between ~1 to 35% depending on factors such as age and pre-existing conditions. Despite continuous global health threats to humans, there are no approved vaccines or drugs targeting human CoVs, and the recent outbreak of COVID-19 emphasizes an urgent need for therapeutic interventions. Using computational and bioinformatics tools, here we present the feasibility of reported broad-spectrum RNA polymerase inhibitors as anti- SARS-CoV-2 drugs targeting its main RNA polymerase, suggesting that investigational and approved nucleoside RNA polymerase inhibitors have potential as anti-SARS-CoV-2 drugs. However, we note that it is also possible for SARS-CoV-2 to evolve and acquire drug resistance mutations against these nucleoside inhibitors.

18.
Immunol Invest ; 50(7): 743-779, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1447461

ABSTRACT

COVID-19, the disease caused by the novel severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), was first detected in December 2019 and has since morphed into a global pandemic claiming over 2.4 million human lives and severely impacting global economy. The race for a safe and efficacious vaccine was thus initiated with government agencies as well as major pharmaceutical companies as frontrunners. An ideal vaccine would activate multiple arms of the adaptive immune system to generate cytotoxic T cell responses as well as neutralizing antibody responses, while avoiding pathological or deleterious immune responses that result in tissue damage or exacerbation of the disease. Developing an effective vaccine requires an inter-disciplinary effort involving virology, protein biology, biotechnology, immunology and pharmaceutical sciences. In this review, we provide a brief overview of the pathology and immune responses to SARS-CoV-2, which are fundamental to vaccine development. We then summarize the rationale for developing COVID-19 vaccines and provide novel insights into vaccine development from a pharmaceutical science perspective, such as selection of different antigens, adjuvants, delivery platforms and formulations. Finally, we review multiple clinical trial outcomes of novel vaccines in terms of safety and efficacy.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Antibodies, Neutralizing/immunology , Clinical Trials as Topic , Humans , Pandemics/prevention & control , SARS-CoV-2/immunology
19.
J Clin Endocrinol Metab ; 106(9): 2600-2605, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1409863

ABSTRACT

CONTEXT: Autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome) can be seen as a postvaccination phenomenon that occurs after exposure to adjuvants in vaccines that increase the immune responses. There are very limited data regarding ASIA syndrome following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. OBJECTIVES: This work aims to report cases of subacute thyroiditis related to the SARS-CoV-2 vaccine. METHODS: We describe the clinical, laboratory, and imaging features of 3 cases of subacute thyroiditis after inactivated SARS-CoV-2 vaccine (CoronaVac®). Three female healthcare workers have applied to our clinic with anterior neck pain and fatigue 4 to 7 days after SARS-CoV-2 vaccination. Two of them were in the breastfeeding period. They were negative for thyroid antibodies, and there was no previous history of thyroid disease, upper respiratory tract infection, or COVID-19. Laboratory test results and imaging findings were consistent with subacute thyroiditis. RESULTS: SARS-CoV-2 vaccination can lead to subacute thyroiditis as a phenomenon of ASIA syndrome. Subacute thyroiditis may develop within a few days after the SARS-CoV-2 vaccination. Being in the postpartum period may be a facilitating factor for the development of ASIA syndrome after the SARS-CoV-2 vaccination. CONCLUSIONS: This is the first report of subacute thyroiditis as a phenomenon of ASIA syndrome after inactivated COVID-19 vaccination. Clinicians should be aware that subacute thyroiditis may develop as a manifestation of ASIA syndrome after the inactive SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Health Personnel , SARS-CoV-2/isolation & purification , Thyroiditis, Subacute/diagnosis , Adult , COVID-19/virology , Female , Humans , Prognosis , Thyroiditis, Subacute/etiology
20.
Tidsskr Nor Laegeforen ; 1412021 04 30.
Article in English, Norwegian | MEDLINE | ID: covidwho-1395073

ABSTRACT

BACKGROUND: New vaccines against COVID-19 are being rolled out globally. AstraZeneca's vaccine ChAdOx1 nCoV-19 was not known to cause vaccine-induced immune thrombotic thrombocytopenia (VITT) at the time of this case. CASE PRESENTATION: The patient was a previously healthy woman in her thirties with headaches that developed one week after vaccination with ChAdOx1 nCoV-19. Three days later, her condition deteriorated rapidly, and she presented to the emergency department with slurred speech, uncoordinated movements and reduced consciousness. Symptoms progressed to left-sided hemiparesis and her level of consciousness deteriorated. Computed tomography (CT) of the head showed a large right-sided haemorrhage and incipient herniation. She was found to have severe thrombocytopenia 37 x 109/l, (ref 145 - 390 x 109/l). In spite of efforts to reduce intracranial pressure, the patient died the following day. Post mortem examination revealed antibodies to PF4, and fresh small thrombi were found in the transverse sinus, frontal lobe and pulmonary artery. INTERPRETATION: Severe thrombocytopenia and antibodies to PF4 make a diagnosis of vaccine-induced immune thrombotic thrombocytopenia (VITT) likely.


Subject(s)
COVID-19 Vaccines , COVID-19 , Cerebral Hemorrhage/chemically induced , Cerebral Hemorrhage/diagnostic imaging , Female , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL