Résumé
BACKGROUND: Risk of adverse outcomes in COVID-19 patients by stratifying by the time from symptom onset to confirmed diagnosis status is still uncertain. METHODS: We included 1,590 hospitalized COVID-19 patients confirmed by real-time RT-PCR assay or high-throughput sequencing of pharyngeal and nasal swab specimens from 575 hospitals across China between 11 December 2019 and 31 January 2020. Times from symptom onset to confirmed diagnosis, from symptom onset to first medical visit and from first medical visit to confirmed diagnosis were described and turned into binary variables by the maximally selected rank statistics method. Then, survival analysis, including a log-rank test, Cox regression, and conditional inference tree (CTREE) was conducted, regarding whether patients progressed to a severe disease level during the observational period (assessed as severe pneumonia according to the Chinese Expert Consensus on Clinical Practice for Emergency Severe Pneumonia, admission to an intensive care unit, administration of invasive ventilation, or death) as the prognosis outcome, the dependent variable. Independent factors included whether the time from symptom onset to confirmed diagnosis was longer than 5 days (the exposure) and other demographic and clinical factors as multivariate adjustments. The clinical characteristics of the patients with different times from symptom onset to confirmed diagnosis were also compared. RESULTS: The medians of the times from symptom onset to confirmed diagnosis, from symptom onset to first medical visit, and from first medical visit to confirmed diagnosis were 6, 3, and 2 days. After adjusting for age, sex, smoking status, and comorbidity status, age [hazard ratio (HR): 1.03; 95% CI: 1.01-1.04], comorbidity (HR: 1.84; 95% CI: 1.23-2.73), and a duration from symptom onset to confirmed diagnosis of >5 days (HR: 1.69; 95% CI: 1.10-2.60) were independent predictors of COVID-19 prognosis, which echoed the CTREE models, with significant nodes such as time from symptom onset to confirmed diagnosis, age, and comorbidities. Males, older patients with symptoms such as dry cough/productive cough/shortness of breath, and prior COPD were observed more often in the patients who procrastinated before initiating the first medical consultation. CONCLUSIONS: A longer time from symptom onset to confirmed diagnosis yielded a worse COVID-19 prognosis.
Résumé
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus disease 2019 (COVID-19). However, the microbial composition of the respiratory tract and other infected tissues as well as their possible pathogenic contributions to varying degrees of disease severity in COVID-19 patients remain unclear. Between 27 January and 26 February 2020, serial clinical specimens (sputum, nasal and throat swab, anal swab and feces) were collected from a cohort of hospitalized COVID-19 patients, including 8 mildly and 15 severely ill patients in Guangdong province, China. Total RNA was extracted and ultra-deep metatranscriptomic sequencing was performed in combination with laboratory diagnostic assays. We identified distinct signatures of microbial dysbiosis among severely ill COVID-19 patients on broad spectrum antimicrobial therapy. Co-detection of other human respiratory viruses (including human alphaherpesvirus 1, rhinovirus B, and human orthopneumovirus) was demonstrated in 30.8% (4/13) of the severely ill patients, but not in any of the mildly affected patients. Notably, the predominant respiratory microbial taxa of severely ill patients were Burkholderia cepacia complex (BCC), Staphylococcus epidermidis, or Mycoplasma spp. (including M. hominis and M. orale). The presence of the former two bacterial taxa was also confirmed by clinical cultures of respiratory specimens (expectorated sputum or nasal secretions) in 23.1% (3/13) of the severe cases. Finally, a time-dependent, secondary infection of B. cenocepacia with expressions of multiple virulence genes was demonstrated in one severely ill patient, which might accelerate his disease deterioration and death occurring one month after ICU admission. Our findings point to SARS-CoV-2-related microbial dysbiosis and various antibiotic-resistant respiratory microbes/pathogens in hospitalized COVID-19 patients in relation to disease severity. Detection and tracking strategies are needed to prevent the spread of antimicrobial resistance, improve the treatment regimen and clinical outcomes of hospitalized, severely ill COVID-19 patients.
Résumé
A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.
