Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 464
Filter
1.
Curr Med Imaging ; 18(6): 658-665, 2022.
Article in English | MEDLINE | ID: covidwho-1862445

ABSTRACT

AIM: This study aimed to investigate whether initial chest Computed Tomography (CT) findings of COVID-19 patients could predict clinical outcomes, prognoses, and mortality rates associated with the infection. BACKGROUND: Published studies on chest CT in COVID-19 infection do not go beyond describing the characteristics of the current period. Comparative analysis of chest CT findings upon hospital admission among patients with different clinical outcomes is scarce. OBJECTIVE: We sought to retrospectively evaluate and compare clinical outcomes, prognoses, and mortality rates based upon the initial chest CT findings of 198 consecutive symptomatic patients with COVID-19 confirmed by Polymerase Chain Reaction (PCR). METHODS: Patients (N = 198) were divided into three groups according to their clinical outcomes as follows: group 1 (n = 62) included patients discharged from the service, group 2 (n= 60) included patients hospitalized in the intensive care unit, and group 3 (n = 76) included patients who died despite treatment. RESULTS: Predictors of poor prognosis and mortality with regard to chest CT findings included mediastinal lymphadenopathy, pleural effusion, and pericardial effusion, and clinical characteristics of age, dyspnea, and hypertension. The halo sign on chest CT was a good prognosis predictor in multivariate analysis. CONCLUSION: Some CT findings, such as discharge, intensive care unit hospitalization, and death as the worst consequence, significantly correlated with endpoints. These findings support the role of CT imaging for potentially predicting clinical outcomes of patients with COVID-19.


Subject(s)
COVID-19 , COVID-19/diagnostic imaging , Hospitalization , Humans , Prognosis , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
2.
Indian J Palliat Care ; 26(Suppl 1): S36-S39, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1792226

ABSTRACT

BACKGROUND AND AIM: Coronavirus disease 2019 (COVID-19) has become a global pandemic with the spectrum of disease from asymptomatic or mild disease to severe cases requiring intensive care unit (ICU) admission. In India, it started with milder presentation affecting younger population. Later on, an increase in disease severity was observed involving older age group as well. However, there is a paucity of published data regarding patients requiring ICU care in India. This case series describes the initial experience of an ICU in India regarding epidemiological profile, clinical course, and outcome of critically ill COVID-19 patients. METHODS: This case series included 27 consecutive laboratory-confirmed COVID-19 patients who were admitted in a tertiary care ICU over 14 days period, followed up till their discharge from ICU. Demographic and clinical data, including laboratory and radiological findings, were compiled with special attention to co-morbidities of the patients. The management of these patients was done as per the institutional protocol for critically ill COVID-19 patients. RESULTS: The median age of the patients was 50 years with no difference in gender. Comorbid conditions were seen in 85% of the patients with diabetes (43.7%) and hypertension (37.5%) as the most common conditions. The median duration of symptoms before admission was 6 days with fever as the most common clinical symptom at presentation. Chest roentogram showed bilateral lung infiltrates in 88.8% of the patients. Mild, moderate, and severe hypoxia were observed in 3, 8, and 16 patients, respectively. Ten patients were managed with oxygen therapy. Seventeen patients (62.9%) required ventilatory support. Mortality rate among patients admitted to our ICU was 59.2%. CONCLUSIONS: This case series shows middle-aged patients with comorbid diseases present with severe COVID-19 disease and have poor outcome.

