Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 627
Filter
1.
Korean J Intern Med ; 2021 Mar 12.
Article in English | MEDLINE | ID: covidwho-1737116

ABSTRACT

BACKGROUND/AIMS: The preventive role of hydroxychloroquine (HCQ) on coronavirus disease 2019 (COVID-19) remains unclear. The aim of this study was to examine the effects of HCQ and other immunosuppressive drugs on the incidence of COVID-19. METHODS: The data were collected from the South Korea National Health Insurance Sharing-COVID-19 database. All individuals who underwent nasopharyngeal and oropharyngeal swab tests for COVID-19 from January 2020 to May 2020 are included. The association between COVID-19 risk and HCQ use was examined in a propensity score-matched population. Factors associated with COVID-19 were identified using multiple logistic regression analysis. RESULTS: Total 8,070 patients with COVID-19 and 121,050 negative controls were included from the database. Among all participants, 381 were HCQ users. In a propensity score-matched population, the incidence of COVID-19 was 7.1% in HCQ users and 6.8% in non-users. The odds ratio (OR) for HCQ use was 1.05 with a 95% confidence interval (CI) of 0.58 to 1.89. Among the subpopulation of patients with rheumatoid arthritis (RA), 33 were diagnosed with COVID-19 and 478 were not. Use of HCQ, glucocorticoids, or other immunosuppressive drugs was not associated with COVID-19 risk, whereas abatacept use was. Chronic lung disease was an independent risk factor for COVID-19 diagnosis in patients with RA (adjusted OR, 6.07; 95% CI, 1.10 to 33.59). CONCLUSIONS: The risk of COVID-19 did not differ between HCQ users and non-users. Glucocorticoids, conventional disease-modifying antirheumatic drugs (DMARDs), and biological DMARDs other than abatacept did not increase the risk of COVID-19.

2.
Am J Epidemiol ; 190(8): 1452-1456, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1585169

ABSTRACT

The coronavirus disease 2019 pandemic, which was caused by the severe acute respiratory syndrome coronavirus 2, has led to an unprecedented effort to generate real-world evidence on the safety and effectiveness of various treatments. A growing number of observational studies in which the effects of certain drugs were evaluated have been conducted, including several in which researchers assessed whether hydroxychloroquine improved outcomes in infected individuals and whether renin-angiotensin-aldosterone system inhibitors have detrimental effects. In the present article, we review and illustrate how immortal time bias and selection bias were present in several of these studies. Understanding these biases and how they can be avoided may prove important for future observational studies assessing the effectiveness and safety of potentially promising drugs during the coronavirus 19 pandemic.


Subject(s)
COVID-19/drug therapy , Cohort Studies , Drug Evaluation/methods , Randomized Controlled Trials as Topic , Bias , Humans , Research Design , SARS-CoV-2
3.
PLoS One ; 16(3): e0248128, 2021.
Article in English | MEDLINE | ID: covidwho-1575679

ABSTRACT

BACKGROUND: The COVID-19 pandemic remains a significant global threat. However, despite urgent need, there remains uncertainty surrounding best practices for pharmaceutical interventions to treat COVID-19. In particular, conflicting evidence has emerged surrounding the use of hydroxychloroquine and azithromycin, alone or in combination, for COVID-19. The COVID-19 Evidence Accelerator convened by the Reagan-Udall Foundation for the FDA, in collaboration with Friends of Cancer Research, assembled experts from the health systems research, regulatory science, data science, and epidemiology to participate in a large parallel analysis of different data sets to further explore the effectiveness of these treatments. METHODS: Electronic health record (EHR) and claims data were extracted from seven separate databases. Parallel analyses were undertaken on data extracted from each source. Each analysis examined time to mortality in hospitalized patients treated with hydroxychloroquine, azithromycin, and the two in combination as compared to patients not treated with either drug. Cox proportional hazards models were used, and propensity score methods were undertaken to adjust for confounding. Frequencies of adverse events in each treatment group were also examined. RESULTS: Neither hydroxychloroquine nor azithromycin, alone or in combination, were significantly associated with time to mortality among hospitalized COVID-19 patients. No treatment groups appeared to have an elevated risk of adverse events. CONCLUSION: Administration of hydroxychloroquine, azithromycin, and their combination appeared to have no effect on time to mortality in hospitalized COVID-19 patients. Continued research is needed to clarify best practices surrounding treatment of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19/drug therapy , Hydroxychloroquine/therapeutic use , Pandemics/prevention & control , Data Management/methods , Drug Therapy, Combination/methods , Female , Hospitalization , Humans , Male , SARS-CoV-2/drug effects
4.
5.
Clin Infect Dis ; 73(11): e4073-e4081, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1560481

