Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.485
Filter
1.
Food Sci Nutr ; 8(8): 3971-3976, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1898719

ABSTRACT

This review focused on the use of plant-based foods for enhancing the immunity of all aged groups against COVID-19. In humans, coronaviruses are included in the spectrum of viruses that cause the common cold and, recently, severe acute respiratory syndrome (SARS). Emerging infectious diseases, such as SARS present a major threat to public health. The novel coronavirus has spread rapidly to multiple countries and has been declared a pandemic by the World Health Organization. COVID-19 is usually caused a virus to which most probably the people with low immunity response are being affected. Plant-based foods increased the intestinal beneficial bacteria which are helpful and make up of 85% of the immune system. By the use of plenty of water, minerals like magnesium and Zinc, micronutrients, herbs, food rich in vitamins C, D and E, and better life style one can promote the health and can overcome this infection. Various studies investigated that a powerful antioxidant glutathione and a bioflavonoid quercetin may prevent various infections including COVID-19. In conclusion, the plant-based foods play a vital role to enhance the immunity of people to control of COVID-19.

2.
J Xenobiot ; 11(2): 77-93, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1834825

ABSTRACT

COVID-19, occurring due to SARS-COV-2 infection, is the most recent pandemic disease that has led to three million deaths at the time of writing. A great deal of effort has been directed towards altering the virus trajectory and/or managing the interactions of the virus with its subsequent targets in the human body; these interactions can lead to a chain reaction-like state manifested by a cytokine storm and progress to multiple organ failure. During cytokine storms the ratio of pro-inflammatory to anti-inflammatory mediators is generally increased, which contributes to the instigation of hyper-inflammation and confers advantages to the virus. Because cytokine expression patterns fluctuate from one person to another and even within the same person from one time to another, we suggest a road map of COVID-19 management using an individual approach instead of focusing on the blockbuster process (one treatment for most people, if not all). Here, we highlight the biology of the virus, study the interaction between the virus and humans, and present potential pharmacological and non-pharmacological modulators that might contribute to the global war against SARS-COV-2. We suggest an algorithmic roadmap to manage COVID-19.

3.
J Clin Med ; 9(6)2020 06 05.
Article in English | MEDLINE | ID: covidwho-1785755

ABSTRACT

Coronavirus disease 2019 (COVID-19), due to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become an epidemiological threat and a worldwide concern. SARS-CoV-2 has spread to 210 countries worldwide and more than 6,500,000 confirmed cases and 384,643 deaths have been reported, while the number of both confirmed and fatal cases is continually increasing. COVID-19 is a viral disease that can affect every age group-from infants to the elderly-resulting in a wide spectrum of various clinical manifestations. COVID-19 might present different degrees of severity-from mild or even asymptomatic carriers, even to fatal cases. The most common complications include pneumonia and acute respiratory distress syndrome. Fever, dry cough, muscle weakness, and chest pain are the most prevalent and typical symptoms of COVID-19. However, patients might also present atypical symptoms that can occur alone, which might indicate the possible SARS-CoV-2 infection. The aim of this paper is to review and summarize all of the findings regarding clinical manifestations of COVID-19 patients, which include respiratory, neurological, olfactory and gustatory, gastrointestinal, ophthalmic, dermatological, cardiac, and rheumatologic manifestations, as well as specific symptoms in pediatric patients.