3.
Trials ; 22(1): 172, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-1622253

ABSTRACT

OBJECTIVES: The primary objective of this study is to test the hypothesis that administration of dexamethasone 20 mg is superior to a 6 mg dose in adult patients with moderate or severe ARDS due to confirmed COVID-19. The secondary objective is to investigate the efficacy and safety of dexamethasone 20 mg versus dexamethasone 6 mg. The exploratory objective of this study is to assess long-term consequences on mortality and quality of life at 180 and 360 days. TRIAL DESIGN: REMED is a prospective, phase II, open-label, randomised controlled trial testing superiority of dexamethasone 20 mg vs 6 mg. The trial aims to be pragmatic, i.e. designed to evaluate the effectiveness of the intervention in conditions that are close to real-life routine clinical practice. PARTICIPANTS: The study is multi-centre and will be conducted in the intensive care units (ICUs) of ten university hospitals in the Czech Republic. INCLUSION CRITERIA: Subjects will be eligible for the trial if they meet all of the following criteria: 1. Adult (≥18 years of age) at time of enrolment; 2. Present COVID-19 (infection confirmed by RT-PCR or antigen testing); 3. Intubation/mechanical ventilation or ongoing high-flow nasal cannula (HFNC) oxygen therapy; 4. Moderate or severe ARDS according to Berlin criteria: • Moderate - PaO2/FiO2 100-200 mmHg; • Severe - PaO2/FiO2 < 100 mmHg; 5. Admission to ICU in the last 24 hours. EXCLUSION CRITERIA: Subjects will not be eligible for the trial if they meet any of the following criteria: 1. Known allergy/hypersensitivity to dexamethasone or excipients of the investigational medicinal product (e.g. parabens, benzyl alcohol); 2. Fulfilled criteria for ARDS for ≥14 days at enrolment; 3. Pregnancy or breastfeeding; 4. Unwillingness to comply with contraception measurements from enrolment until at least 1 week after the last dose of dexamethasone (sexual abstinence is considered an adequate contraception method); 5. End-of-life decision or patient is expected to die within next 24 hours; 6. Decision not to intubate or ceilings of care in place; 7. Immunosuppression and/or immunosuppressive drugs in medical history: a) Systemic immunosuppressive drugs or chemotherapy in the past 30 days; b) Systemic corticosteroid use before hospitalization; c) Any dose of dexamethasone during the present hospital stay for COVID-19 for ≥5 days before enrolment; d) Systemic corticosteroids during present hospital stay for conditions other than COVID-19 (e.g. septic shock); 8. Current haematological or generalized solid malignancy; 9. Any contraindication for corticosteroid administration, e.g. • intractable hyperglycaemia; • active gastrointestinal bleeding; • adrenal gland disorders; • presence of superinfection diagnosed with locally established clinical and laboratory criteria without adequate antimicrobial treatment; 10. Cardiac arrest before ICU admission; 11. Participation in another interventional trial in the last 30 days. INTERVENTION AND COMPARATOR: Dexamethasone solution for injection/infusion is the investigational medicinal product as well as the comparator. The trial will assess two doses, 20 mg (investigational) vs 6 mg (comparator). Patients in the intervention group will receive dexamethasone 20 mg intravenously once daily on day 1-5, followed by dexamethasone 10 mg intravenously once daily on day 6-10. Patients in the control group will receive dexamethasone 6 mg day 1-10. All authorized medicinal products containing dexamethasone in the form of solution for i.v. injection/infusion can be used. MAIN OUTCOMES: Primary endpoint: Number of ventilator-free days (VFDs) at 28 days after randomisation, defined as being alive and free from mechanical ventilation. SECONDARY ENDPOINTS: a) Mortality from any cause at 60 days after randomisation; b) Dynamics of inflammatory marker (C-Reactive Protein, CRP) change from Day 1 to Day 14; c) WHO Clinical Progression Scale at Day 14; d) Adverse events related to corticosteroids (new infections, new thrombotic complications) until Day 28 or hospital discharge; e) Independence at 90 days after randomisation assessed by Barthel Index. The long-term outcomes of this study are to assess long-term consequences on mortality and quality of life at 180 and 360 days through telephone structured interviews using the Barthel Index. RANDOMISATION: Randomisation will be carried out within the electronic case report form (eCRF) by the stratified permuted block randomisation method. Allocation sequences will be prepared by a statistician independent of the study team. Allocation to the treatment arm of an individual patient will not be available to the investigators before completion of the whole randomisation process. The following stratification factors will be applied: • Age <65 and ≥ 65; • Charlson Comorbidity index (CCI) <3 and ≥3; • CRP <150 mg/L and ≥150 mg/L • Trial centre. Patients will be randomised in a 1 : 1 ratio into one of the two treatment arms. Randomisation through the eCRF will be available 24 hours every day. BLINDING (MASKING): This is an open-label trial in which the participants and the study staff will be aware of the allocated intervention. Blinded pre-planned statistical analysis will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The sample size is calculated to detect the difference of 3 VFDs at 28 days (primary efficacy endpoint) between the two treatment arms with a two-sided type I error of 0.05 and power of 80%. Based on data from a multi-centre randomised controlled trial in COVID-19 ARDS patients in Brazil and a multi-centre observational study from French and Belgian ICUs regarding moderate to severe ARDS related to COVID-19, investigators assumed a standard deviation of VFD at 28 days as 9. Using these assumptions, a total of 142 patients per treatment arm would be needed. After adjustment for a drop-out rate, 150 per treatment arm (300 patients per study) will be enrolled. TRIAL STATUS: This is protocol version 1.1, 15.01.2021. The trial is due to start on 2 February 2021 and recruitment is expected to be completed by December 2021. TRIAL REGISTRATION: The study protocol was registered on EudraCT No.:2020-005887-70, and on December 11, 2020 on ClinicalTrials.gov (Title: Effect of Two Different Doses of Dexamethasone in Patients With ARDS and COVID-19 (REMED)) Identifier: NCT04663555 with a last update posted on February 1, 2021. FULL PROTOCOL: The full protocol (version 1.1) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the standard formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19/therapy , Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Respiration, Artificial , Respiratory Distress Syndrome/therapy , COVID-19/complications , Clinical Trials, Phase II as Topic , Disease Progression , Dose-Response Relationship, Drug , Equivalence Trials as Topic , Humans , Length of Stay , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/etiology , SARS-CoV-2
4.
Int J Occup Med Environ Health ; 34(6): 817-819, 2021 Dec 13.
Article in English | MEDLINE | ID: covidwho-1593206

ABSTRACT

OBJECTIVES: The physiological impact of wearing personal protective equipment (PPE), in particular filtering-face-piece 3 (FFP3) masks, has increasingly been gaining importance since the outbreak of coronavirus disease 2019 (COVID-19). So far, gas exchange has been examined using transcutaneously measured partial pressure of carbon dioxide (PaCO2), ergo-spirometry and impedance cardiography. MATERIAL AND METHODS: In this structured investigation, arterial blood gas analysis in a 30-year-old female resident was carried out during a 13-hour day shift on the COVID-19 Intensive Care Unit of the University Hospital of Innsbruck, Austria. An FFP3 mask (3MTM AuraTM) with an exhalation valve was continuously worn, except for 1 break of 20 min. Arterial blood samples were obtained before putting on the PPE, and after 5 h, 9 h and 13 h of working in the contaminated area. RESULTS: During the multi-hour wearing time, an increase in PaCO2 (the baseline value: 29.3 mm Hg, the max. value: 38.9 mm Hg) and a continuous decrease in partial pressure of oxygen (PaO2, the baseline value: 102 mm Hg, the min. value: 80.8 mm Hg) was detectable. CONCLUSIONS: All measured values were within the normal range, but a trend towards an insufficient gas exchange could be suspected. Int J Occup Med Environ Health. 2021;34(6):817-9.


Subject(s)
COVID-19 , Epilepsy , Adult , Exhalation , Female , Humans , Masks , Medical Staff , Personal Protective Equipment , SARS-CoV-2
5.
Anaesthesist ; 70(8): 662-670, 2021 Aug.
Article in German | MEDLINE | ID: covidwho-1575534

