Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Medicines (Basel) ; 8(1)2021 Jan 07.
Article in English | MEDLINE | ID: covidwho-1016198

ABSTRACT

Background: Acute kidney injury (AKI) is a serious complication of COVID-19. Methods: Records of hospitalized adult patients with confirmed SARS-CoV-2 infection from 1 March to 31 May 2020 were retrospectively reviewed. Results: Of 283 patients, AKI occurred in 40.6%. From multivariate analyses, the risk factors of AKI in COVID-19 can be divided into: (1) demographics/co-morbidities (male, increasing age, diabetes, chronic kidney disease); (2) other organ involvements (transaminitis, elevated troponin I, ST segment/T wave change on electrocardiography); (3) elevated biomarkers (ferritin, lactate dehydrogenase); (4) possible bacterial co-infection (leukocytosis, elevated procalcitonin); (5) need for advanced oxygen delivery (non-invasive positive pressure ventilation, mechanical ventilation); and (6) other critical features (ICU admission, need for vasopressors, acute respiratory distress syndrome). Most AKIs were due to pre-renal (70.4%) and intrinsic (34.8%) causes. Renal replacement therapy was more common in intrinsic AKI. Both pre-renal (HR 3.2; 95% CI 1.7-5.9) and intrinsic AKI (HR 7.7; 95% CI 3.6-16.3) were associated with higher mortality. Male, stage 3 AKI, higher baseline and peak serum creatinine and blood urea nitrogen were prevalent in intrinsic AKI. Urine analysis and the fractional excretion of sodium and urea were not helpful in distinguishing intrinsic AKI from other causes. Conclusions: AKI is very common in COVID-19 and is associated with higher mortality. Characterization of AKI is warranted due to its diverse nature and clinical outcome.

2.
BMC Infect Dis ; 20(1): 960, 2020 Dec 17.
Article in English | MEDLINE | ID: covidwho-979678

ABSTRACT

BACKGROUND: The mortality rate from acute respiratory distress syndrome (ARDS) is high among hospitalized patients with coronavirus disease 2019 (COVID-19). Hence, risk evaluation tools are required to immediately identify high-risk patients upon admission for early intervention. METHODS: A cohort of 220 consecutive patients with COVID-19 were included in this study. To analyze the risk factors of ARDS, data obtained from approximately 70% of the participants were randomly selected and used as training dataset to establish a logistic regression model. Meanwhile, data obtained from the remaining 30% of the participants were used as test dataset to validate the effect of the model. RESULTS: Lactate dehydrogenase, blood urea nitrogen, D-dimer, procalcitonin, and ferritin levels were included in the risk score system and were assigned a score of 25, 15, 34, 20, and 24, respectively. The cutoff value for the total score was > 35, with a sensitivity of 100.00% and specificity of 81.20%. The area under the receiver operating characteristic curve and the Hosmer-Lemeshow test were 0.967 (95% confidence interval [CI]: 0.925-0.989) and 0.437(P Value = 0.437). The model had excellent discrimination and calibration during internal validation. CONCLUSIONS: The novel risk score may be a valuable risk evaluation tool for screening patients with COVID-19 who are at high risk of ARDS.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/epidemiology , Adult , Aged , China/epidemiology , Cohort Studies , Female , Hospitalization , Humans , Logistic Models , Male , Middle Aged , Predictive Value of Tests , Prognosis , ROC Curve , Risk Factors , SARS-CoV-2
3.
J Transl Med ; 18(1): 451, 2020 11 30.
Article in English | MEDLINE | ID: covidwho-949113