4.
Pediatr Emerg Care ; 38(1): e398-e403, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1767003

ABSTRACT

OBJECTIVES: Respiratory syncytial virus (RSV) in pediatric patients has been associated with low risk of concomitant bacterial infection. However, in children with severe disease, it occurs in 22% to 50% of patients. As viral testing becomes routine, bacterial codetections are increasingly identified in patients with non-RSV viruses. We hypothesized, among patients intubated for respiratory failure secondary to suspected infection, there are similar rates of codetection between RSV and non-RSV viral detections. METHODS: This retrospective chart review, conducted over a 5-year period, included all patients younger than 2 years who required intubation secondary to respiratory failure from an infectious etiology in a single pediatric emergency department. Patients intubated for noninfectious causes were excluded. RESULTS: We reviewed 274 patients, of which 181 had positive viral testing. Of these, 48% were RSV-positive and 52% were positive for viruses other than RSV. Codetection of bacteria was found in 76% (n = 65; 95% confidence interval [CI], 66%, 84%) of RSV-positive patients and 66% (n = 63, 95% CI: 57%, 76%) of patients positive with non-RSV viruses. Among patients with negative viral testing, 33% had bacterial growth on lower respiratory culture. Male sex was the only patient-related factor associated with increased odds of codetection (odds ratio [OR], 2.2; 95% CI, 1.08-4.38). The odds of codetection between RSV-positive patients and non-RSV viruses were not significantly different (OR, 1.3; 95% CI, 0.62-2.71). CONCLUSIONS: Bacterial codetection is common and not associated with anticipated patient-related factors or with a specific virus. These results suggest consideration of empiric antibiotics in infants with respiratory illness requiring intubation.


Subject(s)
Bacterial Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Bacteria , Child , Humans , Infant , Male , Respiratory Syncytial Virus Infections/complications , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Retrospective Studies
5.
J Med Virol ; 93(9): 5310-5322, 2021 09.
Article in English | MEDLINE | ID: covidwho-1733920

ABSTRACT

The most consequential challenge raised by coinfection is perhaps the inappropriate generation of recombinant viruses through the exchange of genetic material among different strains. These genetically similar viruses can interfere with the replication process of each other and even compete for the metabolites required for the maintenance of the replication cycle. Due to the similarity in clinical symptoms of most viral respiratory tract infections, and their coincidence with COVID-19, caused by SARS-CoV-2, it is recommended to develop a comprehensive diagnostic panel for detection of respiratory and nonrespiratory viruses through the evaluation of patient samples. Given the resulting changes in blood markers, such as coagulation factors and white blood cell count following virus infection, these markers can be of diagnostic value in the detection of mixed infection in individuals already diagnosed with a certain viral illness. In this review, we seek to investigate the coinfection of SARS-CoV-2 with other respiratory and nonrespiratory viruses to provide novel insights into the development of highly sensitive diagnostics and effective treatment modalities.


Subject(s)
COVID-19/epidemiology , Coinfection , Virus Diseases/epidemiology , Coinfection/epidemiology , Coinfection/virology , Humans
6.
Pak J Med Sci ; 36(COVID19-S4): S130-S133, 2020 May.
Article in English | MEDLINE | ID: covidwho-1726832

ABSTRACT

The severe form of the COVID-19 pandemic caused by the SARS-CoV-2 virus, has largely manifested as a predominant respiratory illness causing severe pneumonia characterized by bilateral, subpleural ground glass haze, progressing to consolidation, and fibrosis on imaging. There is some discrepancy between the governmental guidelines, professional Societies and Radiology and Respiratory Medicine specialists with divided opinions between the use of the chest X-rays and CT scan, and whether the use be screening or diagnostic. So far, the most balanced recommendations have been proposed by the Fleischner Society, which are endorsed by the Radiological Society of Pakistan as well. This writeup describes the approach for a rational use of imaging to the best advantage in the current situation according to local resources, and restricting the spread of infection. The most practical compromise for Pakistan appears to be the use of portable digital radiography equipment, and point-of- care ultrasound; with CT scan reserved for clinical situations not explained by the above two modalities, or demanding disease stratification.

7.
J Cytol ; 37(2): 67-71, 2020.
Article in English | MEDLINE | ID: covidwho-1726374

ABSTRACT

COVID-19, caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization. This scenario has impacted the way we practice cytopathology. Cytology laboratories receive fresh and potentially infectious biological samples including those from the respiratory tract, from COVID-19 positive or suspected patients. Hence, the Indian Academy of Cytologists thought it necessary and fit to bring forth appropriate guidelines starting from transportation, receipt, processing, and reporting of samples in the COVID-19 era. The guidelines are prepared with the aim of safeguarding and protecting the health care personnel including laboratory staff, trainees and cytopathologists by minimizing exposure to COVID-19 so that they remain safe, in order to able to provide a continuous service. We hope that these national guidelines will be implemented across all cytopathology laboratories effectively.