Sujets)
COVID-19/immunologie , Mégacaryocytes/immunologie , Monocytes/immunologie , ARN viral , SARS-CoV-2/génétique , Adolescent , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Enfant , Chine , Études de cohortes , Cytokines/métabolisme , Femelle , Humains , Mâle , Adulte d'âge moyen , ARN viral/sang , ARN viral/isolement et purification , Analyse sur cellule unique , Transcriptome/immunologie , Jeune adulteRésumé
Mesenchymal stem cells (MSCs) may improve the treatment of acute respiratory distress syndrome (ARDS). However, few studies have investigated the effects of mechanically stretched -MSCs (MS-MSCs) in in vitro models of ARDS. The aim of this study was to evaluate the potential therapeutic effects of MS-MSCs on pulmonary microvascular endothelium barrier injuries induced by LPS. We introduced a cocultured model of pulmonary microvascular endothelial cell (EC) and MSC medium obtained from MSCs with or without mechanical stretch. We found that Wright-Giemsa staining revealed that MSC morphology changed significantly and cell plasma shrank separately after mechanical stretch. Cell proliferation of the MS-MSC groups was much lower than the untreated MSC group; expression of cell surface markers did not change significantly. Compared to the medium from untreated MSCs, inflammatory factors elevated statistically in the medium from MS-MSCs. Moreover, the paracellular permeability of endothelial cells treated with LPS was restored with a medium from MS-MSCs, while LPS-induced EC apoptosis decreased. In addition, protective effects on the remodeling of intercellular junctions were observed when compared to LPS-treated endothelial cells. These data demonstrated that the MS-MSC groups had potential therapeutic effects on the LPS-treated ECs; these results might be useful in the treatment of ARDS.
Résumé
BACKGROUND: During the outbreak of coronavirus disease 2019 (COVID-19), consistent and considerable differences in disease severity and mortality rate of patients treated in Hubei province compared to those in other parts of China have been observed. We sought to compare the clinical characteristics and outcomes of patients being treated inside and outside Hubei province, and explore the factors underlying these differences. METHODS: Collaborating with the National Health Commission, we established a retrospective cohort to study hospitalised COVID-19 cases in China. Clinical characteristics, the rate of severe events and deaths, and the time to critical illness (invasive ventilation or intensive care unit admission or death) were compared between patients within and outside Hubei. The impact of Wuhan-related exposure (a presumed key factor that drove the severe situation in Hubei, as Wuhan is the epicentre as well the administrative centre of Hubei province) and the duration between symptom onset and admission on prognosis were also determined. RESULTS: At the data cut-off (31 January 2020), 1590 cases from 575 hospitals in 31 provincial administrative regions were collected (core cohort). The overall rate of severe cases and mortality was 16.0% and 3.2%, respectively. Patients in Hubei (predominantly with Wuhan-related exposure, 597 (92.3%) out of 647) were older (mean age 49.7 versus 44.9â years), had more cases with comorbidity (32.9% versus 19.7%), higher symptomatic burden, abnormal radiologic manifestations and, especially, a longer waiting time between symptom onset and admission (5.7 versus 4.5â days) compared with patients outside Hubei. Patients in Hubei (severe event rate 23.0% versus 11.1%, death rate 7.3% versus 0.3%, HR (95% CI) for critical illness 1.59 (1.05-2.41)) have a poorer prognosis compared with patients outside Hubei after adjusting for age and comorbidity. However, among patients outside Hubei, the duration from symptom onset to hospitalisation (mean 4.4 versus 4.7â days) and prognosis (HR (95%) 0.84 (0.40-1.80)) were similar between patients with or without Wuhan-related exposure. In the overall population, the waiting time, but neither treated in Hubei nor Wuhan-related exposure, remained an independent prognostic factor (HR (95%) 1.05 (1.01-1.08)). CONCLUSION: There were more severe cases and poorer outcomes for COVID-19 patients treated in Hubei, which might be attributed to the prolonged duration of symptom onset to hospitalisation in the epicentre. Future studies to determine the reason for delaying hospitalisation are warranted.
