Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 16 de 16
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-22270831

Résumé

BackgroundComprehensive information about the accuracy of antigen rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 is essential to guide public health decision makers in choosing the best tests and testing policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. Methods and findingsWe registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix, bioRvix, and FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse transcription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing test sensitivity, we performed 3 different analyses using multivariate mixed-effects meta-regression models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% (95% CI 98.6 to 99.1), respectively. When manufacturer instructions were followed, sensitivity increased to 76.4% (95%CI 73.8 to 78.8). Sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values (sensitivity of 97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] for Ct-values <20 and <25, compared to 54.4% [95% CI 47.3 to 61.5] and 18.7% [95% CI 13.9 to 23.4] for Ct-values [≥]25 and [≥]30) and was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) for every unit decrease in mean Ct-value when adjusting for testing procedure and patients symptom status. Concordantly, we found the mean Ct-value to be lower for true positive (22.2 [95% CI 21.5 to 22.8]) compared to false negative (30.4 [95% CI 29.7 to 31.1]) results. Testing in the first week from symptom onset resulted in substantially higher sensitivity (81.9% [95% CI 77.7 to 85.5]) compared to testing after 1 week (51.8%, 95% CI 41.5 to 61.9). Similarly, sensitivity was higher in symptomatic (76.2% [95% CI 73.3 to 78.9]) compared to asymptomatic (56.8% [95% CI 50.9 to 62.4]) persons. However, both effects were mainly driven by the Ct-value of the sample. With regards to sample type, highest sensitivity was found for nasopharyngeal (NP) and combined NP/oropharyngeal samples (70.8% [95% CI 68.3 to 73.2]), as well as in anterior nasal/mid-turbinate samples (77.3% [95% CI 73.0 to 81.0]). ConclusionAg-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all when high viral loads are present (>90%). With viral load, as estimated by Ct-value, being the most influential factor on their sensitivity, they are especially useful to detect persons with high viral load who are most likely to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, standardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms are needed.

2.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21263486

Résumé

BackgroundOver the course of the pandemic, many countries have repeatedly closed schools and shifted students to remote learning. However, evidence for negative mental and physiological health consequences of such measures for students is increasing, highlighting the need for evidence-based recommendations on how to safely reopen schools. This study presents experiences when implementing opt-in, at-home SARS-CoV-2 screening using rapid diagnostic tests (RDTs) to facilitate safe face-to-face-teaching during a pandemic. MethodsWe present data form a prospective study implementing an RDT-based screening program at a primary school in southwest Germany. We conducted qualitative in-depth interviews with participating children, parents, and school stakeholders to elicit implementation experiences and screening perception. ResultsThe screening intervention was highly accepted and appreciated among participants; no positive RDT was reported over the duration of the study. Self-testing at home before coming to school was feasible, but more positive consequences of screening participation (e.g., easing of mask mandates) besides a personal feeling of safety would be appreciated. Participants preferred home-based RDTs over some other measures, particularly mask mandates. Despite the RDTs being licensed as self-tests in Germany, additional training can help avoid mistakes, and ensuring intervention ownership and improving pre-implementation communication can facilitate buy-in. ConclusionsAg-RDT-based SARS-CoV-2 screening programs relying on self-testing at home proved feasible and accepted among primary school students, parents, and school staff who participated in this study. Trial RegistrationDRKS00024845 O_TEXTBOXWhat is known about the subjectO_LIEfforts to reduce COVID-19-associated school disruption are currently being debated globally as a means to reduce the impact of extended school closures on childrens mental and physiological wellbeing. C_LIO_LIRapid diagnostic tests (RDTs) for SARS-CoV-2 are reliable and can be performed as self-tests at home. C_LIO_LIAlthough countries have already introduced RDT-based screening programs to facilitate safe face-to-face teaching, little is known about screening acceptance and experiences. C_LI What this study addsO_LIStudents, parents, and school staff perceive home-based RDT screening as feasible and less disrupting than other protective measures (e.g., mask mandates) C_LIO_LIImplementers should communicate early and clearly, and provide a support system for training, troubleshooting, and in case of positive results C_LIO_LIConcerns remain regarding the fidelity of home-based test performance in cases where students or parents are hesitant, even when testing is compulsory C_LI C_TEXTBOX