ABSTRACT

BACKGROUND: In the context of sepsis and septic shock, coagulopathy often occurs due to the close relationship between coagulation and inflammation. Sepsis-induced coagulopathy (SIC) is the most severe and potentially fatal form. Anticoagulants used in prophylactic or therapeutic doses are discussed to potentially exert beneficial effects in patients with sepsis and/or SIC; however, due to the lack of evidence recent guidelines are limited to recommendations for drug prophylaxis of venous thromboembolism (VTE), while treatment of SIC has not been addressed. METHODS: In order to determine the status quo of VTE prophylaxis as well as treatment of SIC in German intensive care units (ICU), we conducted a Germany-wide online survey among heads of ICUs from October 2019 to May 2020. In April 2020, the survey was supplemented by an additional block of questions on VTE prophylaxis and SIC treatment in coronavirus disease 2019 (COVID-19) patients. RESULTS: A total of 67 senior doctors took part in the survey. The majority (n = 50; 74.6%) of the responses were from ICU under the direction of an anesthesiologist and/or a department of anesthesiology. Most of the participants worked either at a university hospital (n = 31; 47.8%) or an academic teaching hospital (n = 27; 40.3%). The survey results show a pronounced heterogeneity in clinical practice with respect to the prophylaxis of VTE as well as SIC treatment. In an exemplary case of pneumogenic sepsis, low molecular weight heparins (LMWH) were by far the most frequently mentioned group of medications (n = 51; 76.1% of the responding ITS). In the majority of cases (n = 43; 64.2%), anti-FXa activity is not monitored with the use of LMWH in prophylaxis doses. Unfractionated heparin (UFH) was listed as a strategy for VTE prophylaxis in 37.3% of the responses (n = 25). In an exemplary case of abdominal sepsis 54.5% of the participants (n = 36; multiple answers possible) stated the use of UFH or LMWH and UFH with dosage controlled by PTT is used on two participating ICUs. The anti-FXa activity under prophylactic anticoagulation with LMWH is monitored in 7 participating clinics (10.6%) in abdominal sepsis. Systematic screening for sepsis-associated coagulation disorders does not take place in most hospitals and patterns in the use of anticoagulants show significant variability between ICUs. In the case of COVID-19 patients, it is particularly noticeable that in three quarters of the participating ICUs the practice of drug-based VTE prophylaxis and SIC treatment does not differ from that of non-COVID-19 patients. CONCLUSION: The heterogeneity of answers collected in the survey suggests that a systematic approach to this topic via clinical trials is urgently needed to underline individualized patient care with the necessary evidence.


Subject(s)
Anticoagulants , Blood Coagulation Disorders , Heparin, Low-Molecular-Weight/therapeutic use , Sepsis , Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , COVID-19 , Germany , Heparin/therapeutic use , Humans , Intensive Care Units , Sepsis/complications
6.
Drugs Real World Outcomes ; 8(3): 417-425, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1540320

ABSTRACT

BACKGROUND: Critically ill patients are admitted to intensive care units so they can be comprehensively managed and provided with services not covered in general hospital wards, with the aim to increase their chances of survival. These procedures include invasive mechanical ventilation. OBJECTIVE: The aim of this study was to identify the factors associated with survival in critically ill patients who required invasive mechanical ventilation in an intensive care unit of a tertiary-level hospital in Colombia. METHODS: This was a retrospective follow-up study of a cohort of adult patients who required invasive mechanical ventilation in an intensive care unit in San José de Buga Hospital, between 2017 and 2018. Sociodemographic, clinical, and pharmacological variables were identified. Using Cox regression, variables associated with survival and complications were identified. RESULTS: A total of 357 patients were analyzed. The average age was 64.8 ± 18.9 years, and 52.9% were male. The most frequent diagnoses were sepsis/septic shock (38.4%) and trauma (17.4%). The main factors associated with shorter survival were advanced age (HR 0.97; 95% CI 0.96-0.99), a diagnosis of septic shock (HR 0.29; 95% CI 0.18-0.48) or diabetes mellitus at admission (HR 0.57; 95% CI 0.33-0.98), a healthcare-associated infection (HR 0.51; 95% CI 0.33-0.80), and the need for vasopressors (HR 0.36; 95% CI 0.22-0.59). The administration of systemic corticosteroids was associated with a higher probability of survival (HR 1.93; 95% CI 1.15-3.25). CONCLUSIONS: The use of systemic corticosteroids was associated with a greater probability of survival in critically ill patients who required invasive mechanical ventilation in an intensive care unit. The identification of the variables associated with a higher risk of dying should allow care protocols to be improved, thereby extending the life expectancy of these patients.

7.
Pediatr Nephrol ; 36(9): 2627-2638, 2021 09.
Article in English | MEDLINE | ID: covidwho-1520348

ABSTRACT

BACKGROUND AND OBJECTIVES: COVID-19 is responsible for the 2019 novel coronavirus disease pandemic. Despite the vast research about the adult population, there has been little data collected on acute kidney injury (AKI) epidemiology, associated risk factors, treatments, and mortality in pediatric COVID-19 patients admitted to the ICU. AKI is a severe complication of COVID-19 among children and adolescents. METHODS: A comprehensive literature search was conducted in PubMed/MEDLINE and Cochrane Center Trials to find all published literature related to AKI in COVID-19 patients, including incidence and outcomes. RESULTS: Twenty-four studies reporting the outcomes of interest were included. Across all studies, the overall sample size of COVID positive children was 1,247 and the median age of this population was 9.1 years old. Among COVID positive pediatric patients, there was an AKI incidence of 30.51%, with only 0.56% of these patients receiving KRT. The mortality was 2.55% among all COVID positive pediatric patients. The incidence of multisystem inflammatory syndrome in children (MIS-C) among COVID positive patients was 74.29%. CONCLUSION: AKI has shown to be a negative prognostic factor in adult patients with COVID-19 and now also in the pediatric cohort with high incidence and mortality rates. Additionally, our findings show a strong comparison in epidemiology between adult and pediatric COVID-19 patients; however, they need to be confirmed with additional data and studies.


Subject(s)
Acute Kidney Injury/epidemiology , COVID-19/complications , Intensive Care Units/statistics & numerical data , Renal Replacement Therapy/statistics & numerical data , Systemic Inflammatory Response Syndrome/complications , Acute Kidney Injury/immunology , Acute Kidney Injury/therapy , Acute Kidney Injury/virology , Adult , Age Factors , COVID-19/diagnosis , COVID-19/immunology , COVID-19/mortality , Child , Hospital Mortality , Humans , Incidence , Pandemics/statistics & numerical data , Risk Factors , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/mortality
8.
Turk J Med Sci ; 51(4): 1665-1674, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1526879