Sujets)
Infections à coronavirus/mortalité , Hospitalisation , Pneumopathie virale/mortalité , Adulte , Sujet âgé , Betacoronavirus , COVID-19 , Maladies cardiovasculaires/épidémiologie , Chine , Études de cohortes , Comorbidité , Infections à coronavirus/complications , Infections à coronavirus/imagerie diagnostique , Toux/étiologie , Diabète/épidémiologie , Épidémies de maladies , Dyspnée/étiologie , Fatigue/étiologie , Femelle , Fièvre/étiologie , Géographie , Humains , Hypertension artérielle/épidémiologie , Unités de soins intensifs/statistiques et données numériques , Poumon/imagerie diagnostique , Mâle , Adulte d'âge moyen , Pandémies , Pharyngite/étiologie , Pneumopathie virale/complications , Pneumopathie virale/imagerie diagnostique , Pronostic , Modèles des risques proportionnels , Ventilation artificielle/statistiques et données numériques , Études rétrospectives , SARS-CoV-2 , Indice de gravité de la maladie , Facteurs temps , Délai jusqu'au traitement/statistiques et données numériques , TomodensitométrieSujets)
Betacoronavirus/immunologie , Techniques de laboratoire clinique , Infections à coronavirus/sang , Infections à coronavirus/diagnostic , Immunité humorale/physiologie , Immunoglobuline A/sang , Pneumopathie virale/sang , Pneumopathie virale/diagnostic , Adulte , Sujet âgé , COVID-19 , Dépistage de la COVID-19 , Études de cohortes , Infections à coronavirus/immunologie , Femelle , Humains , Mâle , Adulte d'âge moyen , Pandémies , Pneumopathie virale/immunologie , SARS-CoV-2Résumé
SARS-CoV-2 caused a major outbreak of severe pneumonia (COVID-19) in humans. Viral RNA was detected in multiple organs in COVID-19 patients. However, infectious SARS-CoV-2 was only isolated from respiratory specimens. Here, infectious SARS-CoV-2 was successfully isolated from urine of a COVID-19 patient. The virus isolated could infect new susceptible cells and was recognized by its' own patient sera. Appropriate precautions should be taken to avoid transmission from urine.
Sujets)
Betacoronavirus/isolement et purification , Infections à coronavirus/urine , Infections à coronavirus/virologie , Pneumopathie virale/urine , Pneumopathie virale/virologie , Sujet âgé , Animaux , COVID-19 , Chlorocebus aethiops , Infections à coronavirus/transmission , Génome viral/génétique , Humains , Mâle , Pandémies , Pneumopathie virale/transmission , RT-PCR , SARS-CoV-2 , Cellules VeroRésumé
BACKGROUND: The coronavirus disease 2019 (COVID-19) outbreak is evolving rapidly worldwide. OBJECTIVE: To evaluate the risk of serious adverse outcomes in patients with COVID-19 by stratifying the comorbidity status. METHODS: We analysed data from 1590 laboratory confirmed hospitalised patients from 575 hospitals in 31 provinces/autonomous regions/provincial municipalities across mainland China between 11 December 2019 and 31 January 2020. We analysed the composite end-points, which consisted of admission to an intensive care unit, invasive ventilation or death. The risk of reaching the composite end-points was compared according to the presence and number of comorbidities. RESULTS: The mean age was 48.9â years and 686 (42.7%) patients were female. Severe cases accounted for 16.0% of the study population. 131 (8.2%) patients reached the composite end-points. 399 (25.1%) reported having at least one comorbidity. The most prevalent comorbidity was hypertension (16.9%), followed by diabetes (8.2%). 130 (8.2%) patients reported having two or more comorbidities. After adjusting for age and smoking status, COPD (HR (95% CI) 2.681 (1.424-5.048)), diabetes (1.59 (1.03-2.45)), hypertension (1.58 (1.07-2.32)) and malignancy (3.50 (1.60-7.64)) were risk factors of reaching the composite end-points. The hazard ratio (95% CI) was 1.79 (1.16-2.77) among patients with at least one comorbidity and 2.59 (1.61-4.17) among patients with two or more comorbidities. CONCLUSION: Among laboratory confirmed cases of COVID-19, patients with any comorbidity yielded poorer clinical outcomes than those without. A greater number of comorbidities also correlated with poorer clinical outcomes.