Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
Viruses ; 12(5)2020 05 24.
Article in English | MEDLINE | ID: covidwho-1726014

ABSTRACT

Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine (HCQ) is a drug approved by several countries to treat malaria and immune-mediated diseases in humans, and its antiviral effects on other viral infections (e.g., SARS-CoV-2, dengue virus) have been confirmed. We investigated whether HCQ in association with interferon-ω (IFN-ω) is effective for FIPV in vitro. A total of 100 µM of HCQ significantly inhibited the replication of types I and II FIPV. Interestingly, the combination of 100 µM of HCQ and 104 U/mL of recombinant feline IFN-ω (rfIFN-ω, veterinary registered drug) increased its antiviral activity against type I FIPV infection. Our study suggested that HCQ and rfIFN-ω are applicable for treatment of FIP. Further clinical studies are needed to verify the combination of HCQ and rIFN-ω will be effective and safe treatment for cats with FIP.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus, Feline/drug effects , Hydroxychloroquine/pharmacology , Interferon Type I/pharmacology , Analysis of Variance , Animals , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , Cats , Cell Line/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coronavirus, Feline/pathogenicity , Drug Combinations , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Fluorescent Antibody Technique/veterinary , Hydroxychloroquine/therapeutic use , Hydroxychloroquine/toxicity , Interferon Type I/therapeutic use , Interferon Type I/toxicity , Virulence
2.
Rheumatology (Oxford) ; 60(1): 399-407, 2021 01 05.
Article in English | MEDLINE | ID: covidwho-1388014

ABSTRACT

OBJECTIVES: The Janus kinase (JAK) inhibitor baricitinib may block viral entry into pneumocytes and prevent cytokine storm in patients with SARS-CoV-2 pneumonia. We aimed to assess whether baricitinib improved pulmonary function in patients treated with high-dose corticosteroids for moderate to severe SARS-CoV-2 pneumonia. METHODS: This observational study enrolled patients with moderate to severe SARS-CoV-2 pneumonia [arterial oxygen partial pressure (PaO2)/fraction of inspired oxygen (FiO2) <200 mmHg] who received lopinavir/ritonavir and HCQ plus either corticosteroids (CS group, n = 50) or corticosteroids and baricitinib (BCT-CS group, n = 62). The primary end point was the change in oxygen saturation as measured by pulse oximetry (SpO2)/FiO2 from hospitalization to discharge. Secondary end points included the proportion of patients requiring supplemental oxygen at discharge and 1 month later. Statistics were adjusted by the inverse propensity score weighting (IPSW). RESULTS: A greater improvement in SpO2/FiO2 from hospitalization to discharge was observed in the BCT-CS vs CS group (mean differences adjusted for IPSW, 49; 95% CI: 22, 77; P < 0.001). A higher proportion of patients required supplemental oxygen both at discharge (62.0% vs 25.8%; reduction of the risk by 82%, OR adjusted for IPSW, 0.18; 95% CI: 0.08, 0.43; P < 0.001) and 1 month later (28.0% vs 12.9%, reduction of the risk by 69%, OR adjusted for IPSW, 0.31; 95% CI: 0.11, 0.86; P = 0.024) in the CS vs BCT-CS group. CONCLUSIONS: . In patients with moderate to severe SARS-CoV-2 pneumonia a combination of baricitinib with corticosteroids was associated with greater improvement in pulmonary function when compared with corticosteroids alone. TRIAL REGISTRATION: European Network of Centres for Pharmacoepidemiology and Pharmacovigilance, ENCEPP (EUPAS34966, http://www.encepp.eu/encepp/viewResource.htm? id = 34967).


Subject(s)
Azetidines/therapeutic use , COVID-19/drug therapy , Glucocorticoids/therapeutic use , Hypoxia/therapy , Janus Kinase Inhibitors/therapeutic use , Methylprednisolone/therapeutic use , Oxygen Inhalation Therapy/statistics & numerical data , Purines/therapeutic use , Pyrazoles/therapeutic use , Sulfonamides/therapeutic use , Aged , Antiviral Agents/therapeutic use , COVID-19/metabolism , COVID-19/physiopathology , Cohort Studies , Drug Combinations , Drug Therapy, Combination , Endothelium, Vascular , Enzyme Inhibitors/therapeutic use , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Hydroxychloroquine/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Interferon beta-1b/therapeutic use , Lopinavir/therapeutic use , Lung/blood supply , Male , Middle Aged , Oximetry , Prospective Studies , Ritonavir/therapeutic use , SARS-CoV-2 , Severity of Illness Index
3.
J Biomol Struct Dyn ; 39(12): 4243-4255, 2021 08.
Article in English | MEDLINE | ID: covidwho-1317834