ABSTRACT

Background/aim: Coronavirus disease 2019 (COVID-19) is a disease with a high rate of progression to critical illness. However, the predictors of mortality in critically ill patients admitted to the intensive care unit (ICU) are not yet well understood. In this study, we aimed to investigate the risk factors associated with ICU mortality in our hospital. Materials and methods: In this single-centered retrospective study, we enrolled 86 critically ill adult patients with COVID-19 admitted to ICU of Dokuz Eylül University Hospital (Izmir, Turkey) between 18 March 2020 and 31 October 2020. Data on demographic information, preexisting comorbidities, treatments, the laboratory findings at ICU admission, and clinical outcomes were collected. The chest computerized tomography (CT) of the patients were evaluated specifically for COVID-19 and CT score was calculated. Data of the survivors and nonsurvivors were compared with survival analysis to identify risk factors of mortality in the ICU. Results: The mean age of the patients was 71.1 ± 14.1 years. The patients were predominantly male. The most common comorbidity in patients was hypertension. ICU mortality was 62.8%. Being over 60 years old, CT score > 15, acute physiology and chronic health evaluation (APACHE) II score ≥ 15, having dementia, treatment without favipiravir, base excess in blood gas analysis ≤ ­2.0, WBC > 10,000/mm3, D-dimer > 1.6 µg/mL, troponin > 24 ng/L, Na ≥ 145 mmol/L were considered to link with ICU mortality according to Kaplan­Meier curves (log-rank test, p < 0.05). The APACHE II score (HR: 1.055, 95% CI: 1.021­1.090) and chest CT score (HR: 2.411, 95% CI:1.193­4.875) were associated with ICU mortality in the cox proportional-hazard regression model adjusted for age, dementia, favipiravir treatment and troponin. Howewer, no difference was found between survivors and nonsurvivors in terms of intubation timing. Conclusions: COVID-19 patients have a high ICU admission and mortality rate. Studies in the ICU are also crucial in this respect. In our study, we investigated the ICU mortality risk factors of COVID-19 patients. We determined a predictive mortality model consisting of APACHE II score and chest CT score. It was thought that this feasible and practical model would assist in making clinical decisions.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/mortality , Critical Care/methods , Hospital Mortality , Intubation, Intratracheal/methods , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Intensive Care Units , Intubation, Intratracheal/statistics & numerical data , Lung/diagnostic imaging , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2 , Survival Analysis , Time Factors , Turkey/epidemiology , Young Adult
9.
Crit Care Med ; 49(10): 1684-1693, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1452742

ABSTRACT

OBJECTIVES: Clinical trials evaluating the safety and effectiveness of sedative medication use in critically ill adults undergoing mechanical ventilation differ considerably in their methodological approach. This heterogeneity impedes the ability to compare results across studies. The Sedation Consortium on Endpoints and Procedures for Treatment, Education, and Research Recommendations convened a meeting of multidisciplinary experts to develop recommendations for key methodologic elements of sedation trials in the ICU to help guide academic and industry clinical investigators. DESIGN: A 2-day in-person meeting was held in Washington, DC, on March 28-29, 2019, followed by a three-round, online modified Delphi consensus process. PARTICIPANTS: Thirty-six participants from academia, industry, and the Food and Drug Administration with expertise in relevant content areas, including two former ICU patients attended the in-person meeting, and the majority completed an online follow-up survey and participated in the modified Delphi process. MEASUREMENTS AND MAIN RESULTS: The final recommendations were iteratively refined based on the survey results, participants' reactions to those results, summaries written by panel moderators, and a review of the meeting transcripts made from audio recordings. Fifteen recommendations were developed for study design and conduct, subject enrollment, outcomes, and measurement instruments. Consensus recommendations included obtaining input from ICU survivors and/or their families, ensuring adequate training for personnel using validated instruments for assessments of sedation, pain, and delirium in the ICU environment, and the need for methodological standardization. CONCLUSIONS: These recommendations are intended to assist researchers in the design, conduct, selection of endpoints, and reporting of clinical trials involving sedative medications and/or sedation protocols for adult ICU patients who require mechanical ventilation. These recommendations should be viewed as a starting point to improve clinical trials and help reduce methodological heterogeneity in future clinical trials.


Subject(s)
Hypnotics and Sedatives/pharmacokinetics , Hypnotics and Sedatives/therapeutic use , Congresses as Topic , Consensus , Delphi Technique , District of Columbia , Humans , Hypnotics and Sedatives/pharmacology , Respiration, Artificial/instrumentation , Respiration, Artificial/methods , Time Factors
10.
BMC Res Notes ; 14(1): 20, 2021 Jan 09.
Article in English | MEDLINE | ID: covidwho-1388819

ABSTRACT

OBJECTIVE: We aimed to characterize the effects of prone positioning on respiratory mechanics and oxygenation in invasively ventilated patients with SARS-CoV-2 ARDS. RESULTS: This was a prospective cohort study in the Intensive Care Unit (ICU) of a tertiary referral centre. We included 20 consecutive, invasively ventilated patients with laboratory confirmed SARS-CoV-2 related ARDS who underwent prone positioning in ICU as part of their management. The main outcome was the effect of prone positioning on gas exchange and respiratory mechanics. There was a median improvement in the PaO2/FiO2 ratio of 132 in the prone position compared to the supine position (IQR 67-228). We observed lower PaO2/FiO2 ratios in those with low (< median) baseline respiratory system static compliance, compared to those with higher (> median) static compliance (P < 0.05). There was no significant difference in respiratory system static compliance with prone positioning. Prone positioning was effective in improving oxygenation in SARS-CoV-2 ARDS. Furthermore, poor respiratory system static compliance was common and was associated with disease severity. Improvements in oxygenation were partly due to lung recruitment. Prone positioning should be considered in patients with SARS-CoV-2 ARDS.


Subject(s)
COVID-19/therapy , Lung/metabolism , Prone Position , COVID-19/metabolism , Cohort Studies , Humans , Male , Middle Aged , Oxygen/metabolism , Prospective Studies , Respiration, Artificial
11.
Trials ; 22(1): 288, 2021 Apr 19.
Article in English | MEDLINE | ID: covidwho-1388815