ABSTRACT

BACKGROUND: No effective treatments for coronavirus disease 2019 (COVID-19) exist. We aimed to determine whether early treatment with hydroxychloroquine (HCQ) would be efficacious for outpatients with COVID-19. METHODS: Multicenter open-label, randomized, controlled trial conducted in Catalonia, Spain, between 17 March and 26 May 2020. Patients recently diagnosed with <5-day of symptom onset were assigned to receive HCQ (800 mg on day 1 followed by 400 mg once daily for 6 days) or usual care. Outcomes were reduction of viral load in nasopharyngeal swabs up to 7 days after treatment start, disease progression up to 28 days, and time to complete resolution of symptoms. Adverse events were assessed up to 28 days. RESULTS: A total of 293 patients were eligible for intention-to-treat analysis: 157 in the control arm and 136 in the intervention arm. The mean age was 41.6 years (SD, 12.6), mean viral load at baseline was 7.90 log10 copies/mL (SD, 1.82), and median time from symptom onset to randomization was 3 days. No differences were found in the mean reduction of viral load at day 3 (-1.41 vs -1.41 log10 copies/mL in the control and intervention arm, respectively) or at day 7 (-3.37 vs -3.44). Treatment did not reduce risk of hospitalization (7.1% control vs 5.9% intervention) nor shorten the time to complete resolution of symptoms (12 days, control vs 10 days, intervention). No relevant adverse events were reported. CONCLUSIONS: In patients with mild COVID-19, no benefit was observed with HCQ beyond the usual care.


Subject(s)
COVID-19 , Hydroxychloroquine , Adult , COVID-19/drug therapy , Humans , Hydroxychloroquine/therapeutic use , SARS-CoV-2 , Treatment Outcome
8.
BMJ ; 369: m1849, 2020 05 14.
Article in English | MEDLINE | ID: covidwho-1495142