ABSTRACT

Recent outbreak of novel Coronavirus disease () pandemic around the world is associated with severe acute respiratory syndrome. The death toll associated with the pandemic is increasing day by day. SARS-CoV-2 is an enveloped virus and its N terminal domain (NTD) of Nucleocapsid protein (N protein) binds to the viral (+) sense RNA and results in virus ribonucleoprotien complex, essential for the virus replication. The N protein is composed of a serine-rich linker region sandwiched between NTD and C terminal (CTD). These terminals play a role in viral entry and its processing post entry. The NTD of SARS-CoV-2 N protein forms orthorhombic crystals and binds to the viral genome. Therefore, there is always a quest to target RNA binding domain of nucleocapsid phosphoprotein (NTD-N-protein which in turn may help in controlling diseases caused by SARS-CoV-2 in humans. The role of Chloroquine and Hydroxychloroquine as potential treatments for is still under debate globally because of some side effects associated with it. This study involves the In silico interactions of Chloroquine and Hydroxychloroquine with the NTD-N-protein of SARS-CoV-2. With the help of various computational methods, we have explored the potential role of both of these antiviral drugs for the treatment of patients by comparing the efficacy of both of the drugs to bind to NTD-N-protein. In our research Hydroxychloroquine exhibited potential inhibitory effects of NTD-N-protein with binding energy -7.28 kcal/mol than Chloroquine (-6.30 kcal/mol) at SARS-CoV-2 receptor recognition of susceptible cells. The outcomes of this research strongly appeal for in vivo trials of Hydroxychloroquine for the patients infected with . Furthermore, the recommended doses of Hydroxychloroquine may reduce the chances of catching to the healthcare workers and staff who are in contact with or delivering direct care to coronavirus patients as long as they have not been diagnosed with . We further hypothesize that the comparative NTD-N-protein -drug docking interactions may help to understand the comparative efficacy of other candidate repurposing drugs until discovery of a proper vaccine.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Hydroxychloroquine , Antiviral Agents/pharmacology , COVID-19/drug therapy , Chloroquine/pharmacology , Computer Simulation , Drug Repositioning , Humans , Hydroxychloroquine/pharmacology , Nucleocapsid , Nucleocapsid Proteins , RNA-Binding Motifs , SARS-CoV-2
4.
Ther Drug Monit ; 43(4): 570-576, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1305442

ABSTRACT

ABSTRACT: Therapeutic drug monitoring of hydroxychloroquine (HCQ) has been recommended to optimize the treatment of patients with COVID-19. The authors describe an ultrahigh-performance liquid chromatography tandem spectrometry method developed in a context of emergency, to analyze HCQ in both human plasma and blood samples. After adding the labeled internal standard and simple protein precipitation, plasma samples were analyzed using a C18 column. Blood samples required evaporation before analysis. The total chromatographic run time was 4 minutes (including 1.5 minutes of column equilibration). The assay was linear over the calibration range (r2 > 0.99) and up to 1.50 mcg/mL for the plasma samples (5.00 mcg/mL for the blood matrix). The limit of quantification was 0.0150 mcg/mL for plasma samples (0.05 mcg/mL blood matrix) with accuracy and precision ranging from 91.1% to 112% and from 0.750% to 11.1%, respectively. Intraday and interday precision and accuracy values were within 15.0%. No significant matrix effect was observed in the plasma or blood samples. This method was successfully applied to patients treated for COVID-19 infection. A simple and rapid ultrahigh-performance liquid chromatography tandem spectrometry method adapted to HCQ therapeutic drug monitoring in the context of SARS-CoV-2 infection was successfully developed and validated.


Subject(s)
COVID-19/drug therapy , Drug Monitoring/standards , Emergency Medical Services/standards , Hydroxychloroquine/blood , Tandem Mass Spectrometry/standards , Antirheumatic Agents/blood , Antirheumatic Agents/therapeutic use , COVID-19/blood , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Drug Monitoring/methods , Emergency Medical Services/methods , Humans , Hydroxychloroquine/therapeutic use , Pandemics , Tandem Mass Spectrometry/methods
5.
J Med Virol ; 93(8): 5182-5187, 2021 08.
Article in English | MEDLINE | ID: covidwho-1298501

ABSTRACT

Infections due to human herpesvirus 6 (HHV-6) are frequent during early childhood. Usually, they have a favorable clinical course. Conversely, HHV-6 congenital infections occur in about 1% of neonates and may present with more severe clinical pictures. HHV-6 can be found in lung tissues and bronchoalveolar lavage (BAL) samples from patients with pneumonia and in immunocompromised patients can cause mild to severe pneumonia. In neonates, the role of HHV-6 in the genesis of severe pneumonia is poorly defined still now. We describe a healthy infant with a late-onset (15 days of life) severe interstitial pneumonia and heavy HHV-6 genome load, persistently detected in its BAL fluid. The baby underwent high-frequency oscillatory ventilation, hydroxychloroquine, steroids, and ganciclovir for 6 weeks and at 9 months she died. Next-generation sequencing of genes known to cause neonatal respiratory insufficiency revealed the presence of a "probably pathogenetic" heterozygous variant in the autosomal recessive DRC1 gene, a heterozygous variant of unknown significance (VUS) in the autosomal recessive RSPH9 gene, and a heterozygous VUS in the autosomal recessive MUC5B gene. HHV-6 infection should be considered in the differential diagnosis of late-onset severe respiratory distress in neonates and the co-occurrence of genetic predisposing factors or modifiers should be tested by specific molecular techniques. The intensity of HHV-6 genome load in BAL fluid could be an indicator of the response to antiviral therapy.