8.
Vaccines (Basel) ; 8(2)2020 Apr 14.
Article in English | MEDLINE | ID: covidwho-1726035

ABSTRACT

The emergence of new pathogenic viral strains is a constant threat to global health, with the new coronavirus strain COVID-19 as the latest example. COVID-19, caused by the SARS-CoV-2 virus has quickly spread around the globe. This pandemic demands rapid development of drugs and vaccines. Plant-based vaccines are a technology with proven viability, which have led to promising results for candidates evaluated at the clinical level, meaning this technology could contribute towards the fight against COVID-19. Herein, a perspective in how plant-based vaccines can be developed against COVID-19 is presented. Injectable vaccines could be generated by using transient expression systems, which offer the highest protein yields and are already adopted at the industrial level to produce VLPs-vaccines and other biopharmaceuticals under GMPC-processes. Stably-transformed plants are another option, but this approach requires more time for the development of antigen-producing lines. Nonetheless, this approach offers the possibility of developing oral vaccines in which the plant cell could act as the antigen delivery agent. Therefore, this is the most attractive approach in terms of cost, easy delivery, and mucosal immunity induction. The development of multiepitope, rationally-designed vaccines is also discussed regarding the experience gained in expression of chimeric immunogenic proteins in plant systems.

9.
Viruses ; 12(5)2020 05 10.
Article in English | MEDLINE | ID: covidwho-1726011

ABSTRACT

The COVID-19 pandemic is due to infection caused by the novel SARS-CoV-2 virus that impacts the lower respiratory tract. The spectrum of symptoms ranges from asymptomatic infections to mild respiratory symptoms to the lethal form of COVID-19 which is associated with severe pneumonia, acute respiratory distress, and fatality. To address this global crisis, up-to-date information on viral genomics and transcriptomics is crucial for understanding the origins and global dispersion of the virus, providing insights into viral pathogenicity, transmission, and epidemiology, and enabling strategies for therapeutic interventions, drug discovery, and vaccine development. Therefore, this review provides a comprehensive overview of COVID-19 epidemiology, genomic etiology, findings from recent transcriptomic map analysis, viral-human protein interactions, molecular diagnostics, and the current status of vaccine and novel therapeutic intervention development. Moreover, we provide an extensive list of resources that will help the scientific community access numerous types of databases related to SARS-CoV-2 OMICs and approaches to therapeutics related to COVID-19 treatment.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Genomics , Humans , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , SARS-CoV-2 , Viral Vaccines/immunology
10.
Int J Environ Res Public Health ; 17(9)2020 05 01.
Article in English | MEDLINE | ID: covidwho-1725597

ABSTRACT

Given the volume of research and discussion on the health, medical, economic, financial, political, and travel advisory aspects of the SARS-CoV-2 virus that causes the COVID-19 disease, it is essential to enquire if an outbreak of the epidemic might have been anticipated, given the well-documented history of SARS and MERS, among other infectious diseases. If various issues directly related to health security risks could have been predicted accurately, public health and medical contingency plans might have been prepared and activated in advance of an epidemic such as COVID-19. This paper evaluates an important source of health security, the Global Health Security Index (2019), which provided data before the discovery of COVID-19 in December 2019. Therefore, it is possible to evaluate how countries might have been prepared for a global epidemic, or pandemic, and acted accordingly in an effective and timely manner. The GHS index numerical scores are calculated as the arithmetic (AM), geometric (GM), and harmonic (HM) means of six categories, where AM uses equal weights for each category. The GHS Index scores are regressed on the numerical score rankings of the six categories to check if the use of equal weights of 0.167 in the calculation of the GHS Index using AM is justified, with GM and HM providing a check of the robustness of the arithmetic mean. The highest weights are determined to be around 0.244-0.246, while the lowest weights are around 0.186-0.187 for AM. The ordinal GHS Index is regressed on the ordinal rankings of the six categories to check for the optimal weights in the calculation of the ordinal Global Health Security (GHS) Index, where the highest weight is 0.368, while the lowest is 0.142, so the estimated results are wider apart than for the numerical score rankings. Overall, Rapid Response and Detection and Reporting have the largest impacts on the GHS Index score, whereas Risk Environment and Prevention have the smallest effects. The quantitative and qualitative results are different when GM and HM are used.