3.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21262660

Résumé

Antigen-based rapid diagnostic tests (RDTs) for SARS-CoV-2 have good reliability and have been repeatedly implemented as part of pandemic response policies, especially for screening in high-risk settings (e.g., hospitals and care homes) where fast recognition of an infection is essential, but evidence from actual implementation efforts is lacking. We conducted a prospective qualitative study at a large tertiary care hospital in Germany where RDTs are used to screen incoming patients. We relied on semi-structured observations of the screening situation, as well as on 30 in-depth interviews with hospital staff (members of the regulatory body, department heads, staff working on the wards, staff training providers on how to perform RDTs, and providers performing RDTs as part of the screening) and patients being screened with RDTs. Despite some initial reservations, RDTs were rapidly accepted and adopted as the best available tool for accessible and reliable screening. Decentralized implementation efforts resulted in different procedures being operationalized across departments. Procedures were continuously refined based on initial experiences (e.g., infrastructural or scheduling constraints), pandemic dynamics (growing infection rates), and changing regulations (e.g., screening of all external personnel). To reduce interdepartmental tension, stakeholders recommended high-level, consistently communicated and enforced regulations. Despite challenges, RDT-based screening for all incoming patients was observed to be feasible and acceptable among implementers and patients, and merits continued consideration in the context of rising infections and stagnating vaccination rates.

4.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21261314

Résumé

BackgroundCurrently, more than 500 different AgPOCTs for SARS-CoV-2 diagnostics are on sale (July 2021), for many of which no data about sensitivity other than self-acclaimed values by the manufacturers are available. In many cases these do not reflect real-life diagnostic sensitivities. Therefore, manufacturer-independent quality checks of available AgPOCTs are needed, given the potential implications of false-negative results. ObjectiveThe objective of this study was to develop a scalable approach for direct comparison of the analytical sensitivities of commercially available SARS-CoV-2 antigen point-of-care tests (AgPOCTs) in order to rapidly identify poor performing products. MethodsWe present a methodology for quick assessment of the sensitivity of SARS-CoV-2 lateral flow test stripes suitable for quality evaluation of many different products. We established reference samples with high, medium and low SARS-CoV-2 viral loads along with a SARS-CoV-2 negative control sample. Test samples were used to semi-quantitatively assess the analytical sensitivities of 32 different commercial AgPOCTs in a head-to-head comparison. ResultsAmong 32 SARS-CoV-2 AgPOCTs tested, we observe sensitivity differences across a broad range of viral loads ([~]7.0*108 to [~]1.7*105 SARS-CoV-2 genome copies per ml). 23 AgPOCTs detected the Ct25 test sample ([~]1.4*106 copies/ ml), while only five tests detected the Ct28 test sample ([~]1.7*105 copies/ ml). In the low range of analytical sensitivity we found three saliva spit tests only delivering positive results for the Ct21 sample ([~]2.2*107 copies/ ml). Comparison with published data support our AgPOCT ranking. Importantly, we identified an AgPOCT offered in many local drugstores and supermarkets, which did not reliably recognize the sample with highest viral load (Ct16 test sample with [~]7.0*108 copies/ ml) leading to serious doubts in its usefulness in SARS-CoV-2 diagnostics. ConclusionThe rapid sensitivity assessment procedure presented here provides useful estimations on the analytical sensitivities of 32 AgPOCTs and identified a widely-spread AgPOCT with concerningly low sensitivity.