Subject(s)
Genetic Predisposition to Disease/genetics , Lung Diseases, Interstitial/genetics , Roseolovirus Infections/genetics , Cytoskeletal Proteins/genetics , Fatal Outcome , Female , Genetic Variation , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/isolation & purification , Heterozygote , Humans , Infant, Newborn , Lung Diseases, Interstitial/therapy , Lung Diseases, Interstitial/virology , Microtubule-Associated Proteins/genetics , Mucin-5B/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Roseolovirus Infections/therapy , Roseolovirus Infections/virology , Viral Load
6.
An Pediatr (Barc) ; 96(3): 213-220, 2022 Mar.
Article in Spanish | MEDLINE | ID: covidwho-1286263

ABSTRACT

Introduction: Many antiviral agents, such as hydroxychloroquine, have been used to treat COVID-19, without being broadly accepted. QTc prolongation is a worrisome adverse effect, scarcely studied in pediatrics. Patients and methods: Pediatric patients affected from COVID-19 who received antivirals were matched (1:2) with controls not infected nor exposed. Electrocardiograms were prospectively analyzed at baseline, during the first 72 h in treatment and after 72 h. Results: Eleven (22.9%) out of 48 patients admitted due to COVID-19 (March-July 2020) received antiviral therapy. All had underlying diseases: congenital heart disease (4/11; 36.4%) and immunosuppression (3/11; 27.3%) stand out. 5/11 (45.5%) received treatment at baseline with a potential effect on QTc. There where no differences observed in the baseline QTc between cases and controls: 414.8 ms (49.2) vs. 416.5 ms (29.4) (p = 0.716). Baseline long QT was observed in 2/11 cases and 2/22. Among cases, 10/11 (90.9%) received hydroxychloroquine, mainly associated with azithromycin (8/11; 72.7%), 3 received lopinavir/ritonavir and one remdesivir. The median increase in QTc after 72 h under treatment was 28.9 ms (IQR 48.7) (p = 0.062). 4/11 (36.4%) patients had a long QTc at 72 h, resulting in 3 patients ≥500 ms; treatment was stopped in one (QTc 510 ms) but ventricular arrhythmias were not documented. Conclusions: The use of antivirals caused an increase on the QTc interval after 72 h of treatment, being the QTc long in 36.3% of the patients, although no arrhythmic events were observed. The use of hydroxychloroquine and antivirals requires active QTc monitoring and it is recommended to discontinue treatment if QTc >500 ms.

7.
Trials ; 21(1): 771, 2020 Sep 09.
Article in English | MEDLINE | ID: covidwho-1277965

ABSTRACT

BACKGROUND: Undifferentiated connective tissue disease (UCTD) is known to induce adverse pregnancy outcomes and even recurrent spontaneous abortion (RSA) by placental vascular damage and inflammation activation. Anticoagulation can prevent pregnancy morbidities. However, it is unknown whether the addition of immune suppressants to anticoagulation can prevent spontaneous pregnancy loss in UCTD patients. The purpose of this study is to evaluate the efficacy of hydroxychloroquine (HCQ) and low-dose prednisone on recurrent pregnancy loss for women with UCTD. METHODS: The Immunosuppressant for Living Fetuses (ILIFE) Trial is a three-arm, multicenter, open-label randomized controlled trial with the primary objective of comparing hydroxychloroquine combined with low-dose prednisone and anticoagulation with anticoagulation alone in treating UCTD women with recurrent spontaneous abortion. The third arm of using hydroxychloroquine combined with anticoagulant for secondary comparison. A total of 426 eligible patients will be randomly assigned to each of the three arms with a 1:1:1 allocation ratio. The primary outcome is the rate of live births. Secondary outcomes include adverse pregnancy outcomes and progression of UCTD. DISCUSSION: This is the first multi-center, open-label, randomized controlled trial which evaluates the efficacy of immunosuppressant regimens on pregnancy outcomes and UCTD progression. It will provide evidence on whether the immunosuppressant ameliorates the pregnancy prognosis in UCTD patients with RSA and the progression into defined connective tissue disease. TRIAL REGISTRATION: ClinicalTrials.gov NCT03671174 . Registered on 14 September 2018.