ABSTRACT

OBJECTIVES: The primary objective is to demonstrate that, in patients with PCR-confirmed SARS-CoV-2 resulting in Acute Respiratory Distress Syndrome (ARDS), administration of 120mg/kg of body weight of intravenous Prolastin®(plasma-purified alpha-1 antitrypsin) reduces circulating plasma levels of interleukin-6 (IL-6). Secondary objectives are to determine the effects of intravenous Prolastin® on important clinical outcomes including the incidence of adverse events (AEs) and serious adverse events (SAEs). TRIAL DESIGN: Phase 2, randomised, double-blind, placebo-controlled, pilot trial. PARTICIPANTS: The study will be conducted in Intensive Care Units in hospitals across Ireland. Patients with a laboratory-confirmed diagnosis of SARS-CoV-2-infection, moderate to severe ARDS (meeting Berlin criteria for a diagnosis of ARDS with a PaO2/FiO2 ratio <200 mmHg), >18 years of age and requiring invasive or non-invasive mechanical ventilation. All individuals meeting any of the following exclusion criteria at baseline or during screening will be excluded from study participation: more than 96 hours has elapsed from onset of ARDS; age < 18 years; known to be pregnant or breastfeeding; participation in a clinical trial of an investigational medicinal product (other than antibiotics or antivirals) within 30 days; major trauma in the prior 5 days; presence of any active malignancy (other than nonmelanoma skin cancer) which required treatment within the last year; WHO Class III or IV pulmonary hypertension; pulmonary embolism prior to hospital admission within past 3 months; currently receiving extracorporeal life support (ECLS); chronic kidney disease receiving dialysis; severe chronic liver disease with Child-Pugh score > 12; DNAR (Do Not Attempt Resuscitation) order in place; treatment withdrawal imminent within 24 hours; Prisoners; non-English speaking patients or those who do not adequately understand verbal or written information unless an interpreter is available; IgA deficiency. INTERVENTION AND COMPARATOR: Intervention: Either a once weekly intravenous infusion of Prolastin® at 120mg/kg of body weight for 4 weeks or a single dose of Prolastin® at 120mg/kg of body weight intravenously followed by once weekly intravenous infusion of an equal volume of 0.9% sodium chloride for a further 3 weeks. Comparator (placebo): An equal volume of 0.9% sodium chloride intravenously once per week for four weeks. MAIN OUTCOMES: The primary effectiveness outcome measure is the change in plasma concentration of IL-6 at 7 days as measured by ELISA. Secondary outcomes include: safety and tolerability of Prolastin® in the respective groups (as defined by the number of SAEs and AEs); PaO2/FiO2 ratio; respiratory compliance; sequential organ failure assessment (SOFA) score; mortality; time on ventilator in days; plasma concentration of alpha-1 antitrypsin (AAT) as measured by nephelometry; plasma concentrations of interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-10 (IL-10), soluble TNF receptor 1 (sTNFR1, a surrogate marker for TNF-α) as measured by ELISA; development of shock; acute kidney injury; need for renal replacement therapy; clinical relapse, as defined by the need for readmission to the ICU or a marked decline in PaO2/FiO2 or development of shock or mortality following a period of sustained clinical improvement; secondary bacterial pneumonia as defined by the combination of radiographic findings and sputum/airway secretion microscopy and culture. RANDOMISATION: Following informed consent/assent patients will be randomised. The randomisation lists will be prepared by the study statistician and given to the unblinded trial personnel. However, the statistician will not be exposed to how the planned treatment will be allocated to the treatment codes. Randomisation will be conducted in a 1:1:1 ratio, stratified by site and age. BLINDING (MASKING): The investigator, treating physician, other members of the site research team and patients will be blinded to treatment allocation. The clinical trial pharmacy personnel and research nurses will be unblinded to facilitate intervention and placebo preparation. The unblinded individuals will keep the treatment information confidential. The infusion bag will be masked at the time of preparation and will be administered via a masked infusion set to maintain blinding. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total of 36 patients will be recruited and randomised in a 1:1:1 ratio to each of the trial arms. TRIAL STATUS: In March 2020, version 1.0 of the trial protocol was submitted to the local research ethics committee (REC), Health Research Consent Declaration Committee (HRCDC) and the Health Products regulatory Authority (HPRA). REC approval was granted on April 1st 2020, HPRA approval was granted on April 24th 2020 and the HRCDC provided a conditional declaration on April 17th 2020. In July 2020 a substantial amendment (version 2.0) was submitted to the REC, HRCDC and HPRA. Protocol changes in this amendment included: the addition of trial sites; extending the duration of the trial to 12 months from 3 months; removal of inclusion criteria requiring the need for vasopressors; amendment of randomisation schedule to stratify by age only and not BMI and sex; correction of grammatical error in relation to infusion duration; to allow for inclusion of subjects who may have been enrolled in a clinical trial involving either antibiotics or anti-virals in the past 30 days; to allow for inclusion of subjects who may be currently enrolled in a clinical trial involving either antibiotics or anti-virals; to remove the need for exclusion based on alpha-1 antitrypsin phenotype; removal of mandatory isoelectric focusing of plasma to confirm Pi*MM status at screening; removal of need for mandatory echocardiogram at screening; amendment on procedures around plasma analysis to reflect that this will be conducted at the central site laboratory (as trial is multi-site and no longer single site); wording amended to reflect that interim analysis of cytokine levels taken at 7 days may be conducted. HRCDC approved version 2.0 on September 14th 2020, and HPRA approved on October 22nd 2020. REC approved the substantial amendment on November 23rd. In November 2020, version 3.0 of the trial protocol was submitted to the REC and HPRA. The rationale for this amendment was to allow for patients with moderate to severe ARDS from SARS-CoV-2 with non-invasive ventilation. HPRA approved this amendment on December 1st 2020 and the REC approved the amendment on December 8th 2020. Patient recruitment commenced in April 2020 and the last patient will be recruited to the trial in April 2021. The last visit of the last patient is anticipated to occur in April 2021. At time of writing, patient recruitment is now complete, however follow-up patient visits and data collection are ongoing. TRIAL REGISTRATION: EudraCT 2020-001391-15 (Registered 31 Mar 2020). FULL PROTOCOL: The full protocol (version 3.0 23.11.2020) is attached as an additional file accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
COVID-19/drug therapy , Respiratory Distress Syndrome/drug therapy , alpha 1-Antitrypsin/therapeutic use , Double-Blind Method , Humans , Ireland , Pilot Projects , Plasma , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/diagnosis , alpha 1-Antitrypsin/administration & dosage
12.
J Infect ; 83(2): e1-e3, 2021 08.
Article in English | MEDLINE | ID: covidwho-1386044