5.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21258502

Résumé

Virus mutations have the potential to impact the accuracy of diagnostic tests. The SARS-CoV-2 B.1.1.7 lineage is defined by a large number of mutations in the spike gene and four in the nucleocapsid (N) gene. Most commercially available SARS-CoV-2 antigen-detecting rapid tests (Ag-RDTs) target the viral N-protein, encoded by the N-gene. We conducted a manufacturer-independent, prospective diagnostic accuracy study of three SARS-CoV-2 Ag-RDTs that are currently under review by the WHO Emergency Use Listing Procedure (Espline -Fujirebio Inc.; Sure Status -Premier Medical Corporation Private Limited; Mologic -Mologic Ltd.) and report here on an additional sub-analysis regarding the B.1.1.7 lineage. During the study, in Berlin and Heidelberg, Germany, from 20 January to 15 April 2021, B.1.1.7 rapidly became the dominant SARS-CoV-2 lineage at the testing sites and was detected in 220 (62%) of SARS-CoV-2 RT-PCR positive patients. All three Ag-RDTs yielded comparable sensitivities irrespective of an infection with the B.1.1.7 lineage or not. There is only limited data on how N-gene mutations in variants of concern may impact Ag-RDTs. Currently, no major changes to test performance are anticipated. However, test developers and health authorities should assess and monitor the impact of emerging variants on the accuracy of Ag-RDTs.

6.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21258300

Résumé

BackgroundThe testing capacity for SARS-CoV-2 in Africa is rather limited. Antigen-detection rapid diagnostic tests (Ag-RDTs) are a cheap and rapid alternative to reverse transcriptase-polymerase chain reaction (RT-PCR) tests, but there is little data about their performance under real life conditions in tropical countries. ObjectiveTo evaluate the performance of a standard Ag-RDT in a population of a major hospital in northern Ghana. MethodsProspective, cross-sectional, blinded verification of the performance of the SD Biosensor Standard Q SARS-CoV-2 Ag-RDT under real life conditions in 135 symptomatic patients and 58 contacts of RT-PCR positives at Tamale Teaching Hospital in February 2021. Nasopharyngeal samples were taken under standard conditions and tested against RT-PCR in the hospital laboratory. Results193 participants (median age 35 years, 109 male) were included into the study for which both RT-PCR test and Ag-RDT results were available. A total of 42 (22%) were RT-PCR positive. Of the 42 RT-PCR positives, 27 were Ag-RDT positive, resulting in a sensitivity of 64% (95% CI 49-79). Sensitivity among symptomatic patients was 58% (95% CI 38-78). 123 were identified Ag-RDT negatives of the 151 RT-PCR negatives, resulting in a specificity of 81% (95% CI 75-87). ConclusionsSARS-CoV-2 Ag-RDTs appear to have a rather low sensitivity and particularly a low specificity under real life conditions in Africa. The role of existing Ag-RDTs in countries with high-temperature climates and limited resources still needs more data and discussion.

7.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21253076

Résumé

BackgroundIn 2020, the World Health Organization (WHO) recommended two SARS-CoV-2 lateral flow antigen detecting rapid diagnostics tests (Ag-RDTs), both initially with nasopharyngeal (NP) sample collection. Independent head-to-head studies demonstrated for SARS-CoV-2 Ag-RDTs nasal sampling to be a comparable and reliable alternative for nasopharyngeal (NP) sampling. MethodsWe conducted a head-to-head comparison study of a supervised, self-collected nasal mid-turbinate (NMT) swab and a professional-collected NP swab, using the Panbio Ag-RDT (the second WHO-listed SARS-CoV-2 Ag-RDT, distributed by Abbott). We calculated positive and negative percent agreement and, compared to the reference standard reverse transcription polymerase chain reaction (RT-PCR), sensitivity and specificity for both sampling techniques. ResultsA SARS-CoV-2 infection could be diagnosed by RT-PCR in 45 of 290 participants (15.5%). Comparing the NMT and NP sampling the positive percent agreement of the Ag-RDT was 88.1% (37/42 PCR positives detected; CI 75.0% - 94.8%). The negative percent agreement was 98.8% (245/248; CI 96.5% - 99.6%). The overall sensitivity of Panbio with NMT sampling was 84.4% (38/45; CI 71.2% - 92.3%) and 88.9% (40/45; CI 76.5% - 95.5%) with NP sampling. Specificity was 99.2% (243/245; CI 97.1% - 99.8%) for both, NP and NMT sampling. The sensitivity of the Panbio test in participants with high viral load (> 7 log10 SARS-CoV-2 RNA copies/mL) was 96.3% (CI 81.7% - 99.8%) for both, NMT and NP sampling. ConclusionFor the Panbio Ag-RDT supervised NMT self-sampling yields to results comparable to NP sampling. This suggests that nasal self-sampling could be used for scale-up population testing.