Subject(s)
Coronavirus Infections/epidemiology , Global Health , Pneumonia, Viral/epidemiology , COVID-19 , Humans , Pandemics , Risk Assessment/methods
11.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: covidwho-1723544

ABSTRACT

Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen A [HLA-A], -B, and -C genes) may affect susceptibility to and severity of the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19). We performed a comprehensive in silico analysis of viral peptide-MHC class I binding affinity across 145 HLA-A, -B, and -C genotypes for all SARS-CoV-2 peptides. We further explored the potential for cross-protective immunity conferred by prior exposure to four common human coronaviruses. The SARS-CoV-2 proteome was successfully sampled and was represented by a diversity of HLA alleles. However, we found that HLA-B*46:01 had the fewest predicted binding peptides for SARS-CoV-2, suggesting that individuals with this allele may be particularly vulnerable to COVID-19, as they were previously shown to be for SARS (M. Lin, H.-T. Tseng, J. A. Trejaut, H.-L. Lee, et al., BMC Med Genet 4:9, 2003, https://bmcmedgenet.biomedcentral.com/articles/10.1186/1471-2350-4-9). Conversely, we found that HLA-B*15:03 showed the greatest capacity to present highly conserved SARS-CoV-2 peptides that are shared among common human coronaviruses, suggesting that it could enable cross-protective T-cell-based immunity. Finally, we reported global distributions of HLA types with potential epidemiological ramifications in the setting of the current pandemic.IMPORTANCE Individual genetic variation may help to explain different immune responses to a virus across a population. In particular, understanding how variation in HLA may affect the course of COVID-19 could help identify individuals at higher risk from the disease. HLA typing can be fast and inexpensive. Pairing HLA typing with COVID-19 testing where feasible could improve assessment of severity of viral disease in the population. Following the development of a vaccine against SARS-CoV-2, the virus that causes COVID-19, individuals with high-risk HLA types could be prioritized for vaccination.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/virology , Histocompatibility Testing/methods , Pneumonia, Viral/virology , Amino Acid Sequence , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte/immunology , Genetic Variation , Genotype , Haplotypes , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunity, Innate/immunology , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2 , T-Lymphocytes/immunology
12.
Brain Behav Immun ; 87: 18-22, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719333

ABSTRACT

Viral infections have detrimental impacts on neurological functions, and even to cause severe neurological damage. Very recently, coronaviruses (CoV), especially severe acute respiratory syndrome CoV 2 (SARS-CoV-2), exhibit neurotropic properties and may also cause neurological diseases. It is reported that CoV can be found in the brain or cerebrospinal fluid. The pathobiology of these neuroinvasive viruses is still incompletely known, and it is therefore important to explore the impact of CoV infections on the nervous system. Here, we review the research into neurological complications in CoV infections and the possible mechanisms of damage to the nervous system.