ABSTRACT

AIM: to compare clinical features and outcome of children with severe acute lower respiratory infection (ALRI) with or without SARS-CoV-2 infection admitted to Paediatric Intensive Care Unit (PICU). METHODS: for this retrospective cohort study, all children aged<17 years admitted with severe ALRI at a PICU, in Salvador, Brazil were evaluated. Investigation of SARS-CoV-2 infection was performed by real-time reverse-transcription PCR. Clinical data, physical findings upon admission and outcome were registered. Patients were categorized by with or without SARS-Cov-2 infection. Outcomes were death and invasive mechanical ventilation (IMV). RESULTS: we enrolled 210 patients, whose median age was 2.8 years (IQR: 7.1 months-6.2 years). IMV was used in 33 (15.7%; 95%CI 11.3%-21.1%) patients. Eight (3.8%; 95%CI 1.8%-7.1%) cases died. 62 patients (29.5%) tested positive for SARS-CoV-2. Male gender (67.7% vs. 52.7%, P = 0.045) and sickle cell disease (6.5% vs. 0%, P = 0.007) were associated with SARS-CoV-2 infection. Wheezing upon admission was more common in patients without SARS-CoV-2 infection (38.5% vs. 21.0%, P = 0.01). IMV was more frequent among patients with SARS-CoV-2 infection (25.8% vs. 11.5%, P = 0.009) as well as death (8.1% vs. 2.0%, P = 0.05). CONCLUSION: children with severe ALRI infection with SARS-CoV-2 need IMV more frequently than those without it.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , Child , Child, Preschool , Humans , Male , Respiration, Artificial , Retrospective Studies
13.
Front Med (Lausanne) ; 7: 611460, 2020.
Article in English | MEDLINE | ID: covidwho-1389196

ABSTRACT

Background: The data on long-term outcomes of patients infected by SARS-CoV-2 and treated with extracorporeal membrane oxygenation (ECMO) in China are merely available. Methods: A retrospective study included 73 patients infected by SARS-CoV-2 and treated with ECMO in 21 intensive care units in Hubei, China. Data on demographic information, clinical features, laboratory tests, ECMO durations, complications, and living status were collected. Results: The 73 ECMO-treated patients had a median age of 62 (range 33-78) years and 42 (63.6%) were males. Before ECMO initiation, patients had severe respiratory failure on mechanical ventilation with a median PO2/FiO2 of 71.9 [interquartile range (IQR), 58.6-87.0] mmHg and a median PCO2 of 62 [IQR, 43-84] mmHg on arterial blood analyses. The median duration from symptom onset to invasive mechanical ventilation, and to ECMO initiation was19 [IQR, 15-25] days, and 23 [IQR, 19-31] days. Before and after ECMO initiation, the proportions of patients receiving prone position ventilation were 58.9 and 69.9%, respectively. The median duration of ECMO support was 18.5 [IQR 12-30] days. During the treatments with ECMO, major hemorrhages occurred in 31 (42.5%) patients, and oxygenators were replaced in 21 (28.8%) patients. Since ECMO initiation, the 30-day mortality and 60-day mortality were 63.0 and 80.8%, respectively. Conclusions: In Hubei, China, the ECMO-treated patients infected by SARS-CoV-2 were of a broad age range and with severe hypoxemia. The durations of ECMO support, accompanied with increased complications, were relatively long. The long-term mortality in these patients was considerably high.

14.
Int J Clin Pract ; 75(10): e14328, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1352471

ABSTRACT

OBJECTIVES: During the pandemic, anxiety and depression may occur increasingly in the whole society. The aim of this study was to evaluate the possible cause, incidence and levels of anxiety and depression in the relatives of the patients in the intensive care unit (ICU) in accordance with the patients' SARS-CoV-2 polymerase chain reaction (PCR) result. MATERIALS AND METHOD: The study was prospectively conducted on relatives of patients admitted to tertiary intensive care units during COVID-19 pandemic. Sociodemographic characteristics of the patients and their relatives were recorded. "The Turkish version of the Hospital Anxiety and Depression Scale" was applied twice to the relatives of 120 patients to determine the symptoms of anxiety and depression in accordance with the PCR results of the patients (PCR positive n = 60, PCR negative n = 60). RESULTS: The ratios above cut-off values for anxiety and depression among relatives of the patients were 45.8% and 67.5% for the first questionnaire and 46.7% and 62.5% for the second questionnaire, respectively. The anxiety and depression in the relatives of PCR-positive patients was more frequent than the PCR negative (P < .001 for HADS-A and P = .034 for HADS-D). The prevalence of anxiety and depression was significantly higher in female relatives (P = .046 for HADS-A and P = .009 for HADS-A). There was no significant correlation between HADS and age of the patient or education of the participants. The fact that the patients were hospitalised in the ICU during the pandemic was an independent risk factor for anxiety (AUC = 0.746) while restricted visitation in the ICU was an independent risk factor for depression (AUC = 0.703). CONCLUSION: Positive PCR and female gender were associated with both anxiety and depression while hospitalisation in the ICU due to COVID-19 was an independent risk factor for anxiety and restricted visitation in the ICU is an independent risk factor for depression.


Subject(s)
COVID-19 , Pandemics , Anxiety/epidemiology , Depression/epidemiology , Female , Hospitalization , Humans , Intensive Care Units , SARS-CoV-2
15.
Cancer Cytopathol ; 129(8): 632-641, 2021 08.
Article in English | MEDLINE | ID: covidwho-1342873

ABSTRACT

BACKGROUND: Bronchoalveolar lavage (BAL) in patients with severe coronavirus disease 2019 (COVID-19) may provide additional and complementary findings for the management of these patients admitted to intensive care units (ICUs). This study addresses the cytological features of the infection and highlights the more influential inflammatory components. The correlation between pathological variables and clinical data is also analyzed. METHODS: The authors performed a retrospective analysis of the cytopathological features of BAL in 20 COVID-19 patients and 20 members of a matched cohort from a critical ICU who had acute respiratory distress syndrome caused by other pulmonary conditions. RESULTS: A comparison of the controls (n = 20) and the COVID-19 patients (n = 20) revealed that the latter had a higher neutrophil count (median, 63.8% of the cell count) with lower percentages of macrophages and lymphocytes. An increase in the expression of CD68-positive, monocytic multinucleated giant cells (MGCs) was reported; megakaryocytes were not detected on CD61 staining. Perls staining showed isolated elements. In situ RNA analysis demonstrated scattered chromogenic signals in type II pneumocytes. An ultrastructural analysis confirmed the presence of intracytoplasmic vacuoles containing rounded structures measuring 140 nm in diameter (putative viral particles). In COVID-19 patients, the clinicopathological correlation revealed a positive correlation between lactate dehydrogenase values and MGCs (r = 0.54). CONCLUSIONS: The analysis of BAL samples might be implemented as a routine practice for the evaluation of COVID-19 patients in ICUs in the appropriate clinical scenario. Additional studies using a larger sample size of patients who developed COVID-19 during the second wave of the epidemic in the autumn of 2020 are needed to further support our findings.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/diagnosis , COVID-19/immunology , COVID-19/pathology , Adult , Aged , Female , Humans , Male , Middle Aged , Pilot Projects , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Retrospective Studies , SARS-CoV-2
16.
Lancet Respir Med ; 9(7): 699-711, 2021 07.
Article in English | MEDLINE | ID: covidwho-1337033