8.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21253267

Résumé

BackgroundAfter infection with severe acute respiratory syndrome coronavirus (SARS-CoV-2), Immunoglobulin G (IgG) antibodies and virus-specific neutralizing antibodies (nAbs) develop. This study describes antibody responses in a cohort of recovered COVID-19 patients to identify predictors. MethodsWe recruited patients with confirmed SARS-CoV-2 infection from Heidelberg, Germany. Blood samples were collected three weeks after COVID-19 symptoms ended. Participants with high antibody titers were invited for follow-up visits. IgG titers were measured by the Euroimmun Assay, and nAbs titers in a SARS-CoV-2 infection-based assay. Results281 participants were enrolled between April and August 2020 with IgG testing, 145 (51.6%) had nAbs, and 35 (12.5%) had follow-up. The median IgG optical density (OD) ratio was 3.1 (Interquartile range (IQR) 1.6-5.1), and 24.1% (35/145) had a nAb titer>1:80. Higher IgG titers were associated with increased age and more severe disease, and higher nAbs were associated with male gender and CT-value of 25-30 on RT-PCR at diagnosis. The median IgG OD ratio on follow-up was 3.7 (IQR 2.9-5.9), a median increase of 0.5 (IQR -0.3-1.7). Six participants with follow-up nAbs all had titers [≤] 1:80. ConclusionsWhile age and disease severity were correlated with IgG responses, predictive factors for nAbs in convalescent patients remain unclear.

9.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21252430

Résumé

BackgroundRapid antigen-detecting tests (Ag-RDTs) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transform pandemic control. Thus far, sensitivity ([≤]85%) of lateral-flow assays has limited scale-up. Conceivably, microfluidic immunofluorescence Ag-RDTs could increase sensitivity for SARS-CoV-2 detection. Materials and MethodsThis multi-centre diagnostic accuracy study investigated performance of the microfluidic immunofluorescence LumiraDx assay, enrolling symptomatic and asymptomatic participants with suspected SARS-CoV-2 infection. Participants collected a supervised nasal mid-turbinate (NMT) self-swab for Ag-RDT testing, in addition to a professionally-collected nasopharyngeal (NP) swab for routine testing with reverse transcriptase polymerase chain reaction (RT-PCR). Results were compared to calculate sensitivity and specificity. Sub-analyses investigated the results by viral load, symptom presence and duration. An analytical study assessed exclusivity and limit-of-detection (LOD). In addition, we evaluated ease-of-use. ResultsStudy conduct was between November 2nd 2020 and January 21st 2021. 761 participants were enrolled, with 486 participants reporting symptoms on testing day. 120 out of 146 RT-PCR positive cases were detected positive by LumiraDx, resulting in a sensitivity of 82.2% (95% CI: 75.2%-87.5%). Specificity was 99.3% (CI: 98.3-99.7%). Sensitivity was increased in individuals with viral load [≥] 7 log10 SARS-CoV2 RNA copies/ml (93.8%; CI: 86.2%-97.3%). Testing against common respiratory commensals and pathogens showed no cross-reactivity and LOD was estimated to be 2-56 PFU/mL. The ease-of-use-assessment was favourable for lower throughput settings. ConclusionThe LumiraDx assay showed excellent analytical sensitivity, exclusivity and clinical specificity with good clinical sensitivity using supervised NMT self-sampling.