Subject(s)
Abortion, Habitual , COVID-19 , Undifferentiated Connective Tissue Diseases , Abortion, Habitual/diagnosis , Abortion, Habitual/drug therapy , Abortion, Habitual/prevention & control , Female , Fetus , Humans , Hydroxychloroquine/adverse effects , Immunosuppressive Agents/adverse effects , Multicenter Studies as Topic , Placenta , Prednisone/adverse effects , Pregnancy , Randomized Controlled Trials as Topic , SARS-CoV-2
8.
Eur Respir J ; 59(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1264121

ABSTRACT

BACKGROUND: Combining the antibiotic azithromycin and hydroxychloroquine induces airway immunomodulatory effects, with the latter also having in vitro antiviral properties. This may improve outcomes in patients hospitalised for coronavirus disease 2019 (COVID-19). METHODS: Placebo-controlled double-blind randomised multicentre trial. Patients aged ≥18 years, admitted to hospital for ≤48 h (not intensive care) with a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription PCR test were recruited. The intervention was 500 mg daily azithromycin for 3 days followed by 250 mg daily azithromycin for 12 days combined with 200 mg twice-daily hydroxychloroquine for all 15 days. The control group received placebo/placebo. The primary outcome was days alive and discharged from hospital within 14 days (DAOH14). RESULTS: After randomisation of 117 patients, at the first planned interim analysis, the data and safety monitoring board recommended stopping enrolment due to futility, based on pre-specified criteria. Consequently, the trial was terminated on 1 February 2021. 61 patients received the combined intervention and 56 patients received placebo. In the intervention group, patients had a median (interquartile range) 9.0 (3-11) DAOH14 versus 9.0 (7-10) DAOH14 in the placebo group (p=0.90). The primary safety outcome, death from all causes on day 30, occurred for one patient in the intervention group versus two patients receiving placebo (p=0.52), and readmittance or death within 30 days occurred for nine patients in the intervention group versus six patients receiving placebo (p=0.57). CONCLUSIONS: The combination of azithromycin and hydroxychloroquine did not improve survival or length of hospitalisation in patients with COVID-19.


Subject(s)
COVID-19 , Hydroxychloroquine , Adolescent , Adult , Azithromycin , COVID-19/drug therapy , Double-Blind Method , Humans , SARS-CoV-2 , Treatment Outcome
9.
PLoS One ; 16(6): e0252388, 2021.
Article in English | MEDLINE | ID: covidwho-1262547

ABSTRACT

BACKGROUND: Hydroxychloroquine combined with azithromycin (HCQ/AZI) has initially been used against coronavirus disease-2019 (COVID-19). In this retrospective study, we assessed the clinical effects of HCQ/AZI, with a 28-days follow-up. METHODS: In a registry-study which included patients hospitalized for COVID-19 between March 15 and April 2, 2020, we compared patients who received HCQ/AZI to those who did not, regarding a composite outcome of mortality and mechanical ventilation with a 28-days follow-up. QT was monitored for patients treated with HCQ/AZI. Were excluded patients in intensive care units, palliative care and ventilated within 24 hours of admission. Three analyses were performed to adjust for selection bias: propensity score matching, multivariable survival, and inverse probability score weighting (IPSW) analyses. RESULTS: Overall, 203 patients were included: 60 patients treated by HCQ/AZI and 143 control patients. During the 28-days follow-up, 32 (16.3%) patients presented the primary outcome and 23 (12.3%) patients died. Propensity-score matching identified 52 unique pairs of patients with similar characteristics. In the matched cohort (n = 104), HCQ/AZI was not associated with the primary composite outcome (log-rank p-value = 0.16). In the overall cohort (n = 203), survival and IPSW analyses also found no benefit from HCQ/AZI. In the HCQ/AZI group, 11 (18.3%) patients prolonged QT interval duration, requiring treatment cessation. CONCLUSIONS: HCQ/AZI combination therapy was not associated with lower in-hospital mortality and mechanical ventilation rate, with a 28-days follow-up. In the HCQ/AZI group, 18.3% of patients presented a prolonged QT interval requiring treatment cessation, however, control group was not monitored for this adverse event, making comparison impossible.