ABSTRACT

OBJECTIVE: To assess the efficacy and safety of hydroxychloroquine plus standard of care compared with standard of care alone in adults with coronavirus disease 2019 (covid-19). DESIGN: Multicentre, open label, randomised controlled trial. SETTING: 16 government designated covid-19 treatment centres in China, 11 to 29 February 2020. PARTICIPANTS: 150 patients admitted to hospital with laboratory confirmed covid-19 were included in the intention to treat analysis (75 patients assigned to hydroxychloroquine plus standard of care, 75 to standard of care alone). INTERVENTIONS: Hydroxychloroquine administrated at a loading dose of 1200 mg daily for three days followed by a maintenance dose of 800 mg daily (total treatment duration: two or three weeks for patients with mild to moderate or severe disease, respectively). MAIN OUTCOME MEASURE: Negative conversion of severe acute respiratory syndrome coronavirus 2 by 28 days, analysed according to the intention to treat principle. Adverse events were analysed in the safety population in which hydroxychloroquine recipients were participants who received at least one dose of hydroxychloroquine and hydroxychloroquine non-recipients were those managed with standard of care alone. RESULTS: Of 150 patients, 148 had mild to moderate disease and two had severe disease. The mean duration from symptom onset to randomisation was 16.6 (SD 10.5; range 3-41) days. A total of 109 (73%) patients (56 standard of care; 53 standard of care plus hydroxychloroquine) had negative conversion well before 28 days, and the remaining 41 (27%) patients (19 standard of care; 22 standard of care plus hydroxychloroquine) were censored as they did not reach negative conversion of virus. The probability of negative conversion by 28 days in the standard of care plus hydroxychloroquine group was 85.4% (95% confidence interval 73.8% to 93.8%), similar to that in the standard of care group (81.3%, 71.2% to 89.6%). The difference between groups was 4.1% (95% confidence interval -10.3% to 18.5%). In the safety population, adverse events were recorded in 7/80 (9%) hydroxychloroquine non-recipients and in 21/70 (30%) hydroxychloroquine recipients. The most common adverse event in the hydroxychloroquine recipients was diarrhoea, reported in 7/70 (10%) patients. Two hydroxychloroquine recipients reported serious adverse events. CONCLUSIONS: Administration of hydroxychloroquine did not result in a significantly higher probability of negative conversion than standard of care alone in patients admitted to hospital with mainly persistent mild to moderate covid-19. Adverse events were higher in hydroxychloroquine recipients than in non-recipients. TRIAL REGISTRATION: ChiCTR2000029868.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Adult , COVID-19 , China , Female , Humans , Male , Middle Aged , Pandemics , Treatment Outcome
9.
Mayo Clin Proc ; 95(6): 1213-1221, 2020 06.
Article in English | MEDLINE | ID: covidwho-1450185

ABSTRACT

As the coronavirus disease 19 (COVID-19) global pandemic rages across the globe, the race to prevent and treat this deadly disease has led to the "off-label" repurposing of drugs such as hydroxychloroquine and lopinavir/ritonavir, which have the potential for unwanted QT-interval prolongation and a risk of drug-induced sudden cardiac death. With the possibility that a considerable proportion of the world's population soon could receive COVID-19 pharmacotherapies with torsadogenic potential for therapy or postexposure prophylaxis, this document serves to help health care professionals mitigate the risk of drug-induced ventricular arrhythmias while minimizing risk of COVID-19 exposure to personnel and conserving the limited supply of personal protective equipment.


Subject(s)
Death, Sudden, Cardiac , Hydroxychloroquine , Long QT Syndrome , Lopinavir , Risk Adjustment/methods , Ritonavir , Torsades de Pointes , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Drug Combinations , Drug Monitoring/methods , Drug Repositioning/ethics , Drug Repositioning/methods , Electrocardiography/methods , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/mortality , Long QT Syndrome/therapy , Lopinavir/administration & dosage , Lopinavir/adverse effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Torsades de Pointes/chemically induced , Torsades de Pointes/mortality , Torsades de Pointes/therapy
10.
Am J Emerg Med ; 38(7): 1488-1493, 2020 07.
Article in English | MEDLINE | ID: covidwho-1450042