10.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21252546

Résumé

BackgroundSARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being integrated in testing strategies around the world. Studies of the Ag-RDTs have shown variable performance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and specificity) of commercially available Ag-RDTs. Methods and ResultsWe registered the review on PROSPERO (Registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix and bioRvix, FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 up until April 30th, 2021. Descriptive analyses of all studies were performed and when more than four studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity in comparison to reverse transcriptase polymerase chain reaction testing. We assessed heterogeneity by subgroup analyses, and rated study quality and risk of bias using the QUADAS 2 assessment tool. From a total of 14,254 articles, we included 133 analytical and clinical studies resulting in 214 clinical accuracy data sets with 112,323 samples. Across all meta-analyzed samples, the pooled Ag-RDT sensitivity was 71.2% (95% confidence interval [CI] 68.2 to 74.0) and increased to 76.3% (CI 73.1 to 79.2) if analysis was restricted to studies that followed the Ag-RDT manufacturers instructions. The LumiraDx showed the highest sensitivity with 88.2% (CI 59.0 to 97.5). Of instrument-free Ag-RDTs, Standard Q nasal performed best with 80.2% sensitivity (CI 70.3 to 87.4). Across all Ag-RDTs sensitivity was markedly better on samples with lower Ct-values, i.e., <20 (96.5%, CI 92.6 to 98.4) and <25 (95.8%, CI 92.3 to 97.8), in comparison to those with Ct [≥]25 (50.7%, CI 35.6 to 65.8) and [≥]30 (20.9%, CI 12.5 to 32.8). Testing in the first week from symptom onset resulted in substantially higher sensitivity (83.8%, CI 76.3 to 89.2) compared to testing after one week (61.5%, CI 52.2 to 70.0). The best Ag-RDT sensitivity was found with anterior nasal sampling (75.5%, CI 70.4 to 79.9) in comparison to other sample types (e.g., nasopharyngeal 71.6%, CI 68.1 to 74.9) although CIs were overlapping. Concerns of bias were raised across all data sets, and financial support from the manufacturer was reported in 24.1% of data sets. Our analysis was limited by the included studies heterogeneity in design and reporting, making it difficult to draw conclusions from. ConclusionIn this study we found that Ag-RDTs detect the vast majority of cases within the first week of symptom onset and those with high viral load. Thus, they can have high utility for diagnostic purposes in the early phase of disease, making them a valuable tool to fight the spread of SARS-CoV-2. Standardization in conduct and reporting of clinical accuracy studies would improve comparability and use of data. AUTHOR SUMMARYWhy was this study done? - Antigen rapid diagnostic tests (Ag-RDTs) are considered an important diagnostic tool to fight the spread of SARS-CoV-2 - An increasing number of Ag-RDTs is offered on the market, and a constantly growing body of literature evaluating their performance is available - To inform decision makers about the best test to choose, an up to date summary of their performance is needed What did the researchers do and find? - On a weekly basis, we search multiple data bases for evaluations of Ag-RDTs detecting SARS-CoV-2 and post the results on www.diagnosticsglobalhealth.org - Based on the search results up until April 30th, 2021, we conducted a systematic review and meta-analysis, including a total of 133 clinical and analytical accuracy studies - Across all meta-analyzed studies, when Ag-RDTs were performed according to manufacturers recommendations, they showed a sensitivity of 76.3% (CI 73.1 to 79.2), with the LumiraDx (sensitivity 88.2%, CI 59.0 to 97.5) and of the instrument-free Ag-RDT Standard Q (74.9% sensitivity, CI 69.3 to 79.7) performing best. - Across all Ag-RDTs, sensitivity increased to 95.8% (CI 92.3 to 97.8) when restricting the analysis to samples with high viral loads (i.e., a Ct-value <25) and to 83.8% (CI 76.3 to 89.2) when tests were performed on patients within the first week after symptom onset What do these findings mean? - Ag-RDTs detect the vast majority of cases within the first week of symptom onset and those with high viral load. Thus, they can have high utility for diagnostic purposes in the early phase of disease - Out of all assessed tests, the Lumira Dx showed the highest accuracy. The Standard Q wasthe best performing test when only considering those that dont require an instrument - A standardization of reporting methods for clinical accuracy studies would enhance future test-comparisons

