Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-479477

Résumé

The NSP3 macrodomain of SARS CoV 2 (Mac1) removes ADP-ribosylation post-translational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the COVID-19 pandemic. Here, we determined neutron and X-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site, and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a re-evaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.

2.
Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-468228

Résumé

In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like (3CLpro) protease can cleave human immune signaling proteins, like NF-{kappa}B Essential Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.14 [A] resolution crystal structure of 3CLpro C145S bound to NEMO226-235 reveals subsites that tolerate a range of viral and host substrates through main chain hydrogen bonds while also enforcing specificity using side chain hydrogen bonds and hydrophobic contacts. Machine learning- and physics-based computational methods predict that variation in key binding residues of 3CLpro- NEMO helps explain the high fitness of SARS-CoV-2 in humans. We posit that cleavage of NEMO is an important piece of information to be accounted for in the pathology of COVID-19.

3.
Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-437323

Résumé

Despite the recent availability of vaccines against the acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the search for inhibitory therapeutic agents has assumed importance especially in the context of emerging new viral variants. In this paper, we describe the discovery of a novel non-covalent small-molecule inhibitor, MCULE-5948770040, that binds to and inhibits the SARS-Cov-2 main protease (Mpro) by employing a scalable high throughput virtual screening (HTVS) framework and a targeted compound library of over 6.5 million molecules that could be readily ordered and purchased. Our HTVS framework leverages the U.S. supercomputing infrastructure achieving nearly 91% resource utilization and nearly 126 million docking calculations per hour. Downstream biochemical assays validate this Mpro inhibitor with an inhibition constant (Ki) of 2.9 {micro}M [95% CI 2.2, 4.0]. Further, using room-temperature X-ray crystallography, we show that MCULE-5948770040 binds to a cleft in the primary binding site of Mpro forming stable hydrogen bond and hydrophobic interactions. We then used multiple {micro}s-timescale molecular dynamics (MD) simulations, and machine learning (ML) techniques to elucidate how the bound ligand alters the conformational states accessed by Mpro, involving motions both proximal and distal to the binding site. Together, our results demonstrate how MCULE-5948770040 inhibits Mpro and offers a springboard for further therapeutic design. O_TEXTBOXSignificance StatementThe ongoing novel coronavirus pandemic (COVID-19) has prompted a global race towards finding effective therapeutics that can target the various viral proteins. Despite many virtual screening campaigns in development, the discovery of validated inhibitors for SARS-CoV-2 protein targets has been limited. We discover a novel inhibitor against the SARS-CoV-2 main protease. Our integrated platform applies downstream biochemical assays, X-ray crystallography, and atomistic simulations to obtain a comprehensive characterization of its inhibitory mechanism. Inhibiting Mpro can lead to significant biomedical advances in targeting SARS-CoV-2 treatment, as it plays a crucial role in viral replication. C_TEXTBOX

4.
Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-426388

Résumé

The main protease (3CL Mpro) from SARS-CoV-2, the virus that causes COVID-19, is an essential enzyme for viral replication with no human counterpart, making it an attractive drug target. Although drugs have been developed to inhibit the proteases from HIV, hepatitis C and other viruses, no such therapeutic is available to inhibit the main protease of SARS-CoV-2. To directly observe the protonation states in SARS-CoV-2 Mpro and to elucidate their importance in inhibitor binding, we determined the structure of the enzyme in complex with the -ketoamide inhibitor telaprevir using neutron protein crystallography at near-physiological temperature. We compared protonation states in the inhibitor complex with those determined for a ligand-free neutron structure of Mpro. This comparison revealed that three active-site histidine residues (His41, His163 and His164) adapt to ligand binding, altering their protonation states to accommodate binding of telaprevir. We suggest that binding of other -ketoamide inhibitors can lead to the same protonation state changes of the active site histidine residues. Thus, by studying the role of active site protonation changes induced by inhibitors we provide crucial insights to help guide rational drug design, allowing precise tailoring of inhibitors to manipulate the electrostatic environment of SARS-CoV-2 Mpro.

5.
Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-308668

Résumé

The main protease (3CL Mpro) from SARS-CoV-2, the etiological agent of COVID-19, is an essential enzyme for viral replication, possessing an unusual catalytic dyad composed of His41 and Cys145. A long-standing question in the field has been what the protonation states of the ionizable residues in the substrate-binding active site cavity are. Here, we present the room-temperature neutron structure of 3CL Mpro from SARS-CoV-2, which allows direct determination of hydrogen atom positions and, hence, protonation states. The catalytic site natively adopts a zwitterionic reactive state where His41 is doubly protonated and positively charged, and Cys145 is in the negatively charged thiolate state. The neutron structure also identified the protonation states of other amino acid residues, mapping electrical charges and intricate hydrogen bonding networks in the SARS-CoV-2 3CL Mpro active site cavity and dimer interface. This structure highlights the ability of neutron protein crystallography for experimentally determining protonation states at near-physiological temperature - the critical information for structure-assisted and computational drug design.

6.
Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-286344

Résumé

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nu-cleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an -ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N{delta} (HD) and N{epsilon} (HE) protonation of His41 and His164, respectively, the -ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.

SÉLECTION CITATIONS
Détails de la recherche