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has been particularly challenging due to a lack of established therapies and treatment guidelines. With the rapid transmission of disease, even the off-label use of available therapies has been impeded by limited availability. Several antivirals, antimalarials, and biologics are being considered for treatment at this time. The purpose of this literature review is to synthesize the available information regarding treatment options for COVID-19 and serve as a resource for health care professionals. OBJECTIVES: This narrative review was conducted to summarize the effectiveness of current therapy options for COVID-19 and address the controversial use of non-steroidal anti-inflammatory drugs (NSAIDs), angiotensin converting enzyme (ACE) inhibitors, and angiotensin receptor blockers (ARBs). PubMed and SCOPUS were queried using a combination of the keywords "COVID 19," "SARS-CoV-2," and "treatment." All types of studies were evaluated including systematic reviews, case-studies, and clinical guidelines. DISCUSSION: There are currently no therapeutic drugs available that are directly active against SARS-CoV-2; however, several antivirals (remdesivir, favipiravir) and antimalarials (chloroquine, hydroxychloroquine) have emerged as potential therapies. Current guidelines recommend combination treatment with hydroxychloroquine/azithromycin or chloroquine, if hydroxychloroquine is unavailable, in patients with moderate disease, although these recommendations are based on limited evidence. Remdesivir and convalescent plasma may be considered in critical patients with respiratory failure; however, access to these therapies may be limited. Interleukin-6 (IL-6) antagonists may be used in patients who develop evidence of cytokine release syndrome (CRS). Corticosteroids should be avoided unless there is evidence of refractory septic shock, acute respiratory distress syndrome (ARDS), or another compelling indication for their use. ACE inhibitors and ARBs should not be discontinued at this time and ibuprofen may be used for fever. CONCLUSION: There are several ongoing clinical trials that are testing the efficacy of single and combination treatments with the drugs mentioned in this review and new agents are under development. Until the results of these trials become available, we must use the best available evidence for the prevention and treatment of COVID-19. Additionally, we can learn from the experiences of healthcare providers around the world to combat this pandemic.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adrenal Cortex Hormones , Alanine/analogs & derivatives , Alanine/therapeutic use , Amides/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Betacoronavirus/drug effects , COVID-19 , Drug Therapy, Combination , Emergency Service, Hospital , Humans , Hydroxychloroquine/therapeutic use , Interleukin-6/antagonists & inhibitors , Pandemics , Pyrazines/therapeutic use , Randomized Controlled Trials as Topic , SARS-CoV-2
12.
Int J Antimicrob Agents ; 56(6): 106212, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1385672

ABSTRACT

Introduction Hydroxychloroquine (HCQ) has been proposed as a SARS-CoV-2 treatment but the frequency of long QT (LQT) during use is unknown. Objective To conduct a meta-analysis of the frequency of LQT in patients with SARS-CoV-2 infection treated with HCQ. Data Sources PubMed, EMBASE, Google Scholar, the Cochrane Database of Systematic Reviews and preprint servers (medRxiv, Research Square) were searched for studies published between December 2019 and June 30, 2020. Methods Effect statistics were pooled using random effects. The quality of observational studies and randomized controlled trials was appraised with STROBE and the Cochrane Risk of Bias Assessment tools, respectively. Outcomes Critical LQT was defined as: (1) maximum QT corrected (QTc)≥500 ms (if QRS<120 ms) or QTc≥550 ms (if QRS≥120 ms), and (2) QTc increase ≥60 ms. Results In the 28 studies included (n=9124), the frequency of LQT during HCQ treatment was 6.7% (95% confidence interval [CI]: 3.7-10.2). In 20 studies (n=7825), patients were also taking other QT-prolonging drugs. The frequency of LQT in the other 8 studies (n=1299) was 1.7% (95% CI: 0.3-3.9). Twenty studies (n=6869) reported HCQ discontinuation due to LQT, with a frequency of 3.7% (95% CI: 1.5-6.6). The frequency of ventricular arrhythmias during HCQ treatment was 1.68% (127/7539) and that of arrhythmogenic death was 0.69% (39/5648). Torsades de Pointes occurred in 0.06% (3/5066). Patients aged >60 years were at highest risk of HCQ-associated LQT (P<0.001). Conclusions HCQ-associated cardiotoxicity in SARS-CoV-2 patients is uncommon but requires ECG monitoring, particularly in those aged >60 years and/or taking other QT-prolonging drugs.