ABSTRACT

BACKGROUND: During the coronavirus disease-2019 (COVID-19) pandemic, Italian hospitals faced the most daunting challenges of their recent history, and only essential therapeutic interventions were feasible. From March to April 2020, the Laboratory of Advanced Cellular Therapies (Vicenza, Italy) received requests to treat a patient with severe COVID-19 and a patient with acute graft-versus-host disease with umbilical cord-derived mesenchymal stromal cells (UC-MSCs). Access to clinics was restricted due to the risk of contagion. Transport of UC-MSCs in liquid nitrogen was unmanageable, leaving shipment in dry ice as the only option. METHODS: We assessed effects of the transition from liquid nitrogen to dry ice on cell viability; apoptosis; phenotype; proliferation; immunomodulation; and clonogenesis; and validated dry ice-based transport of UC-MSCs to clinics. RESULTS: Our results showed no differences in cell functionality related to the two storage conditions, and demonstrated the preservation of immunomodulatory and clonogenic potentials in dry ice. UC-MSCs were successfully delivered to points-of-care, enabling favourable clinical outcomes. CONCLUSIONS: This experience underscores the flexibility of a public cell factory in its adaptation of the logistics of an advanced therapy medicinal product during a public health crisis. Alternative supply chains should be evaluated for other cell products to guarantee delivery during catastrophes.


Subject(s)
COVID-19/therapy , Delivery of Health Care/organization & administration , Dry Ice , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Point-of-Care Systems/organization & administration , Transportation , Acute Disease , COVID-19/epidemiology , COVID-19/pathology , Cell Proliferation , Cell Survival , Cells, Cultured , Cord Blood Stem Cell Transplantation/adverse effects , Delivery of Health Care/standards , Equipment and Supplies, Hospital/standards , Equipment and Supplies, Hospital/supply & distribution , Graft vs Host Disease/etiology , Graft vs Host Disease/pathology , Graft vs Host Disease/therapy , Humans , Italy/epidemiology , Materials Management, Hospital/organization & administration , Materials Management, Hospital/standards , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/standards , Mesenchymal Stem Cells/physiology , Organization and Administration/standards , Pandemics , Phenotype , Point-of-Care Systems/standards , SARS-CoV-2/physiology , Severity of Illness Index , Transportation/methods , Transportation/standards
4.
Respir Res ; 21(1): 277, 2020 Oct 21.
Article in English | MEDLINE | ID: covidwho-883578

ABSTRACT

BACKGROUND: Prior studies reported that 5 ~ 32% COVID-19 patients were critically ill, a situation that poses great challenge for the management of the patients and ICU resources. We aim to identify independent risk factors to serve as prediction markers for critical illness of SARS-CoV-2 infection. METHODS: Fifty-two critical and 200 non-critical SARS-CoV-2 nucleic acid positive patients hospitalized in 15 hospitals outside Wuhan from January 19 to March 6, 2020 were enrolled in this study. Multivariable logistic regression and LASSO logistic regression were performed to identify independent risk factors for critical illness. RESULTS: Age older than 60 years, dyspnea, respiratory rate > 24 breaths per min, leukocytosis > 9.5 × 109/L, neutrophilia > 6.3 × 109/L, lymphopenia < 1.1 × 109/L, neutrophil-to-lymphocyte ratio > 3.53, fibrinogen > 4 g/L, d-dimer > 0.55 µg/mL, blood urea nitrogen > 7.1 mM, elevated aspartate transaminase, elevated alanine aminotransferase, total bilirubin > 21 µM, and Sequential Organ Failure Assessment (SOFA) score ≥ 2 were identified as risk factors for critical illness. LASSO logistic regression identified the best combination of risk factors as SOFA score, age, dyspnea, and leukocytosis. The Area Under the Receiver-Operator Curve values for the risk factors in predicting critical illness were 0.921 for SOFA score, 0.776 for age, 0.764 for dyspnea, 0.658 for leukocytosis, and 0.960 for the combination of the four risk factors. CONCLUSIONS: Our findings advocate the use of risk factors SOFA score ≥ 2, age > 60, dyspnea and leukocytosis > 9.5 × 109/L on admission, alone or in combination, to determine the optimal management of the patients and health care resources.