Subject(s)
Azithromycin/therapeutic use , COVID-19/drug therapy , Hydroxychloroquine/therapeutic use , SARS-CoV-2/drug effects , Anti-Bacterial Agents/therapeutic use , Antimalarials/therapeutic use , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Female , Follow-Up Studies , Humans , Intensive Care Units , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , SARS-CoV-2/isolation & purification , Survival Rate , Treatment Outcome
10.
J Am Heart Assoc ; 9(12): e017144, 2020 06 16.
Article in English | MEDLINE | ID: covidwho-1255736

ABSTRACT

Background Despite a lack of clinical evidence, hydroxychloroquine and azithromycin are being administered widely to patients with verified or suspected coronavirus disease 2019 (COVID-19). Both drugs may increase risk of lethal arrhythmias associated with QT interval prolongation. Methods and Results We analyzed a case series of COVID-19-positive/suspected patients admitted between February 1, 2020, and April 4, 2020, who were treated with azithromycin, hydroxychloroquine, or a combination of both drugs. We evaluated baseline and postmedication QT interval (corrected QT interval [QTc]; Bazett) using 12-lead ECGs. Critical QTc prolongation was defined as follows: (1) maximum QTc ≥500 ms (if QRS <120 ms) or QTc ≥550 ms (if QRS ≥120 ms) and (2) QTc increase of ≥60 ms. Tisdale score and Elixhauser comorbidity index were calculated. Of 490 COVID-19-positive/suspected patients, 314 (64%) received either/both drugs and 98 (73 COVID-19 positive and 25 suspected) met study criteria (age, 62±17 years; 61% men). Azithromycin was prescribed in 28%, hydroxychloroquine in 10%, and both in 62%. Baseline mean QTc was 448±29 ms and increased to 459±36 ms (P=0.005) with medications. Significant prolongation was observed only in men (18±43 ms versus -0.2±28 ms in women; P=0.02). A total of 12% of patients reached critical QTc prolongation. Changes in QTc were highest with the combination compared with either drug, with much greater prolongation with combination versus azithromycin (17±39 ms versus 0.5±40 ms; P=0.07). No patients manifested torsades de pointes. Conclusions Overall, 12% of patients manifested critical QTc prolongation, and the combination caused greater prolongation than either drug alone. The balance between uncertain benefit and potential risk when treating COVID-19 patients should be carefully assessed.


Subject(s)
Azithromycin/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Electrocardiography/drug effects , Hydroxychloroquine/therapeutic use , Long QT Syndrome/chemically induced , Pandemics , Pneumonia, Viral/drug therapy , Anti-Bacterial Agents/therapeutic use , Antimalarials/therapeutic use , COVID-19 , Coronavirus Infections/complications , Drug Therapy, Combination , Female , Humans , Long QT Syndrome/physiopathology , Male , Middle Aged , Pneumonia, Viral/complications , Prognosis , Risk Factors , SARS-CoV-2
12.
Toxicology ; 458: 152822, 2021 06 30.
Article in English | MEDLINE | ID: covidwho-1246198

ABSTRACT

Hydroxychloroquine (HCQ) was noted to produce severe cardiac arrhythmia, an adverse effect as its use against severe acute respiratory syndrome caused by coronavirus 2 (SAES-CoV-2). HCQ is an antimalarial drug with quinoline structure. Some other quinoline compounds, such as fluoroquinolone antibiotics (FQs), also lead to arrhythmias characterized by QT prolongation. QT prolongation is usually related to the human ether-a-go-go-related gene (hERG) potassium channel inhibitory activity of most drugs. In this research, molecular docking was used to study the potential inhibitory activities of HCQ as well as other quinolines derivatives and hERG potassium channel protein. The possible causes of these QT prolongation effects were revealed. Molecular docking and patch clamp experiments showed that HCQ could bind to hERG and inhibit the efflux of potassium ion preferentially in the repolarization stage. The IC50 of HCQ was 8.6 µM ± 0.8 µM. FQs, which are quinoline derivatives, could also bind to hERG molecules. The binding energies of FQs varied according to their molecular polarity. It was found that drugs with a quinoline structure, particularly with high molecular polarity, can exert a significant potential hERG inhibitory activity. The potential side effects of QT prolongation during the development and use of quinolines should be carefully considered.


Subject(s)
Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Hydroxychloroquine/pharmacology , Amino Acids/chemistry , Computational Biology , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/drug effects , HEK293 Cells , Humans , Hydroxychloroquine/chemistry , Inhibitory Concentration 50 , Molecular Docking Simulation , Patch-Clamp Techniques
13.
BMC Nephrol ; 22(1): 198, 2021 05 26.
Article in English | MEDLINE | ID: covidwho-1244914