Subject(s)
COVID-19/drug therapy , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , SARS-CoV-2 , Aged , Electrocardiography/drug effects , Female , Humans , Male , Middle Aged
14.
Korean J Intern Med ; 36(Suppl 1): S253-S263, 2021 03.
Article in English | MEDLINE | ID: covidwho-1377027

ABSTRACT

BACKGROUND/AIMS: The efficacies of lopinavir-ritonavir or hydroxychloroquine remain to be determined in patients with coronavirus disease 2019 (COVID-19). To compare the virological and clinical responses to lopinavir-ritonavir and hydroxychloroquine treatment in COVID-19 patients. METHODS: This retrospective cohort study included patients with COVID-19 treated with lopinavir-ritonavir or hydroxychloroquine at a single center in Korea from February 17 to March 31, 2020. Patients treated with lopinavir-ritonavir and hydroxychloroquine concurrently and those treated with lopinavir-ritonavir or hydroxychloroquine for less than 7 days were excluded. Time to negative conversion of viral RNA, time to clinical improvement, and safety outcomes were assessed after 6 weeks of follow-up. RESULTS: Of 65 patients (mean age, 64.3 years; 25 men [38.5%]), 31 were treated with lopinavir-ritonavir and 34 were treated with hydroxychloroquine. The median duration of symptoms before treatment was 7 days and 26 patients (40%) required oxygen support at baseline. Patients treated with lopinavir-ritonavir had a significantly shorter time to negative conversion of viral RNA than those treated with hydroxychloroquine (median, 21 days vs. 28 days). Treatment with lopinavir-ritonavir (adjusted hazard ratio [aHR], 2.28; 95% confidence interval [CI], 1.24 to 4.21) and younger age (aHR, 2.64; 95% CI 1.43 to 4.87) was associated with negative conversion of viral RNA. There was no significant difference in time to clinical improvement between lopinavir-ritonavir- and hydroxychloroquine-treated patients (median, 18 days vs. 21 days). Lymphopenia and hyperbilirubinemia were more frequent in lopinavir-ritonavir-treated patients compared with hydroxychloroquine-treated patients. CONCLUSION: Lopinavir-ritonavir was associated with more rapid viral clearance than hydroxychloroquine in mild to moderate COVID-19, despite comparable clinical responses. These findings should be confirmed in randomized, controlled trials.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2/drug effects , Aged , Aged, 80 and over , Antiviral Agents/adverse effects , COVID-19/diagnosis , COVID-19/virology , Drug Combinations , Female , Humans , Hydroxychloroquine/adverse effects , Lopinavir/adverse effects , Male , Middle Aged , Retrospective Studies , Ritonavir/adverse effects , SARS-CoV-2/pathogenicity , Time Factors , Treatment Outcome , Viral Load
16.
Pharmacol Res ; 158: 104904, 2020 08.
Article in English | MEDLINE | ID: covidwho-1318936

ABSTRACT

The anti-malarial drugs chloroquine (CQ) and primarily the less toxic hydroxychloroquine (HCQ) are currently used to treat autoimmune diseases for their immunomodulatory and anti-thrombotic properties. They have also been proposed for the treatment of several viral infections, due to their anti-viral effects in cell cultures and animal models, and, currently, for the treatment of coronavirus disease 2019 (COVID-19), the pandemic severe acute respiratory syndrome caused by coronavirus 2 (Sars-Cov-2) infection that is spreading all over the world. Although in some recent studies a clinical improvement in COVID-19 patients has been observed, the clinical efficacy of CQ and HCQ in COVID-19 has yet to be proven with randomized controlled studies, many of which are currently ongoing, also considering pharmacokinetics, optimal dosing regimen, therapeutic level and duration of treatment and taking into account patients with different severity degrees of disease. Here we review what is currently known on the mechanisms of action of CQ and HCQ as anti-viral, anti-inflammatory and anti-thrombotic drugs and discuss the up-to-date experimental evidence on the potential mechanisms of action of CQ/HCQ in Sars-Cov2 infection and the current clinical knowledge on their efficacy in the treatment of COVID-19 patients. Given the role of iron in several human viral infections, we also propose a different insight into a number of CQ and HCQ pharmacological effects, suggesting a potential involvement of iron homeostasis in Sars-Cov-2 infection and COVID-19 clinical course.