ABSTRACT

BACKGROUND: Studies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use. METHODS: We analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16-49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting ß-agonists [SABAs], and long-acting ß-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma. FINDINGS: 75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16-49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16-49 years: adjusted odds ratio [OR] 1·20 [95% CI 1·05-1·37]; p=0·0080; patients aged ≥50 years: adjusted OR 1·17 [1·08-1·27]; p<0·0001), and patients aged 50 years and older with chronic pulmonary disease (with or without asthma) were significantly less likely than those without a respiratory condition to receive critical care (adjusted OR 0·66 [0·60-0·72] for those without asthma and 0·74 [0·62-0·87] for those with asthma; p<0·0001 for both). In patients aged 16-49 years, only those with severe asthma had a significant increase in mortality compared to those with no asthma (adjusted hazard ratio [HR] 1·17 [95% CI 0·73-1·86] for those on no asthma therapy, 0·99 [0·61-1·58] for those on SABAs only, 0·94 [0·62-1·43] for those on inhaled corticosteroids only, 1·02 [0·67-1·54] for those on inhaled corticosteroids plus LABAs, and 1·96 [1·25-3·08] for those with severe asthma). Among patients aged 50 years and older, those with chronic pulmonary disease had a significantly increased mortality risk, regardless of inhaled corticosteroid use, compared to patients without an underlying respiratory condition (adjusted HR 1·16 [95% CI 1·12-1·22] for those not on inhaled corticosteroids, and 1·10 [1·04-1·16] for those on inhaled corticosteroids; p<0·0001). Patients aged 50 years and older with severe asthma also had an increased mortality risk compared to those not on asthma therapy (adjusted HR 1·24 [95% CI 1·04-1·49]). In patients aged 50 years and older, inhaled corticosteroid use within 2 weeks of hospital admission was associated with decreased mortality in those with asthma, compared to those without an underlying respiratory condition (adjusted HR 0·86 [95% CI 0·80-0·92]). INTERPRETATION: Underlying respiratory conditions are common in patients admitted to hospital with COVID-19. Regardless of the severity of symptoms at admission and comorbidities, patients with asthma were more likely, and those with chronic pulmonary disease less likely, to receive critical care than patients without an underlying respiratory condition. In patients aged 16 years and older, severe asthma was associated with increased mortality compared to non-severe asthma. In patients aged 50 years and older, inhaled corticosteroid use in those with asthma was associated with lower mortality than in patients without an underlying respiratory condition; patients with chronic pulmonary disease had significantly increased mortality compared to those with no underlying respiratory condition, regardless of inhaled corticosteroid use. Our results suggest that the use of inhaled corticosteroids, within 2 weeks of admission, improves survival for patients aged 50 years and older with asthma, but not for those with chronic pulmonary disease. FUNDING: National Institute for Health Research, Medical Research Council, NIHR Health Protection Research Units in Emerging and Zoonotic Infections at the University of Liverpool and in Respiratory Infections at Imperial College London in partnership with Public Health England.


Subject(s)
Asthma/complications , Asthma/mortality , COVID-19/complications , COVID-19/mortality , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/mortality , Adolescent , Adult , Clinical Protocols , Cohort Studies , Female , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Risk Assessment , United Kingdom , World Health Organization , Young Adult
17.
Gac Med Mex ; 157(1): 97-101, 2021.
Article in English | MEDLINE | ID: covidwho-1328412

ABSTRACT

INTRODUCTION: COVID-19-associated mortality in patients who require mechanical ventilation is unknown in the Mexican population. OBJECTIVE: To describe the characteristics of Mexican patients with COVID-19 who required mechanical ventilation. METHODS: Observational cohort study carried out in an intensive care unit from March 25 to July 17, 2020. Data were obtained from a prospective database and electronic medical records, and were analyzed with the chi-square test, Fisher's exact test or Mann-Whitney's U-test. RESULTS: One hundred patients required mechanical ventilation; median age was 56 years, 31 % were females and 97 % were Latin American. Most common comorbidities were obesity (36 %), diabetes (26 %), hypertension (20 %), and chronic or end-stage kidney disease (10 %). At the end of the analysis, 11 patients remained in the ICU, 31 had been discharged alive and 58 (65.2 %) died; survivors were younger, had lower scores on severity and organ dysfunction scales, lower levels of C-reactive protein at ICU admission, were less likely to receive hemodialysis and vasopressors, and had longer hospital and ICU stays. CONCLUSIONS: This study adds information on the presentation and results of SARS-CoV-2-infected patients who require mechanical ventilation.


INTRODUCCIÓN: La mortalidad por COVID-19 en quienes requieren ventilación mecánica se desconoce en la población mexicana. OBJETIVO: Describir las características de pacientes mexicanos con COVID-19 que requirieron ventilación mecánica. MÉTODOS: Estudio de cohorte observacional en una unidad de terapia intensiva, del 25 de marzo al 17 de julio de 2020. Los datos se obtuvieron de una base de datos prospectiva y de registros clínicos electrónicos; fueron analizados con c2, prueba exacta de Fisher o prueba U de Mann-Whitney. RESULTADOS: Cien pacientes recibieron ventilación mecánica, la edad media fue de 56 años, 31 % era del sexo femenino y 97 %, latinoamericano. Las comorbilidades más comunes fueron obesidad (36 %), diabetes (26 %), hipertensión (20 %) y enfermedad renal crónica o renal terminal (10 %). Al término del análisis, 11 pacientes permanecían en la UCI, 31 egresaron vivos y 58 (65.2 %) fallecieron; los sobrevivientes fueron más jóvenes, con menores puntuación en las escalas de gravedad y disfunción orgánica, menores niveles de proteína C reactiva al ingreso a la UCI, menor propensión a hemodiálisis, necesidad de, necesidad de vasopresores y con mayor estancia hospitalaria y en la UCI. CONCLUSIONES: Este estudio agrega información sobre la presentación y resultados de pacientes con ventilación mecánica infectados con SARS-CoV-2.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Respiration, Artificial , Aged , Cohort Studies , Female , Humans , Male , Mexico/epidemiology , Middle Aged
18.
J Thromb Haemost ; 18(7): 1743-1746, 2020 07.
Article in English | MEDLINE | ID: covidwho-1317987