Subject(s)
Coronavirus Infections/physiopathology , Nervous System Diseases/physiopathology , Pneumonia, Viral/physiopathology , Betacoronavirus , COVID-19 , Consciousness Disorders/etiology , Consciousness Disorders/physiopathology , Coronavirus 229E, Human , Coronavirus Infections/complications , Coronavirus NL63, Human , Coronavirus OC43, Human , Dysgeusia/etiology , Dysgeusia/physiopathology , Encephalitis/etiology , Encephalitis/physiopathology , Encephalitis, Viral/etiology , Encephalitis, Viral/physiopathology , Guillain-Barre Syndrome/etiology , Guillain-Barre Syndrome/physiopathology , Humans , Middle East Respiratory Syndrome Coronavirus , Nervous System Diseases/etiology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/physiopathology , Neurotoxicity Syndromes/virology , Olfaction Disorders/etiology , Olfaction Disorders/physiopathology , Pandemics , Pneumonia, Viral/complications , Polyneuropathies/etiology , Polyneuropathies/physiopathology , SARS Virus , SARS-CoV-2 , Seizures/etiology , Seizures/physiopathology , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/physiopathology , Stroke/etiology , Stroke/physiopathology
13.
J Am Soc Nephrol ; 32(9): 2242-2254, 2021 09.
Article in English | MEDLINE | ID: covidwho-1702796

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) causes significan t morbidity, mainly from pulmonary involvement, extrapulmonary symptoms are also major componen ts of the disease. Kidney disease, usually presenting as AKI, is particularly severe among patients with COVID-19. It is unknown, however, whether such injury results from direct kidney infection with COVID-19's causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or from indirect mechanisms. METHODS: Using ex vivo cell models, we sought to analyze SARS-CoV-2 interactions with kidney tubular cells and assess direct tubular injury. These models comprised primary human kidney epithelial cells (derived from nephrectomies) and grown as either proliferating monolayers or quiescent three-dimensional kidney spheroids. RESULTS: We demonstrated that viral entry molecules and high baseline levels of type 1 IFN-related molecules were present in monolayers and kidney spheroids. Although both models support viral infection and replication, they did not exhibit a cytopathic effect and cell death, outcomes that were strongly present in SARS-CoV-2-infected controls (African green monkey kidney clone E6 [Vero E6] cultures). A comparison of monolayer and spheroid cultures demonstrated higher infectivity and replication of SARS-CoV-2 in actively proliferating monolayers, although the spheroid cultures exhibited high er levels of ACE2. Monolayers exhibited elevation of some tubular injury molecules-including molecules related to fibrosis (COL1A1 and STAT6) and dedifferentiation (SNAI2)-and a loss of cell identity, evident by reduction in megalin (LRP2). The three-dimensional spheroids were less prone to such injury. CONCLUSIONS: SARS-CoV-2 can infect kidney cells without a cytopathic effect. AKI-induced cellular proliferation may potentially intensify infectivity and tubular damage by SARS-CoV-2, suggesting that early intervention in AKI is warranted to help minimize kidney infection.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/virology , COVID-19/complications , SARS-CoV-2/pathogenicity , Spheroids, Cellular/virology , Animals , Cells, Cultured , Chlorocebus aethiops , Cohort Studies , Cytopathogenic Effect, Viral , Epithelial Cells/pathology , Epithelial Cells/virology , Host Microbial Interactions , Humans , Interferon Type I/metabolism , Kidney/immunology , Kidney/pathology , Kidney/virology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Biological , Pandemics , Receptors, Virus/metabolism , Retrospective Studies , SARS-CoV-2/physiology , Spheroids, Cellular/pathology , Vero Cells , Virus Replication
14.
J Dev Orig Health Dis ; 13(1): 3-8, 2022 02.
Article in English | MEDLINE | ID: covidwho-1701837

ABSTRACT

Little is known about the consequences of viral infection for pregnant woman or for the fetus. This issue became important with the appearance of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The infection with SARS-CoV-2 causes a respiratory syndrome known as COVID-19. The fast spreading around the world and the fact that without a treatment or vaccine humans are completely exposed, converts emerging viral diseases in a significant risk for pregnant women and their infants. At this time, during SARS-CoV-2 pandemics pregnant women are not considered as a risk population and little is known about the effects of viral infections over the offspring although the amount of emerging evidence showing detrimental effects for the mother and the fetus. This issue highlights the importance to understand the effects of viral infections during pregnancy. In this work, we analyze the effects of viral infections, like SARS-CoV-2 and other related viruses during pregnancy over the mother and the consequences for the offspring.