ABSTRACT

BACKGROUND: Individuals with end-stage kidney disease (ESKD) on dialysis are vulnerable to contracting COVID-19 infection, with mortality as high as 31 % in this group. Population demographics in the UAE are dissimilar to many other countries and data on antibody responses to COVID-19 is also limited. The objective of this study was to describe the characteristics of patients who developed COVID-19, the impact of the screening strategy, and to assess the antibody response to a subset of dialysis patients. METHODS: We retrospectively examined the outcomes of COVID19 infection in all our haemodialysis patients, who were tested regularly for COVID 19, whether symptomatic or asymptomatic. In addition, IgG antibody serology was also performed to assess response to COVID-19 in a subset of patients. RESULTS: 152 (13 %) of 1180 dialysis patients developed COVID-19 during the study period from 1st of March to the 1st of July 2020. Of these 81 % were male, average age of 52​ years and 95 % were on in-centre haemodialysis. Family and community contact was most likely source of infection in most patients. Fever (49 %) and cough (48 %) were the most common presenting symptoms, when present. Comorbidities in infected individuals included hypertension (93 %), diabetes (49 %), ischaemic heart disease (30 %). The majority (68 %) developed mild disease, whilst 13 % required critical care. Combinations of drugs including hydroxychloroquine, favipiravir, lopinavir, ritonavir, camostat, tocilizumab and steroids were used based on local guidelines. The median time to viral clearance defined by two negative PCR tests was 15 days [IQR 6-25]. Overall mortality in our cohort was 9.2 %, but ICU mortality was 65 %. COVID-19 IgG antibody serology was performed in a subset (n = 87) but 26 % of PCR positive patients (n = 23) did not develop a significant antibody response. CONCLUSIONS: Our study reports a lower mortality in this patient group compared with many published series. Asymptomatic PCR positivity was present in 40 %. Rapid isolation of positive patients may have contributed to the relative lack of spread of COVID-19 within our dialysis units. The lack of antibody response in a few patients is concerning.


Subject(s)
Antibodies, Viral/blood , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , COVID-19/complications , Kidney Failure, Chronic/complications , Pandemics , Renal Dialysis , SARS-CoV-2/immunology , Adrenal Cortex Hormones/therapeutic use , Adult , Antibodies, Viral/biosynthesis , Antiviral Agents/therapeutic use , Asymptomatic Infections , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/epidemiology , COVID-19/immunology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Comorbidity , Contact Tracing , Cross Infection/diagnosis , Cross Infection/epidemiology , Female , Humans , Hydroxychloroquine/therapeutic use , Kidney Failure, Chronic/epidemiology , Kidney Failure, Chronic/immunology , Male , Middle Aged , Patient Isolation , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Survival Rate , Symptom Assessment , Treatment Outcome , United Arab Emirates/epidemiology , Viremia/diagnosis
14.
Bull Natl Res Cent ; 45(1): 94, 2021.
Article in English | MEDLINE | ID: covidwho-1243824

ABSTRACT

BACKGROUND: As of April 23, 2021, more than 145 million cases and almost 3.07 million related deaths were noted because of the coronavirus (Covid-19) Pandemic. Considering the low rate vaccination, the alternative that divided opinions for a long time is an old medicine called hydroxychloroquine. MAIN BODY: The aim of this review was to synthesize the different highlights of the most important studies published since the beginning of the epidemic crisis. After a precise study of the available bibliography dealing with this subject and the addition of an adapted example, which is the current situation of Algeria, the results showed the effectiveness of the Algerian method as well as the impact that this treatment had. CONCLUSION: We concluded that in brief, given the inexistence of a better solution, we ultimately recommend that patients with severe COVID-19 to be treated for the moment with Hydroxychloroquine combined with Azithromycin in view of its effectiveness, while waiting for another solution.

15.
PLoS One ; 16(5): e0251048, 2021.
Article in English | MEDLINE | ID: covidwho-1242245

ABSTRACT

BACKGROUND: COVID-19 is a multisystemic disorder that frequently causes acute kidney injury (AKI). However, the precise clinical and biochemical variables associated with AKI progression in patients with severe COVID-19 remain unclear. METHODS: We performed a retrospective study on 278 hospitalized patients who were admitted to the ward and intensive care unit (ICU) with COVID-19 between March 2020 and June 2020, at the University Hospital, São Paulo, Brazil. Patients aged ≥ 18 years with COVID-19 confirmed on RT-PCR were included. AKI was defined according to the Kidney Disease Improving Global Outcomes (KDIGO) criteria. We evaluated the incidence of AKI, several clinical variables, medicines used, and outcomes in two sub-groups: COVID-19 patients with AKI (Cov-AKI), and COVID-19 patients without AKI (non-AKI). Univariate and multivariate analyses were performed. RESULTS: First, an elevated incidence of AKI (71.2%) was identified, distributed across different stages of the KDIGO criteria. We further observed higher levels of creatinine, C-reactive protein (CRP), leukocytes, neutrophils, monocytes, and neutrophil-to-lymphocyte ratio (NLR) in the Cov-AKI group than in the non-AKI group, at hospital admission. On univariate analysis, Cov-AKI was associated with older age (>62 years), hypertension, CRP, MCV, leucocytes, neutrophils, NLR, combined hydroxychloroquine and azithromycin treatment, use of mechanical ventilation, and vasoactive drugs. Multivariate analysis showed that hypertension and the use of vasoactive drugs were independently associated with a risk of higher AKI in COVID-19 patients. Finally, we preferentially found an altered erythrocyte and leukocyte cellular profile in the Cov-AKI group compared to the non-AKI group, at hospital discharge. CONCLUSIONS: In our study, the development of AKI in patients with severe COVID-19 was related to inflammatory blood markers and therapy with hydroxychloroquine/azithromycin, with vasopressor requirement and hypertension considered potential risk factors. Thus, attention to the protocol, hypertension, and some blood markers may help assist doctors with decision-making for the management of COVID-19 patients with AKI.