Subject(s)
Betacoronavirus/drug effects , Chloroquine/pharmacology , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Homeostasis/drug effects , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Iron/metabolism , Pneumonia, Viral/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/metabolism , Humans , Pandemics , Pneumonia, Viral/metabolism , SARS-CoV-2
17.
Pharmacol Res ; 157: 104872, 2020 07.
Article in English | MEDLINE | ID: covidwho-1318931

ABSTRACT

The rapidly progressing of coronavirus disease 2019 (COVID-19) pandemic has become a global concern. This meta-analysis aimed at evaluating the efficacy and safety of current option of therapies for severe acute respiratory syndrome (SARS), Middle Eastern respiratory syndrome (MERS) besides COVID-19, in an attempt to identify promising therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients. We searched PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), and WANFANG DATA for randomized controlled trials (RCTs), prospective cohort, and retrospective cohort studies that evaluated therapies (hydroxychloroquine, lopinavir/ritonavir-based therapy, and ribavirin-based therapy, etc.) for SARS, MERS, and COVID-19. The primary outcomes were mortality, virological eradication and clinical improvement, and secondary outcomes were improvement of symptoms and chest radiography results, incidence of acute respiratory disease syndrome (ARDS), utilization of mechanical ventilation, and adverse events (AEs). Summary relative risks (RRs) and 95% confidence intervals (CIs) were calculated using random-effects models, and the quality of evidence was appraised using GRADEpro. Eighteen articles (5 RCTs, 2 prospective cohort studies, and 11 retrospective cohort studies) involving 4,941 patients were included. Compared with control treatment, anti-coronary virus interventions significantly reduced mortality (RR 0.65, 95% CI 0.44-0.96; I2 = 81.3%), remarkably ameliorate clinical improvement (RR 1.52, 95% CI 1.05-2.19) and radiographical improvement (RR 1.62, 95% CI 1.11-2.36, I2 = 11.0 %), without manifesting clear effect on virological eradication, incidence of ARDS, intubation, and AEs. Subgroup analyses demonstrated that the combination of ribavirin and corticosteroids remarkably decreased mortality (RR 0.43, 95% CI 0.27-0.68). The lopinavir/ritonavir-based combination showed superior virological eradication and radiographical improvement with reduced rate of ARDS. Likewise, hydroxychloroquine improved radiographical result. For safety, ribavirin could induce more bradycardia, anemia and transaminitis. Meanwhile, hydroxychloroquine could increase AEs rate especially diarrhea. Overall, the quality of evidence on most outcomes were very low. In conclusion, although we could not draw a clear conclusion for the recommendation of potential therapies for COVID-19 considering the very low quality of evidence and wide heterogeneity of interventions and indications, our results may help clinicians to comprehensively understand the advantages and drawbacks of each anti-coronavirus agents on efficacy and safety profiles. Lopinavir/ritonavir combinations might observe better virological eradication capability than other anti-coronavirus agents. Conversely, ribavirin might cause more safety concerns especially bradycardia. Thus, large RCTs objectively assessing the efficacy of antiviral therapies for SARS-CoV-2 infections should be conducted with high priority.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Severe Acute Respiratory Syndrome/drug therapy , Antiviral Agents/adverse effects , Betacoronavirus/drug effects , COVID-19 , Humans , Pandemics , SARS-CoV-2
18.
Ther Drug Monit ; 43(4): 570-576, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1305442

ABSTRACT

ABSTRACT: Therapeutic drug monitoring of hydroxychloroquine (HCQ) has been recommended to optimize the treatment of patients with COVID-19. The authors describe an ultrahigh-performance liquid chromatography tandem spectrometry method developed in a context of emergency, to analyze HCQ in both human plasma and blood samples. After adding the labeled internal standard and simple protein precipitation, plasma samples were analyzed using a C18 column. Blood samples required evaporation before analysis. The total chromatographic run time was 4 minutes (including 1.5 minutes of column equilibration). The assay was linear over the calibration range (r2 > 0.99) and up to 1.50 mcg/mL for the plasma samples (5.00 mcg/mL for the blood matrix). The limit of quantification was 0.0150 mcg/mL for plasma samples (0.05 mcg/mL blood matrix) with accuracy and precision ranging from 91.1% to 112% and from 0.750% to 11.1%, respectively. Intraday and interday precision and accuracy values were within 15.0%. No significant matrix effect was observed in the plasma or blood samples. This method was successfully applied to patients treated for COVID-19 infection. A simple and rapid ultrahigh-performance liquid chromatography tandem spectrometry method adapted to HCQ therapeutic drug monitoring in the context of SARS-CoV-2 infection was successfully developed and validated.