Subject(s)
Coronavirus Infections/epidemiology , Critical Illness/epidemiology , Pneumonia, Viral/epidemiology , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers/analysis , Blood Cell Count , COVID-19 , China/epidemiology , Cohort Studies , Comorbidity , Coronavirus Infections/blood , Coronavirus Infections/diagnostic imaging , Critical Care , Female , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnostic imaging , ROC Curve , Regression Analysis , Risk Factors , Severity of Illness Index , Treatment Outcome
5.
Oxid Med Cell Longev ; 2020: 6401341, 2020.
Article in English | MEDLINE | ID: covidwho-814265

ABSTRACT

Human SARS-CoV-2 infection is characterized by a high mortality rate due to some patients developing a large innate immune response associated with a cytokine storm and acute respiratory distress syndrome (ARDS). This is characterized at the molecular level by decreased energy metabolism, altered redox state, oxidative damage, and cell death. Therapies that increase levels of (R)-beta-hydroxybutyrate (R-BHB), such as the ketogenic diet or consuming exogenous ketones, should restore altered energy metabolism and redox state. R-BHB activates anti-inflammatory GPR109A signaling and inhibits the NLRP3 inflammasome and histone deacetylases, while a ketogenic diet has been shown to protect mice from influenza virus infection through a protective γδ T cell response and by increasing electron transport chain gene expression to restore energy metabolism. During a virus-induced cytokine storm, metabolic flexibility is compromised due to increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that damage, downregulate, or inactivate many enzymes of central metabolism including the pyruvate dehydrogenase complex (PDC). This leads to an energy and redox crisis that decreases B and T cell proliferation and results in increased cytokine production and cell death. It is hypothesized that a moderately high-fat diet together with exogenous ketone supplementation at the first signs of respiratory distress will increase mitochondrial metabolism by bypassing the block at PDC. R-BHB-mediated restoration of nucleotide coenzyme ratios and redox state should decrease ROS and RNS to blunt the innate immune response and the associated cytokine storm, allowing the proliferation of cells responsible for adaptive immunity. Limitations of the proposed therapy include the following: it is unknown if human immune and lung cell functions are enhanced by ketosis, the risk of ketoacidosis must be assessed prior to initiating treatment, and permissive dietary fat and carbohydrate levels for exogenous ketones to boost immune function are not yet established. The third limitation could be addressed by studies with influenza-infected mice. A clinical study is warranted where COVID-19 patients consume a permissive diet combined with ketone ester to raise blood ketone levels to 1 to 2 mM with measured outcomes of symptom severity, length of infection, and case fatality rate.


Subject(s)
Coronavirus Infections/therapy , Cytokine Release Syndrome/therapy , Diet, Ketogenic/methods , Ketones/administration & dosage , Pneumonia, Viral/therapy , 3-Hydroxybutyric Acid/metabolism , Adaptive Immunity , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/metabolism , Energy Metabolism , Humans , Immunity, Innate , Ketones/metabolism , Oxidation-Reduction , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , SARS-CoV-2
6.
Med (N Y) ; 2(1): 38-48.e2, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-813759