Subject(s)
Acute Kidney Injury/diagnosis , COVID-19/pathology , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Azithromycin/therapeutic use , Brazil/epidemiology , COVID-19/complications , COVID-19/drug therapy , COVID-19/virology , Creatinine/blood , Female , Glomerular Filtration Rate , Humans , Hydroxychloroquine/therapeutic use , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Vasodilator Agents/adverse effects , Vasodilator Agents/therapeutic use , Young Adult
16.
J Biomol Struct Dyn ; : 1-14, 2021 May 25.
Article in English | MEDLINE | ID: covidwho-1242070

ABSTRACT

Remdesivir and hydroxychloroquine derivatives form two important classes of heterocyclic compounds. They are known for their anti-malarial biological activity. This research aims to analyze the physicochemical properties of remdesivir and hydroxychloroquine compounds by the computational approach. DFT, docking, and POM analyses also identify antiviral pharmacophore sites of both compounds. The antiviral activity of hydroxychloroquine compound's in the presence of zinc sulfate and azithromycin is evaluated through its capacity to coordinate transition metals (M = Cu, Ni, Zn, Co, Ru, Pt). The obtained bioinformatic results showed the potent antiviral/antibacterial activity of the prepared mixture (Hydroxychloroquine/Azithromycin/Zinc sulfate) for all the opportunistic Gram-positive, Gram-negative in the presence of coronavirus compared with the complexes Polypyridine-Ruthenium-di-aquo. The postulated zinc(II) complex of hydroxychloroquine derivatives are indeed an effective antibacterial and antiviral agent against coronavirus and should be extended to other pathogens. The combination of a pharmacophore site with a redox [Metal(OH2)2] moiety is of crucial role to fight against viruses and bacteria strains. [Formula: see text]Communicated by Ramaswamy H. Sarma.

17.
Front Pharmacol ; 12: 584940, 2021.
Article in English | MEDLINE | ID: covidwho-1241189

ABSTRACT

The emergence and rapid spread of novel coronavirus disease (COVID-19) has posed a serious challenge to global public health in 2020. The speed of this viral spread together with the high mortality rate has caused an unprecedented public health crisis. With no antivirals or vaccines available for the treatment of COVID-19, the medical community is presently exploring repositioning of clinically approved drugs for COVID-19. Chloroquine (CQ) and hydroxychloroquine (HCQ) have emerged as potential candidates for repositioning as anti-COVID-19 therapeutics and have received FDA authorization for compassionate use in COVID-19 patients. On March 28, 2020, the U.S. Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for HCQ in the treatment of COVID-19. However, it was later revoked by the FDA on June 15, 2020, after analyzing the emerging scientific data from ongoing clinical trials. Similarly, the World Health Organization (WHO) also conducted a Solidarity trial of chloroquine, hydroxychloroquine, remdesivir, lopinavir, and ritonavir. However, on May 23, 2020, the executive body of the "Solidarity trial" decided to put a temporary hold on the HCQ trial. On June 17, 2020, the WHO abruptly stopped the Solidarity trial of HCQ. The current review strives to examine the basis of compassionate use of CQ and HCQ for the treatment of COVID-19 in terms of literature evidence, establishing the antiviral efficacy of these drugs against corona and related viruses. Furthermore, the review presents a critical analysis of the clinical trial findings and also provides an insight into the dynamically changing decision on the authorization and withdrawal of HCQ as anti-COVID-19 therapy by the U.S. FDA and the WHO. Ultimately, our study necessitates an evidenced-based treatment protocol to confront the ongoing COVID-19 pandemic and not the mere observational study that mislead the public healthcare system, which paralyzes the entire world.