Subject(s)
COVID-19/complications , Pregnancy Complications, Infectious/virology , SARS-CoV-2 , COVID-19/immunology , Coronavirus Infections/complications , Female , Humans , Infant, Newborn/immunology , Infectious Disease Transmission, Vertical , Influenza A Virus, H1N1 Subtype , Influenza, Human/complications , Maternal-Fetal Exchange/immunology , Pregnancy , Severe Acute Respiratory Syndrome/complications
15.
SN Compr Clin Med ; 2(9): 1430-1435, 2020.
Article in English | MEDLINE | ID: covidwho-1682606

ABSTRACT

The current outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) also known as coronavirus disease 2019 (COVID-19) has quickly progressed to a global pandemic. There are well-documented cardiac complications of COVID-19 in patients with and without prior cardiovascular disease. The cardiac complications include myocarditis, heart failure, and acute coronary syndrome resulting from coronary artery thrombosis or SARS-CoV-2-related plaque ruptures. There is growing evidence showing that arrhythmias are also one of the major complications. Myocardial inflammation caused by viral infection leads to electrophysiological and structural remodeling as a possible mechanism for arrhythmia. This could also be the mechanism through which SARS-CoV-2 leads to different arrhythmias. In this review article, we discuss arrhythmia manifestations in COVID-19.

16.
J Leukoc Biol ; 111(2): 497-508, 2022 02.
Article in English | MEDLINE | ID: covidwho-1669515

ABSTRACT

Coronaviruses (CoVs) are RNA viruses that cause human respiratory infections. Zoonotic transmission of the SARS-CoV-2 virus caused the recent COVID-19 pandemic, which led to over 2 million deaths worldwide. Elevated inflammatory responses and cytotoxicity in the lungs are associated with COVID-19 severity in SARS-CoV-2-infected individuals. Bats, which host pathogenic CoVs, operate dampened inflammatory responses and show tolerance to these viruses with mild clinical symptoms. Delineating the mechanisms governing these host-specific inflammatory responses is essential to understand host-virus interactions determining the outcome of pathogenic CoV infections. Here, we describe the essential role of inflammasome activation in determining COVID-19 severity in humans and innate immune tolerance in bats that host several pathogenic CoVs. We further discuss mechanisms leading to inflammasome activation in human SARS-CoV-2 infection and how bats are molecularly adapted to suppress these inflammasome responses. We also report an analysis of functionally important residues of inflammasome components that provide new clues of bat strategies to suppress inflammasome signaling and innate immune responses. As spillover of bat viruses may cause the emergence of new human disease outbreaks, the inflammasome regulation in bats and humans likely provides specific strategies to combat the pathogenic CoV infections.


Subject(s)
COVID-19/pathology , Immune Tolerance , Immunity, Innate , Inflammasomes/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Chiroptera , Humans , Inflammasomes/metabolism , Phylogeny
17.
J Pediatr Hematol Oncol ; 44(1): e296-e298, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1603356

ABSTRACT

INTRODUCTION: Roseola infantum is always considered to be among the differential diagnosis of young patients with fever and leukopenia whom to be strictly isolated with the preliminary diagnosis of COVID-19 until otherwise proven during the pandemic. RESULTS: Human herpes virus-6 (HHV-6) polymerase chain reaction (PCR) blood test was performed in 4 of 7 patients with a clinical diagnosis of roseola infantum and all found to be HHV-6 PCR positive. The most striking laboratory finding in all patients was leukopenia. HHV-6 PCR tests were found to be positive. Severe acute respiratory syndrome coronavirus-2 testing were found to be negative in all patients. CONCLUSION: During the peak of the pandemic, children continued to present with fever because of viral infections other than COVID-19.