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) is a recently emerged respiratory infectious disease with kidney injury as a part of the clinical complications. However, the dynamic change of kidney function and its association with COVID-19 prognosis are largely unknown. METHODS: In this multicenter retrospective cohort study, we analyzed clinical characteristics, medical history, laboratory tests, and treatment data of 12,413 COVID-19 patients. The patient cohort was stratified according to the severity of the outcome into three groups: non-severe, severe, and death. FINDINGS: The prevalence of elevated blood urea nitrogen (BUN), elevated serum creatinine (Scr), and decreased blood uric acid (BUA) at admission was 6.29%, 5.22%, and 11.66%, respectively. The trajectories showed the elevation in BUN and Scr levels, as well as a reduction in BUA level for 28 days after admission in death cases. Increased all-cause mortality risk was associated with elevated baseline levels of BUN and Scr and decreased levels of BUA. CONCLUSIONS: The dynamic changes of the three kidney function markers were associated with different severity and poor prognosis of COVID-19 patients. BUN showed a close association with and high potential for predicting adverse outcomes in COVID-19 patients for severity stratification and triage. FUNDING: This study was supported by grants from the National Key R&D Program of China (2016YFF0101504), the National Science Foundation of China (81630011, 81970364, 81970070, 81970011, 81870171, and 81700356), the Major Research Plan of the National Natural Science Foundation of China (91639304), the Hubei Science and Technology Support Project (2019BFC582, 2018BEC473, and 2017BEC001), and the Medical Flight Plan of Wuhan University.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , COVID-19/epidemiology , Female , Humans , Kidney , Male , Retrospective Studies , SARS-CoV-2
7.
Aging (Albany NY) ; 12(13): 12504-12516, 2020 07 11.
Article in English | MEDLINE | ID: covidwho-640201

ABSTRACT

The mortality rate of elderly patients with Coronavirus Disease 2019 (COVID-19) was significantly higher than the overall mortality rate. However, besides age, leading death risk factors for the high mortality in elderly patients remain unidentified. This retrospective study included 210 elderly COVID-19 patients (aged ≥ 65 years), of whom 175 patients were discharged and 35 died. All deceased patients had at least one comorbidity. A significantly higher proportion of patients in the deceased group had cardiovascular diseases (49% vs. 20%), respiratory diseases (51% vs. 11%), chronic kidney disease (29% vs. 5%) and cerebrovascular disease (20% vs. 3%) than that in the discharged group. The median levels of C-reactive protein (125.8mg/L vs. 9.3mg/L) and blood urea nitrogen (7.2mmol/L vs. 4.4mmol/L) were significantly higher and median lymphocyte counts (0.7×109/L vs. 1.1×109/L) significantly lower in the deceased group than those in the discharged group. The survival curve analysis showed that higher C-reactive protein (≥5mg/L) plus any other abnormalities of lymphocyte, blood urea nitrogen or lactate dehydrogenase significantly predicted poor prognosis of COVID-19 infected elderly patients. This study revealed that the risk factors for the death in these elderly patients included comorbidities, increased levels of C-reactive protein and blood urea nitrogen, and lymphopenia during hospitalization.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Aged , Aged, 80 and over , Betacoronavirus , Blood Urea Nitrogen , C-Reactive Protein/metabolism , COVID-19 , China , Comorbidity , Coronavirus Infections/complications , Coronavirus Infections/immunology , Female , Humans , Lymphopenia/virology , Male , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Prognosis , Retrospective Studies , Risk Factors , SARS-CoV-2
8.
Front Cell Infect Microbiol ; 10: 322, 2020.
Article in English | MEDLINE | ID: covidwho-623310