18.
J Pharmacol Exp Ther ; 377(2): 265-272, 2021 05.
Article in English | MEDLINE | ID: covidwho-1234275

ABSTRACT

Drug-induced long QT syndrome (LQTS) is an established cardiac side effect of a wide range of medications and represents a significant concern for drug safety. The rapidly and slowly activating delayed rectifier K+ currents, mediated by channels encoded by the human ether-a-go-go-related gene (hERG) and KCNQ1 + KCNE1, respectively, are two main currents responsible for ventricular repolarization. The common cause for drugs to induce LQTS is through impairing the hERG channel. For the recent emergence of COVID-19, caused by severe acute respiratory syndrome coronavirus 2, several drugs have been investigated as potential therapies; however, there are concerns about their QT prolongation risk. Here, we studied the effects of chloroquine, hydroxychloroquine, azithromycin, and remdesivir on hERG channels. Our results showed that although chloroquine acutely blocked hERG current (IhERG), with an IC50 of 3.0 µM, hydroxychloroquine acutely blocked IhERG 8-fold less potently, with an IC50 of 23.4 µM. Azithromycin and remdesivir did not acutely affect IhERG When these drugs were added at 10 µM to the cell culture medium for 24 hours, remdesivir increased IhERG by 2-fold, which was associated with an increased mature hERG channel expression. In addition, these four drugs did not acutely or chronically affect KCNQ1 + KCNE1 channels. Our data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns. SIGNIFICANCE STATEMENT: This work demonstrates that, among off-label potential COVID-19 treatment drugs chloroquine, hydroxychloroquine, azithromycin, and remdesivir, the former two drugs block hERG potassium channels, whereas the latter two drugs do not. All four drugs do not affect KCNQ1 + KCNE1. As hERG and KCNQ1 + KCNE1 are two main K+ channels responsible for ventricular repolarization, and most drugs that induce long QT syndrome (LQTS) do so by impairing hERG channels, these data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Azithromycin/pharmacology , COVID-19/drug therapy , Chloroquine/pharmacology , ERG1 Potassium Channel/antagonists & inhibitors , Hydroxychloroquine/pharmacology , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacology , Alanine/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19/metabolism , Chloroquine/therapeutic use , Dose-Response Relationship, Drug , ERG1 Potassium Channel/metabolism , HEK293 Cells , Humans , Hydroxychloroquine/therapeutic use , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/therapeutic use
19.
R Soc Open Sci ; 8(4): 210235, 2021 Apr 13.
Article in English | MEDLINE | ID: covidwho-1231061

ABSTRACT

Hydroxychloroquine (HCQ), the hydroxyl derivative of chloroquine (CQ), is widely used in the treatment of rheumatological conditions (systemic lupus erythematosus, rheumatoid arthritis) and is being studied for the treatment and prevention of COVID-19. Here, we investigate through mathematical modelling the safety profile of HCQ, CQ and other QT-prolonging anti-infective agents to determine their risk categories for Torsade de Pointes (TdP) arrhythmia. We performed safety modelling with uncertainty quantification using a risk classifier based on the qNet torsade metric score, a measure of the net charge carried by major currents during the action potential under inhibition of multiple ion channels by a compound. Modelling results for HCQ at a maximum free therapeutic plasma concentration (free C max) of approximately 1.2 µM (malaria dosing) indicated it is most likely to be in the high-intermediate-risk category for TdP, whereas CQ at a free C max of approximately 0.7 µM was predicted to most likely lie in the intermediate-risk category. Combining HCQ with the antibacterial moxifloxacin or the anti-malarial halofantrine (HAL) increased the degree of human ventricular action potential duration prolongation at some or all concentrations investigated, and was predicted to increase risk compared to HCQ alone. The combination of HCQ/HAL was predicted to be the riskiest for the free C max values investigated, whereas azithromycin administered individually was predicted to pose the lowest risk. Our simulation approach highlights that the torsadogenic potentials of HCQ, CQ and other QT-prolonging anti-infectives used in COVID-19 prevention and treatment increase with concentration and in combination with other QT-prolonging drugs.

20.
Eur J Case Rep Intern Med ; 8(3): 002387, 2021.
Article in English | MEDLINE | ID: covidwho-1229473

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused significant morbidity and mortality worldwide. While patients with COVID-19 most frequently present with pneumonia, respiratory failure and acute respiratory distress syndrome, increasing cases of immune-mediated disorders such as autoimmune thrombocytopenia, haemolytic anaemia and antiphospholipid syndrome have been reported. In this article we describe a rare case of cold agglutinin syndrome (CAS) in a patient with COVID-19. The patient was a 77-year-old man with a history of glucose-6-phosphate dehydrogenase (G6PD) deficiency who presented with COVID-19 infection and acute respiratory failure. Initially he was started on intravenous steroids, antibiotics and hydroxychloroquine. Laboratory analysis revealed haemolytic anaemia with a positive direct anti-globulin test (DAT) and high titres of cold agglutinins. Hydroxychloroquine was stopped due to suspicion of haemolysis due to G6PD deficiency but the haemolysis persisted. Unfortunately, the respiratory failure progressed and the patient died. In summary, this article describes a rare case of CAS associated with COVID-19. CAS is a heterogenous group of cold autoimmune haemolytic anaemias occurring secondary to infections or malignancies. No definite treatment for CAS in COVID-19 patients has been approved so far. LEARNING POINTS: Autoimmune haemolytic anaemia has been reported in COVID-19 patients.Cold agglutinin syndrome (CAS) can occur in patients with COVID-19.Efforts to determine the optimal management of CAS in COVID-19 patients must continue.

SELECTION OF CITATIONS
SEARCH DETAIL