Subject(s)
Exanthema Subitum/diagnosis , Herpesvirus 6, Human/isolation & purification , COVID-19/diagnosis , Child, Preschool , Female , Humans , Infant , Leukopenia/diagnosis , Male , SARS-CoV-2/isolation & purification
18.
Salud Colect ; 16: e2897, 2020 10 17.
Article in Spanish | MEDLINE | ID: covidwho-1608979

ABSTRACT

Taking into account the latent threat of future pandemics, the objective of this study is to analyze - particularly with respect to medications - the sustainability of the health system, healthcare coverage, budgetary efficiency, and connections with the pharmaceutical patent system. In this context, the pharmaceutical patent system acts as a determining factor, given that promoting its existence stimulates the production of research, but in turn its existence stands in the way of rapid advancements, primarily due to the development of protective legislation concerning patents, which has largely accommodated the industry. Given that the pharmaceutical industry has managed to extend the duration of patents and avoid the incorporation of generics, our analysis focuses on the influence of pharmaceutical patents; this influence has led to reflection on the possibility of combining efforts by forging alliances between numerous companies and the public sector in order to face the challenges posed by new diseases caused by viruses that give rise to epidemics and pandemics.


Ante la amenaza latente de futuras pandemias, este estudio tiene como objetivo analizar ­desde el eje de los medicamentos­ la sostenibilidad del sistema sanitario, la cobertura, la eficiencia del gasto y su vinculación al sistema de patentes farmacéuticas. En este marco, el sistema de patentes farmacéuticas adquiere un papel determinante, dado que fomentar su existencia estimula la producción de investigación pero, a su vez, su existencia no suscita un rápido avance, debido al desarrollo legislativo protector que han tenido las patentes y que ha dado lugar a un acomodamiento de la industria. Como la industria farmacéutica ha conseguido extender la duración de patentes y evitar la incorporación de genéricos, se analiza la influencia de las patentes farmacéuticas que ha dado lugar a reflexionar acerca de la posibilidad de consorciar esfuerzos realizando alianzas entre varias empresas y el sector público para afrontar los retos que plantean nuevas enfermedades producidas por virus que dan lugar a epidemias y pandemias.


Subject(s)
Antiviral Agents , Drug Costs , Drug Industry/organization & administration , Health Policy , Health Services Accessibility/organization & administration , Patents as Topic , Virus Diseases/drug therapy , Antiviral Agents/economics , Antiviral Agents/therapeutic use , Drugs, Generic , Global Health , Humans , Pandemics , Program Evaluation , Virus Diseases/economics , Virus Diseases/epidemiology , Virus Diseases/prevention & control
19.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1585891

ABSTRACT

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , NF-kappa B/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Acrylates/pharmacology , Animals , COVID-19/drug therapy , COVID-19/pathology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Phosphoproteins/metabolism , Vero Cells
20.
J Med Chem ; 64(8): 4991-5000, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1574766

ABSTRACT

The main protease (3CL Mpro) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, is an essential enzyme for viral replication with no human counterpart, making it an attractive drug target. To date, no small-molecule clinical drugs are available that specifically inhibit SARS-CoV-2 Mpro. To aid rational drug design, we determined a neutron structure of Mpro in complex with the α-ketoamide inhibitor telaprevir at near-physiological (22 °C) temperature. We directly observed protonation states in the inhibitor complex and compared them with those in the ligand-free Mpro, revealing modulation of the active-site protonation states upon telaprevir binding. We suggest that binding of other α-ketoamide covalent inhibitors can lead to the same protonation state changes in the Mpro active site. Thus, by studying the protonation state changes induced by inhibitors, we provide crucial insights to help guide rational drug design, allowing precise tailoring of inhibitors to manipulate the electrostatic environment of SARS-CoV-2 Mpro.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Oligopeptides/chemistry , Binding Sites , Coronavirus 3C Proteases/metabolism , Crystallography/methods , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/metabolism , Models, Molecular , Neutrons , Oligopeptides/metabolism , Protein Conformation , Protons
SELECTION OF CITATIONS
SEARCH DETAIL