ABSTRACT

Background: Corona virus disease (COVID-19) is an infectious respiratory disease that has spread rapidly across the world. Many studies have already evaluated the clinical features of COVID-19, but how it compares with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative community-acquired pneumonia (SN-CAP) is still unclear. Moreover, COVID-19 mortality is correlated with disease severity, but indicators for severity grading have not been specified. We aimed to analyze the clinical characteristics of COVID-19 in comparison with SN-CAP and find indicators for disease severity in COVID-19. Methods: Patients diagnosed with COVID-19 and SN-CAP were enrolled. Clinical, radiological, and laboratory data were analyzed. Results: The numbers of COVID-19 and SN-CAP patients enrolled were 304 and 138, respectively. The age of the patients was not significantly different between the groups. Compared with SN-CAP, COVID-19 patients had more symptoms of fever and dyspnea; and showed significant difference in blood count results. Computed tomography (CT) imaging of COVID-19 patients showed patchy ground-glass opacities that correlated with disease severity, whereas the CT imaging of SN-CAP patients showed patchy high-density shadows. COVID-19 patients were classified into moderate, severe, and critically severe groups. The severe and critically severe groups had elevated levels of white blood cells (WBC), neutrophils, platelets, C-reaction protein (CRP), lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), troponin-I, creatinine, and blood urea nitrogen (BUN). However, they had decreased levels of lymphocytes, lymphocyte ratio, and albumin. Compared with the younger patients, the older COVID-19 individuals had more chronic diseases and significantly elevated levels of WBC, neutrophil, and CRP levels. Conclusion: SN-CAP showed more inflammatory reaction than COVID-19. Old people with chronic diseases are more susceptible to COVID-19 and have a high likelihood of developing severe and critically severe infection. Levels of WBC, lymphocytes, neutrophils, CRP, NLR, PLR, troponin-I, creatinine, and BUN are important indicators for severity grading in COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/pathology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Adolescent , Adult , Age Factors , Betacoronavirus , Blood Chemical Analysis , C-Reactive Protein/analysis , COVID-19 , Community-Acquired Infections/mortality , Community-Acquired Infections/pathology , Comorbidity , Coronavirus Infections/mortality , Female , Humans , Inflammation/pathology , Leukocyte Count , Male , Middle Aged , Neutrophils/cytology , Pandemics , Platelet Count , Pneumonia, Bacterial/mortality , Pneumonia, Viral/mortality , Retrospective Studies , SARS-CoV-2 , Young Adult
9.
JCI Insight ; 5(14)2020 07 23.
Article in English | MEDLINE | ID: covidwho-607189

ABSTRACT

BACKGROUNDReprogramming of host metabolism supports viral pathogenesis by fueling viral proliferation, by providing, for example, free amino acids and fatty acids as building blocks.METHODSTo investigate metabolic effects of SARS-CoV-2 infection, we evaluated serum metabolites of patients with COVID-19 (n = 33; diagnosed by nucleic acid testing), as compared with COVID-19-negative controls (n = 16).RESULTSTargeted and untargeted metabolomics analyses identified altered tryptophan metabolism into the kynurenine pathway, which regulates inflammation and immunity. Indeed, these changes in tryptophan metabolism correlated with interleukin-6 (IL-6) levels. Widespread dysregulation of nitrogen metabolism was also seen in infected patients, with altered levels of most amino acids, along with increased markers of oxidant stress (e.g., methionine sulfoxide, cystine), proteolysis, and renal dysfunction (e.g., creatine, creatinine, polyamines). Increased circulating levels of glucose and free fatty acids were also observed, consistent with altered carbon homeostasis. Interestingly, metabolite levels in these pathways correlated with clinical laboratory markers of inflammation (i.e., IL-6 and C-reactive protein) and renal function (i.e., blood urea nitrogen).CONCLUSIONIn conclusion, this initial observational study identified amino acid and fatty acid metabolism as correlates of COVID-19, providing mechanistic insights, potential markers of clinical severity, and potential therapeutic targets.FUNDINGBoettcher Foundation Webb-Waring Biomedical Research Award; National Institute of General and Medical Sciences, NIH; and National Heart, Lung, and Blood Institute, NIH.


Subject(s)
Coronavirus Infections/metabolism , Fatty Acids/metabolism , Interleukin-6/metabolism , Kynurenine/metabolism , Oxidative Stress , Pneumonia, Viral/metabolism , Renal Insufficiency/metabolism , Adult , Aged , Amino Acids/metabolism , Betacoronavirus , Blood Glucose/metabolism , COVID-19 , Case-Control Studies , Creatine/metabolism , Creatinine/metabolism , Cystine , Fatty Acids, Nonesterified/metabolism , Female , Humans , Male , Metabolome , Metabolomics , Methionine/analogs & derivatives , Middle Aged , Pandemics , Polyamines/metabolism , Proteolysis , SARS-CoV-2 , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL