Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-22269904

Résumé

BackgroundPoint-of-care and decentralized testing for SARS-CoV-2 is critical to inform public health responses. Performance evaluations in priority use cases such as contact tracing can highlight trade-offs in test selection and testing strategies. MethodsA prospective diagnostic accuracy study was conducted among close contacts of COVID-19 cases in Brazil. Two anterior nares swabs (ANS), a nasopharyngeal swab (NPS), and saliva were collected at all visits. Vaccination history and symptoms were assessed. Household contacts were followed longitudinally. Three rapid antigen tests and one molecular method were evaluated for usability and performance against reference RT-PCR on NPS. ResultsFifty index cases and 214 contacts (64 household) were enrolled. Sixty-five contacts were RT-PCR positive during at least one visit. Vaccination did not influence viral load. Gamma variants were most prevalent; Delta emerged increasingly during implementation. Overall sensitivity of evaluated tests ranged from 33%-76%. Performance was higher among symptomatic cases and cases with Ct<34 and lower among oligo/asymptomatic cases. Assuming a 24-hour time-to-result for RT-PCR, the cumulative sensitivity of an ANS rapid antigen test was >70% and almost 90% after four days. ConclusionsThe near immediate time-to-result for antigen tests significantly offsets lower analytical sensitivity in settings where RT-PCR results are delayed or unavailable.

2.
Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-471045

Résumé

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.

3.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21266109

Résumé

The rapid spread of the SARS-CoV-2 Variant of Concern (VOC) Gamma during late 2020 and early 2021 in Brazilian settings with high seroprevalence raised some concern about the potential role of reinfections in driving the epidemic. Very few cases of reinfection associated with the VOC Gamma, however, have been reported. Here we describe 25 cases of SARS-CoV-2 reinfection confirmed by real-time RT-PCR twice within months apart in Brazil. SARS-CoV-2 genomic analysis confirmed that individuals were primo-infected between March and December 2020 with distinct viral lineages, including B.1.1, B.1.1.28, B.1.1.33, B.1.195 and P.2, and then reinfected with the VOC Gamma between 3 to 12 months after primo-infection. The overall mean cycle threshold (Ct) value of the first (25.7) and second (24.5) episodes were roughly similar for the whole group and 14 individuals displayed mean Ct values < 25.0 at reinfection. Sera of 14 patients tested by plaque reduction neutralization test after reinfection displayed detectable neutralizing antibodies against Gamma and other SARS-CoV-2 variants (B.1.33, B.1.1.28 and Delta). All individuals have milder or no symptoms after reinfection and none required hospitalization. The present study demonstrates that the VOC Gamma was associated with reinfections during the second Brazilian epidemic wave in 2021 and raised concern about the potential infectiousness of reinfected subjects. Although individuals here analyzed failed to mount a long-term sterilizing immunity, they developed a high anti-Gamma neutralizing antibody response after reinfection that may provide some protection against severe disease.

4.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21266251

Résumé

The SARS-CoV-2 Variant of Concern (VOC) Delta was first detected in India in October 2020. The first imported cases of the Delta variant in Brazil were identified in April 2021 in the Southern region, followed by more cases in different country regions during the following months. By early September 2021, Delta was already the dominant variant in the Southeastern (87%), Southern (73%), and Northeastern (52%) Brazilian regions. This work aimed to understand the spatiotemporal dissemination dynamics of Delta in Brazil. To this end, we employed a combination of Maximum Likelihood (ML) and Bayesian methods to reconstruct the evolutionary relationship of 2,264 of VOC Delta complete genomes (482 from this study) recovered across 21 out of 27 Brazilian federal units. Our phylogeographic analyses identified three major transmission clusters of Delta in Brazil. The clade BR-I (n = 1,560) arose in Rio de Janeiro in late April 2021 and was the major cluster behind the dissemination of the VOC Delta in the Southeastern, Northeastern, Northern, and Central-Western regions. The clade BR-II (n = 207) arose in the Parana state in late April 2021 and aggregated the largest fraction of sampled genomes from the Southern region. Lastly, the clade BR-III emerged in the Sao Paulo state in early June 2021 and remained mostly restricted to this state. In the rapid turnover of viral variants characteristic of the SARS-CoV-2 pandemic, Brazilian regions seem to occupy different stages of an increasing prevalence of the VOC Delta in their epidemic profiles. This process demands continuous genomic and epidemiological surveillance toward identifying and mitigating new introductions, limiting their dissemination, and preventing the establishment of more significant outbreaks in a population already heavily affected by the COVID-19 pandemic.

5.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21265116

Résumé

The COVID-19 epidemic in Brazil experienced two major country-wide lineage replacements, the first driven by the lineage P.2, formerly classified as variant of interest (VOI) Zeta in late 2020 and the second by the variant of concern (VOC) Gamma in early 2021. To better understand how these SARS-CoV-2 lineage turnovers occurred in Brazil, we analyzed 11,724 high-quality SARS-CoV-2 whole genomes of samples collected in different country regions between September 2020 and April 2021. Our findings indicate that the spatial dispersion of both variants in Brazil was driven by short and long-distance viral transmission. The lineage P.2 harboring Spike mutation E484K probably emerged around late July 2020 in the Rio de Janeiro (RJ) state, which contributed with most ([~]50%) inter-state viral disseminations, and only became locally established in most Brazilian states by October 2020. The VOC Gamma probably arose in November 2020 in the Amazonas (AM) state, which was responsible for 60-70% of the inter-state viral dissemination, and the earliest timing of community transmission of this VOC in many Brazilian states was already traced to December 2020. We estimate that variant Gamma was 1.56-3.06 more transmissible than variant P.2 co-circulating in RJ and that the median effective reproductive number (Re) of Gamma in RJ and SP states (Re = 1.59-1.91) was lower than in AM (Re = 3.55). In summary, although the epicenter of the lineage P.2 dissemination in Brazil was the heavily interconnected Southeastern region, it displayed a slower rate of spatial spread than the VOC Gamma originated in the more isolated Northern Brazilian region. Our findings also support that the VOC Gamma was more transmissible than lineage P.2, although the viral Re of the VOC varied according to the geographic context.

6.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21263755

Résumé

The SARS-CoV-2 has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well characterized but two main factors have precluded major coinfection/codetection analysis thus far: i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic which limited the identification of lineage defining mutations necessary to distinguish coinfecting viral lineages; and the ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we have put together a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. It enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming their plausibility with the co-circulating lineages at the timeframe investigated. These coinfections represent around 0.61% of all samples investigated. Although our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, it is likely an underestimation and coinfection rates warrants further investigation. DATA SUMMARYThe raw fastq data of codetection cases are deposited on gisaid.org and correlated to gisaid codes: EPI_ISL_1068258, EPI_ISL_2491769, EPI_ISL_2491781, EPI_ISL_2645599, EPI_ISL_2661789, EPI_ISL_2661931, EPI_ISL_2677092, EPI_ISL_2777552, EPI_ISL_3869215. Supplementary data are available on https://doi.org/10.6084/m9.figshare.16570602.v1. The workflow code used in this study is publicly available on: https://github.com/dezordi/IAM_SARSCOV2.

7.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21263453

Résumé

The Amazonas was one of the most heavily affected Brazilian states by the COVID-19 epidemic. Despite a large number of infected people, particularly during the second wave associated with the spread of the Variant of Concern (VOC) Gamma (lineage P.1), SARS-CoV-2 continues to circulate in the Amazonas. To understand how SARS-CoV-2 persisted in a human population with a high immunity barrier, we generated 1,188 SARS-CoV-2 whole-genome sequences from individuals diagnosed in the Amazonas state from 1st January to 6th July 2021, of which 38 were vaccine breakthrough infections. Our study reveals a sharp increase in the relative prevalence of Gamma plus (P.1+) variants, designated as Pango Lineages P.1.3 to P.1.6, harboring two types of additional Spike changes: deletions in the N-terminal (NTD) domain (particularly{Delta} 144 or{Delta} 141-144) associated with resistance to anti-NTD neutralizing antibodies or mutations at the S1/S2 junction (N679K or P681H) that probably enhance the binding affinity to the furin cleavage site, as suggested by our molecular dynamics simulations. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1) from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct value of SARS-CoV-2 positive cases in Amazonas significantly decreases. Still, we found no overrepresentation of P.1+ variants among breakthrough cases of fully vaccinated patients (71%) in comparison to unvaccinated individuals (93%). This evidence supports that the ongoing endemic transmission of SARS-CoV-2 in the Amazonas is driven by the spread of new local Gamma/P.1 sub-lineages that are more transmissible, although not more efficient to evade vaccine-elicited immunity than the parental VOC. Finally, as SARS-CoV-2 continues to spread in human populations with a declining density of susceptible hosts, the risk of selecting new variants with higher infectivity are expected to increase.

8.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21255081

Résumé

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, Gamma, emerged in the city of Manaus in late 2020 during a large resurgence of coronavirus disease (COVID-19), and has spread throughout Brazil. The effectiveness of vaccines in settings with widespread Gamma variant transmission has not been reported. MethodsWe performed a matched test-negative case-control study to estimate the effectiveness of an inactivated vaccine, CoronaVac, in healthcare workers (HCWs) in Manaus, where the Gamma variant accounted for 86% of genotyped SARS-CoV-2 samples at the peak of its epidemic. We performed an early analysis of effectiveness following administration of at least one vaccine dose and an analysis of effectiveness of the two-dose schedule. The primary outcome was symptomatic SARS-CoV-2 infection. FindingsFor the early at-least-one-dose and two-dose analyses the study population was, respectively, 53,176 and 53,153 HCWs residing in Manaus and aged 18 years or older, with complete information on age, residence, and vaccination status. Among 53,153 HCWs eligible for the two-dose analysis, 47,170 (89%) received at least one dose of CoronaVac and 2,656 individuals (5%) underwent RT-PCR testing from 19 January, 2021 to 13 April, 2021. Of 3,195 RT-PCR tests, 885 (28%) were positive. 393 and 418 case- control pairs were selected for the early and two-dose analyses, respectively, matched on calendar time, age, and neighbourhood. Among those who had received both vaccine doses before the RT-PCR sample collection date, the average time from second dose to sample collection date was 14 days (IQR 7-24). In the early analysis, vaccination with at least one dose was associated with a 0.50-fold reduction (adjusted vaccine effectiveness (VE), 49.6%, 95% CI 11.3 to 71.4) in the odds of symptomatic SARS-CoV-2 infection during the period 14 days or more after receiving the first dose. However, we estimated low effectiveness (adjusted VE 36.8%, 95% CI -54.9 to 74.2) of the two-dose schedule against symptomatic SARS-CoV-2 infection during the period 14 days or more after receiving the second dose. A finding that vaccinated individuals were much more likely to be infected than unvaccinated individuals in the period 0-13 days after first dose (aOR 2.11, 95% CI 1.36-3.27) suggests that unmeasured confounding led to downward bias in the vaccine effectiveness estimate. InterpretationEvidence from this test-negative study of the effectiveness of CoronaVac was mixed, and likely affected by bias in this setting. Administration of at least one vaccine dose showed effectiveness against symptomatic SARS-CoV-2 infection in the setting of epidemic Gamma variant transmission. However, the low estimated effectiveness of the two-dose schedule underscores the need to maintain non-pharmaceutical interventions while vaccination campaigns with CoronaVac are being implemented. FundingFundacao Oswaldo Cruz (Fiocruz); Municipal Health Secretary of Manaus Research in ContextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed for articles published from inception of the pandemic until April 3, 2021, with no language restrictions, using the search terms "P.1" AND "vaccine" AND "SARS-CoV-2". Additionally, we searched for "CoronaVac" AND "SARS-CoV-2". Early studies have found plasma from convalescent COVID-19 patients and sera from vaccinated individuals have reduced neutralisation of the SARS-CoV-2 variant, Gamma or P.1, compared with strains isolated earlier in the pandemic. Pfizer BNT162b2 mRNA, Oxford-AstraZeneca ChAdOx1, and CoronaVac are the only vaccines for which such data has been published to date. No studies reported effectiveness of any vaccine on reducing the risk of infection or disease among individuals exposed to P.1 or in settings of high P.1 transmission. Added value of this studyThis study finds that vaccination with CoronaVac was 49.4% (95% CI 13.2 to 71.9) effective at preventing COVID-19 in a setting with likely high prevalence of the Gamma Variant of Concern. However, an analysis of effectiveness by dose was underpowered and failed to find significant effectiveness of the two-dose schedule of CoronaVac (estimated VE 37.1%, 95% CI -53.3 to 74.2). Implications of all the available evidenceThese findings are suggestive for the effectiveness of CoronaVac in healthcare workers in the setting of widespread P.1 transmission but must be strengthened by observational studies in other settings and populations. Based on this evidence, there is a need to implement sustained non-pharmaceutical interventions even as vaccination campaigns continue.

9.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21253946

Résumé

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the SARS-CoV-2 Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil is generating new viral lineages that might be more resistant to neutralization than parental variants of concern.

10.
Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-435194

Résumé

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.

11.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20056424

Résumé

BackgroundThere is no specific antiviral therapy recommended for the disease caused by SARS-CoV-2 (COVID-19). Recent publications have drawn attention to the possible benefit of chloroquine (CQ). Our study aimed to comprehensively evaluate the safety and efficacy of two different CQ dosages in patients with established severe COVID-19. MethodsWe performed a parallel, double-blinded, randomized, phase IIb clinical trial, aiming to assess safety and efficacy of two different CQ dosages as adjunctive therapy of hospitalized patients with SARS in Manaus, Brazilian Amazon. Eligible participants were allocated to receive orally or via nasogastric tube high dose CQ (600mg CQ twice daily for 10 days or total dose 12g); or low dose CQ (450mg for 5 days, twice daily only on the first day, or total dose 2.7g). In addition, all patients received ceftriaxone and azithromycin. This study was registered with ClinicalTrials.gov, number NCT04323527. FindingsOut of a pre-defined 440 patients sample size, 81 patients were enrolled. The high dosage CQ arm presented more QTc>500ms (18.9%), and a trend toward higher lethality (39%) than the lower dosage. Fatality rate until day 13 was 27% (95%CI=17.9-38.2%), overlapping with the CI of historical data from similar patients not using CQ (95%CI=14.5-19.2%). In 27 patients with paired samples, respiratory secretion at day 4 was negative in only six patients (22%). InterpretationPreliminary findings suggest that the higher CQ dosage (10-day regimen) should not be recommended for COVID-19 treatment because of its potential safety hazards. Such results forced us to prematurely halt patient recruitment to this arm. Given the enormous global push for the use of CQ for COVID-19, results such as the ones found in this trial can provide robust evidence for updated COVID-19 patient management recommendations. FundingThis study was funded by the Government of the Amazonas State, Farmanguinhos (Fiocruz), SUFRAMA, CAPES, FAPEAM, and federal funds granted by a coalition of Brazilian senators. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSBefore the CloroCovid-19 trial began, to our knowledge, there were no published reports of robust clinical studies on the safety and/or efficacy of chloroquine (CQ) and/or hydroxychloroquine (HCQ) for the treatment of COVID-19 during the recent 2020 pandemic. We searched PubMed and also MedRxiv.org (pre-print server for health sciences, without peer review), without any language restrictions and including Chinese publications, for studies published between Dec 2019 and April 5, 2020, using the search terms COVID-19, coronavirus, SARS-Cov-2. We found three non-randomized studies with limited sample sizes in which (1) HCQ use led to a decrease in SARS-Cov-2 detected in respiratory secretions five days after treatment, together with azithromycin (France, 36 patients); (2) HCQ use shortened time to clinical recovery (China, 62 patients); and (3) CQ was superior to control treatment in inhibiting the exacerbation of pneumonia, improving lung imaging findings, and promoting virus-negative conversion and shortening the disease course (China, 100 patients). We found no published studies comparing different dosages of CQ/HCQ and their thorough safety assessment. Added value of this studyIn a larger patient population, we found that a higher dosage of CQ for 10 days presented toxicity red flags, particularly affecting QTc prolongation. The limited sample size recruited so far does not allow to show any benefit regarding treatment efficacy, however the higher fatality associated with the higher dosage by day 13 of follow-up resulted in a premature halting of this arm. This is the first double-blinded, randomized clinical trial addressing different dosages of CQ for the treatment of severe patients with COVID-19 in the absence of a control group using placebo. Due to the impossibility of not using the drug recommended at the national level, we used historical data from the literature to infer comparisons for lethality endpoints. Follow-up until day 28 is ongoing with a larger sample size, in which long-term lethality will be better estimated. Implications of all the available evidenceThe preliminary findings from CloroCovid-19 trial suggest that the higher dosage of CQ (12 g total dose over 10 days) in COVID-19 should not be recommended because of safety concerns regarding QTc prolongation and increased lethality, in the Brazilian population, and more often in older patients in use of drugs such as azithromycin and oseltamivir, which also prolong QTc interval. Among patients randomized to the lower dosage group (5 days of treatment, total dose 2.7 g), given the limited number of patients so far enrolled, it is still not possible to estimate a clear benefit of CQ in patients with severe ARDS. Preliminary data on viral clearance in respiratory secretions in our confirmed cases are also indicative of little effect of the drug at high dosage. More studies initiating CQ prior to the onset of the severe phase of the disease are urgently needed.

SÉLECTION CITATIONS
Détails de la recherche