Subject(s)
COVID-19/drug therapy , Drug Monitoring/standards , Emergency Medical Services/standards , Hydroxychloroquine/blood , Tandem Mass Spectrometry/standards , Antirheumatic Agents/blood , Antirheumatic Agents/therapeutic use , COVID-19/blood , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Drug Monitoring/methods , Emergency Medical Services/methods , Humans , Hydroxychloroquine/therapeutic use , Pandemics , Tandem Mass Spectrometry/methods
19.
Turk Thorac J ; 21(6): 438-445, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1296106

ABSTRACT

As coronavirus disease 2019 (COVID-19) spreads across the world, the ongoing clinical trials are leading to a big race worldwide to develop a treatment that will help control the pandemic. Unfortunately, COVID-19 does not have any known effective treatment with reliable study results yet. In this pandemic, there is not a lot of time to develop a new specific agent because of the rapid spread of the disease. The process of developing a vaccine is long and requires hard work. Although the pathophysiology of the disease is not fully understood, some of the proposed treatment alternatives are based on old evidence and some have been used with the idea that they might work owing to their mechanism of action. The efficacy, reliability, and safety of the currently available treatment alternatives are therefore a matter of debate. Currently, the main therapies used in the treatment of COVID-19 are antiviral drugs and chloroquine/hydroxychloroquine. Other proposed options include tocilizumab, convalescent plasma, and steroids, but the mainstay of the treatment in intensive care units remains supportive therapies.

20.
An Pediatr (Barc) ; 96(3): 213-220, 2022 Mar.
Article in Spanish | MEDLINE | ID: covidwho-1286263

ABSTRACT

Introduction: Many antiviral agents, such as hydroxychloroquine, have been used to treat COVID-19, without being broadly accepted. QTc prolongation is a worrisome adverse effect, scarcely studied in pediatrics. Patients and methods: Pediatric patients affected from COVID-19 who received antivirals were matched (1:2) with controls not infected nor exposed. Electrocardiograms were prospectively analyzed at baseline, during the first 72 h in treatment and after 72 h. Results: Eleven (22.9%) out of 48 patients admitted due to COVID-19 (March-July 2020) received antiviral therapy. All had underlying diseases: congenital heart disease (4/11; 36.4%) and immunosuppression (3/11; 27.3%) stand out. 5/11 (45.5%) received treatment at baseline with a potential effect on QTc. There where no differences observed in the baseline QTc between cases and controls: 414.8 ms (49.2) vs. 416.5 ms (29.4) (p = 0.716). Baseline long QT was observed in 2/11 cases and 2/22. Among cases, 10/11 (90.9%) received hydroxychloroquine, mainly associated with azithromycin (8/11; 72.7%), 3 received lopinavir/ritonavir and one remdesivir. The median increase in QTc after 72 h under treatment was 28.9 ms (IQR 48.7) (p = 0.062). 4/11 (36.4%) patients had a long QTc at 72 h, resulting in 3 patients ≥500 ms; treatment was stopped in one (QTc 510 ms) but ventricular arrhythmias were not documented. Conclusions: The use of antivirals caused an increase on the QTc interval after 72 h of treatment, being the QTc long in 36.3% of the patients, although no arrhythmic events were observed. The use of hydroxychloroquine and antivirals requires active QTc monitoring and it is recommended to discontinue treatment if QTc >500 ms.

SELECTION OF CITATIONS
SEARCH DETAIL