11.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21251274

Résumé

ObjectivesThe aim of this diagnostic accuracy study was direct comparison of two different nasal sampling methods for an antigen-based rapid diagnostic test (Ag-RDT) that detects severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, the accuracy and feasibility of self-sampling was evaluated. MethodsThis manufacturer-independent, prospective diagnostic accuracy study, compared professional anterior nasal (AN) and nasal mid-turbinate (NMT) sampling for a WHO-listed SARS-CoV-2 Ag-RDT. A second group of participants collected a NMT sample themselves and underwent a professional nasopharyngeal swab for comparison. The reference standard was real-time polymerase chain reaction (RT-PCR) using combined oro-/nasopharyngeal sampling. Individuals with high suspicion of SARS-CoV-2 infection were tested. Sensitivity, specificity, and percent agreement were calculated. Self-sampling was observed without intervention. Feasibility was evaluated by observer and participant questionnaires. ResultsAmong 132 symptomatic adults, both professional AN- and NMT-sampling yielded a sensitivity of 86.1% (31/36 RT-PCR positives detected; 95%CI: 71.3-93.9) and a specificity of 100.0% (95%CI: 95.7-100). The positive percent agreement (PPA) was 100% (95%CI: 89.0-100). Among 96 additional adults, self NMT- and professional NP-sampling yielded an identical sensitivity of 91.2% (31/34; 95%CI 77.0-97.0). Specificity was 98.4% (95%CI: 91.4-99.9) with NMT- and 100.0% (95%CI: 94.2-100) with NP-sampling. The PPA was 96.8% (95%CI: 83.8-99.8). Most participants (85.3%) considered self-sampling as easy to perform. ConclusionProfessional AN- and NMT-sampling are of equivalent accuracy for an Ag-RDT in ambulatory symptomatic adults. Participants were able to reliably perform the NMT-sampling themselves, following written and illustrated instructions. Nasal self-sampling will likely facilitate scaling of SARS-CoV-2 antigen testing.

12.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20249009

Résumé

BackgroundAntigen-detecting rapid diagnostic tests (Ag-RDTs) have been widely recommended as a complement to RT-PCR. Considering the possibility of nasal self-sampling and the ease-of-use in performing the test, self-testing may be an option. Methods and FindingsWe performed a manufacturer-independent, prospective diagnostic accuracy study of nasal mid-turbinate self-sampling and self-testing when using a WHO-listed SARS-CoV-2 Ag-RDT. Symptomatic participants suspected to have COVID-19 received written and illustrated instructions. Procedures were observed without intervention. For comparison, Ag-RDTs with nasopharyngeal sampling were professionally performed. Estimates of agreement, sensitivity, and specificity relative to RT-PCR on a combined oro-/nasopharyngeal sample were calculated. Feasibility was evaluated by observer and participant questionnaires. Among 146 symptomatic adults, 40 (27.4%) were RT-PCR-positive for SARS-CoV-2. Sensitivity with self-testing was 82.5% (33/40 RT-PCR positives detected; 95% CI 68.1-91.3), and 85.0% (34/40; 95% CI 70.9-92.9) with professional testing. The positive percent agreement between self-testing and professional testing on Ag-RDT was 91.4% (95% CI 77.6-97.0), and negative percent agreement 99.1% (95% CI 95.0-100). At high viral load (>7.0 log10 SARS-CoV-2 RNA copies/ml), sensitivity was 96.6% (28/29; 95% CI 82.8-99.8) for both self- and professional testing. Deviations in sampling and testing (incomplete self-sampling or extraction procedure, or imprecise volume applied on the test device) were observed in 25 out of the 40 PCR-positives. Participants were rather young (mean age 35 years) and educated (59.6% with higher education degree). Most participants (80.9%) considered the Ag-RDT as rather easy to perform. ConclusionsAmbulatory participants suspected for SARS-CoV-2 infection were able to reliably perform the Ag-RDT and test themselves. Procedural errors might be reduced by refinement of the Ag-RDTs for self-testing, such as modified instructions for use or product design/procedures. Self-testing may result in more wide-spread and more frequent testing. Paired with the appropriate information and education of the general public about the benefits and risks, self-testing may therefore have significant impact on the pandemic.

13.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20245241

Résumé

Most COVID-19 patients experience a mild disease; a minority suffers from critical disease. We report about a biomarker validation study regarding 296 patients with confirmed SARS-CoV-2 infections from four tertiary care referral centers in Germany and France. Patients with critical disease had significantly less anti-HCoV OC43 nucleocapsid protein antibodies compared to other COVID-19 patients (p=0.007). In multivariate analysis, OC43 negative inpatients had an increased risk of critical disease, higher than the risk by increased age or BMI, and lower than the risk by male sex. A risk stratification based on sex and OC43 serostatus was derived from this analysis. Our results indicate that prior infections with seasonal human coronaviruses can protect against a severe course of COVID-19. Anti-OC43 antibodies should be measured for COVID-19 inpatients and considered as part of the risk assessment. We expect individuals tested negative for anti-OC43 antibodies to particularly benefit from vaccination, especially with other risk factors prevailing.

14.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20239699

Résumé

BackgroundDiagnostics are essential for controlling the pandemic. Identifying a reliable and fast diagnostic is needed to support testing. We assessed performance and ease-of-use of the Abbott PanBio antigen-detecting rapid diagnostic test (Ag-RDT). MethodsThis prospective, multi-centre diagnostic accuracy study enrolled at two sites in Germany. Following routine testing with RT-PCR, a second study-exclusive swab was performed for Ag-RDT testing. Routine swabs were nasopharyngeal (NP) or combined NP/oropharyngeal (OP) whereas the study-exclusive swabs were NP. To evaluate performance, sensitivity and specificity were assessed overall and in predefined sub analyses accordingly to cycle-threshold values, days of symptoms, disease severity and study site. Additionally, an ease-of-use assessment and System Usability Scale (SUS) were performed. Findings1108 participants were enrolled between Sept 28 and Oct 30, 2020. Of these, 106 (9{middle dot}6%) were PCR-positive. The Abbott PanBio detected 92/106 PCR-positive participants with a sensitivity of 86{middle dot}8% (95% CI: 79{middle dot}0% - 92{middle dot}0%) and a specificity of 99{middle dot}9% (95% CI: 99{middle dot}4%-100%). The sub analyses indicated that sensitivity was 95{middle dot}8% in CT-values <25 and within the first seven days from symptom onset. The test was characterized as easy to use (SUS: 86/100) and considered suitable for point-of- care settings. InterpretationThe Abbott PanBio Ag-RDT performs well for SARS-CoV-2 testing in this large manufacturer independent study, confirming its WHO recommendation for Emergency Use in settings with limited resources. FundingThe Foundation of Innovative New Diagnostics supplied the test kits for the study. The internal funds from the Heidelberg University as well as the Charite Berlin supported this study.

15.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20219600

Résumé

BackgroundTwo antigen-detecting rapid diagnostic tests (Ag-RDTs) are now approved through the WHO Emergency Use Listing procedure and can be performed at the point-of-care. However, both tests use nasopharyngeal (NP) swab samples. NP swab samples must be collected by trained healthcare personnel with protective equipment and are frequently perceived as uncomfortable by patients. MethodsThis was a manufacturer-independent, prospective diagnostic accuracy study with comparison of a supervised, self-collected anterior nose (AN) swab sample with a professional-collected NP swab sample, using a WHO-listed SARS-CoV-2 Ag-RDT, STANDARD Q COVID-19 Ag Test (SD Biosensor), which is also being distributed by Roche. The reference standard was RT-PCR from an oro-/nasopharyngeal swab sample. Percent positive and negative agreement as well as sensitivity and specificity were calculated. ResultsAmong the 289 participants, 39 (13.5%) tested positive for SARS-CoV-2 by RT-PCR. The positive percent agreement of the two different sampling techniques for the Ag-RDT was 90.6% (CI 75.8-96.8). The negative percent agreement was 99.2% (CI 97.2-99.8). The Ag-RDT with AN sampling showed a sensitivity of 74.4% (29/39 PCR positives detected; CI 58.9-85.4) and specificity of 99.2% (CI 97.1-99.8) compared to RT-PCR. The sensitivity with NP sampling was 79.5% (31/39 PCR positives detected; CI 64.5-89.2) and specificity was 99.6% (CI 97.8-100). In patients with high viral load (>7.0 log 10 RNA SARS-CoV2/swab), the sensitivity of the Ag-RDT with AN sampling was 96% and 100% with NP sampling. ConclusionSupervised self-sampling from the anterior nose is a reliable alternative to professional nasopharyngeal sampling using a WHO-listed SARS-CoV-2 Ag-RDT. Considering the ease-of-use of Ag-RDTs, self-sampling and potentially patient self-testing at home may be a future use case.

16.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20203836

Résumé

BackgroundReliable point-of-care (POC) diagnostics not requiring laboratory infrastructure could be a game changer in the COVID-19 pandemic, particularly in the Global South. We assessed performance, limit of detection and ease-of-use of three antigen-detecting, rapid POC tests (Ag-RDT) for SARS-CoV-2. MethodsThis prospective, multi-centre diagnostic accuracy study recruited participants suspected to have SARS-CoV-2 in Germany and the UK. Paired nasopharyngeal swabs (NP) or NP and/or oropharyngeal swabs (OP) were collected from participants (one for clinical RT-PCR and one for Ag-RDT). Performance of each of three Ag-RDTs was compared to RT-PCR overall, and according to predefined subcategories e.g. cycle threshold (CT)-value, days from symptoms onset, etc. In addition, limited verification of the analytical limit-of-detection (LOD) was determined. To understand the usability a System Usability Scale (SUS) questionnaire and ease-of-use (EoU) assessment were performed. ResultsBetween April 17th and August 25th, 2020, 2417 participants were enrolled, with 70 (3.0%) testing positive by RT-PCR. The best-performing test (SD Biosensor, Inc. STANDARD Q) was 76x6% (95% Confidence Interval (CI) 62x8-86x4) sensitive and 99x3% (CI 98x6-99x6) specific. A sub-analysis showed all samples with RT-PCR CT-values <25 were detectable by STANDARD Q. The test was considered easy-to-use (SUS 86/100) and suitable for POC. Bioeasy and Coris showed specificity of 93x1% (CI 91x0%-94x8%) and 95x8% (CI 93x4%-97x4%), respectively, not meeting the predefined target of [≥]98%. ConclusionThere is large variability in performance of Ag-RDT with SD Biosensor showing promise. Given the usability at POC, this test is likely to have impact despite imperfect sensitivity; however further research and modelling are needed.

SÉLECTION CITATIONS
Détails de la recherche