ABSTRACT

BACKGROUND: Coagulopathy is a common abnormality in patients with COVID-19. However, the exact incidence of venous thromboembolic event is unknown in anticoagulated, severe COVID-19 patients. OBJECTIVES: Systematic assessment of venous thromboembolism (VTE) using complete duplex ultrasound (CDU) in anticoagulated COVID-19 patients. PATIENTS AND METHODS: We performed a retrospective study in 2 French intensive care units (ICU) where CDU is performed as a standard of care. A CDU from thigh to ankle at selected sites with Doppler waveforms and images was performed early during ICU stay in patients admitted with COVID-19. Anticoagulation dose was left to the discretion of the treating physician based on the individual risk of thrombosis. Patients were classified as treated with prophylactic anticoagulation or therapeutic anticoagulation. Pulmonary embolism was systematically searched in patients with persistent hypoxemia or secondary deterioration. RESULTS: From March 19 to April 11, 2020, 26 consecutive patients with severe COVID-19 were screened for VTE. Eight patients (31%) were treated with prophylactic anticoagulation, whereas 18 patients (69%) were treated with therapeutic anticoagulation. The overall rate of VTE in patients was 69%. The proportion of VTE was significantly higher in patients treated with prophylactic anticoagulation when compared with the other group (100% vs 56%, respectively, P = .03). Surprisingly, we found a high rate of thromboembolic events in COVID-19 patients treated with therapeutic anticoagulation, with 56% of VTE and 6 pulmonary embolisms. CONCLUSION: Our results suggest considering both systematic screening of VTE and early therapeutic anticoagulation in severe ICU COVID-19 patients.


Subject(s)
Anticoagulants/therapeutic use , Betacoronavirus/pathogenicity , Blood Coagulation/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Pulmonary Embolism/prevention & control , Venous Thromboembolism/prevention & control , Venous Thrombosis/prevention & control , Aged , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Female , France/epidemiology , Host-Parasite Interactions , Humans , Incidence , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Pulmonary Embolism/blood , Pulmonary Embolism/epidemiology , Pulmonary Embolism/virology , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome , Venous Thromboembolism/blood , Venous Thromboembolism/epidemiology , Venous Thromboembolism/virology , Venous Thrombosis/blood , Venous Thrombosis/epidemiology , Venous Thrombosis/virology
19.
J Thromb Haemost ; 18(7): 1747-1751, 2020 07.
Article in English | MEDLINE | ID: covidwho-1317985

ABSTRACT

BACKGROUND: Few observations exist with respect to the pro-coagulant profile of patients with COVID-19 acute respiratory distress syndrome (ARDS). Reports of thromboembolic complications are scarce but suggestive for a clinical relevance of the problem. OBJECTIVES: Prospective observational study aimed to characterize the coagulation profile of COVID-19 ARDS patients with standard and viscoelastic coagulation tests and to evaluate their changes after establishment of an aggressive thromboprophylaxis. METHODS: Sixteen patients with COVID-19 ARDS received a complete coagulation profile at the admission in the intensive care unit. Ten patients were followed in the subsequent 7 days, after increasing the dose of low molecular weight heparin, antithrombin levels correction, and clopidogrel in selected cases. RESULTS: At baseline, the patients showed a pro-coagulant profile characterized by an increased clot strength (CS, median 55 hPa, 95% interquartile range 35-63), platelet contribution to CS (PCS, 43 hPa; interquartile range 24-45), fibrinogen contribution to CS (FCS, 12 hPa; interquartile range 6-13.5) elevated D-dimer levels (5.5 µg/mL, interquartile range 2.5-6.5), and hyperfibrinogenemia (794 mg/dL, interquartile range 583-933). Fibrinogen levels were associated (R2  = .506, P = .003) with interleukin-6 values. After increasing the thromboprophylaxis, there was a significant (P = .001) time-related decrease of fibrinogen levels, D-dimers (P = .017), CS (P = .013), PCS (P = .035), and FCS (P = .038). CONCLUSION: The pro-coagulant pattern of these patients may justify the clinical reports of thromboembolic complications (pulmonary embolism) during the course of the disease. Further studies are needed to assess the best prophylaxis and treatment of this condition.


Subject(s)
Betacoronavirus/pathogenicity , Blood Coagulation Disorders/blood , Blood Coagulation , Coronavirus Infections/blood , Pneumonia, Viral/blood , Aged , Anticoagulants/administration & dosage , Biomarkers/blood , Blood Coagulation/drug effects , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/virology , Blood Coagulation Tests , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Fibrinolytic Agents/administration & dosage , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Prospective Studies , SARS-CoV-2 , Treatment Outcome
20.
Shock ; 56(2): 200-205, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1316852

ABSTRACT

PURPOSE: We used lung ultrasonography to identify features of COVID-19 pneumonia and to evaluate the prognostic value. PATIENTS AND METHODS: We performed lung ultrasonography on 48 COVID-19 patients in an intensive care unit (ICU) (Wuhan, China) using a 12-zone method. The associations between lung ultrasonography score, PaO2/FiO2, APACHE II, SOFA, and PaCO2 with 28-day mortality were analyzed and the receiver operator characteristic curve was plotted. RESULTS: 25.9% areas in all scanning zones presented with B7 lines and 23.5% with B3 lines (B-pattern) on lung ultrasonography; 13% areas with confluent B lines (B-pattern), 24.9% in areas with consolidations, and 9.9% in areas with A lines. Pleural effusion was observed in 2.8% of areas. Lung ultrasonography score was negatively correlated with PaO2/FiO2 (n = 48, r = -0.498, P < 0.05) and positively correlated with APACHE II (n = 48, r = 0.435, P < 0.05). Lung ultrasonography score was independently associated with 28-day mortality. The areas under receiver operator characteristic curves of lung ultrasonography score were 0.735 (95% CI: 0.586-0.844). The sensitivity, specificity, and cutoff values were 0.833, 0.722, and 22.5, respectively. CONCLUSIONS: Lung ultrasonography could be used to assess the severity of COVID-19 pneumonia, and it could also reveal the pathological signs of the disease. The lung ultrasonography score on ICU admission was independently related to the ICU 28-day mortality.


Subject(s)
COVID-19/diagnosis , Lung/diagnostic imaging , Ultrasonography/methods , Aged , COVID-19/epidemiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pandemics , Prognosis , Prospective Studies , ROC Curve , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL