Unable to write in log file ../../bases/logs/gimorg/logerror.txt Recherche | OMS COVID-19 - Base de données de recherche
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Diabet Med ; : e15106, 2023 Apr 04.
Article Dans Anglais | MEDLINE | ID: covidwho-2288602


AIMS: COVID-19 patients with type 2 diabetes mellitus (T2DM) show both poorer clinical outcomes and have an increased risk of death. SARS-CoV-2 virus infection requires simultaneous expression of the SARS-CoV-2 cell entry factors angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2) in the same cell. The aim of the study was to explore the underlying mechanisms of a COVID-19 infection in patients with T2DM. METHODS: The distribution and expression of AEC2 and TMPRSS2 in different pancreatic cell types in clinical samples of T2DM patients and diabetic mouse models were analysed by single-cell sequencing, bioinformatics analysis and basic experiments. RESULTS: The results showed that ACE2 and TMPRSS2 are expressed in the ducts of the human pancreas. These findings suggest that SARS-CoV-2 can infect ductal cells in vivo through ACE2 and TMPRSS2. T2DM can promote the co-expression of ACE2 and TMPRSS2 in exocrine ducts, including in the human pancreas. We hypothesize that ACE2 expression levels are associated with increased numbers of lymphocytes in vivo. CONCLUSIONS: Increased blood glucose levels are associated with increased ACE2 expression and an increased number of lymphocytes. At the same time, lymphocytes can promote ACE2 expression.

J Control Release ; 342: 241-279, 2022 02.
Article Dans Anglais | MEDLINE | ID: covidwho-1639249


RNA-based therapy is a promising and potential strategy for disease treatment by introducing exogenous nucleic acids such as messenger RNA (mRNA), small interfering RNA (siRNA), microRNA (miRNA) or antisense oligonucleotides (ASO) to modulate gene expression in specific cells. It is exciting that mRNA encoding the spike protein of COVID-19 (coronavirus disease 2019) delivered by lipid nanoparticles (LNPs) exhibits the efficient protection of lungs infection against the virus. In this review, we introduce the biological barriers to RNA delivery in vivo and discuss recent advances in non-viral delivery systems, such as lipid-based nanoparticles, polymeric nanoparticles, N-acetylgalactosamine (GalNAc)-siRNA conjugate, and biomimetic nanovectors, which can protect RNAs against degradation by ribonucleases, accumulate in specific tissue, facilitate cell internalization, and allow for the controlled release of the encapsulated therapeutics.

COVID-19 , Nanoparticules , Humains , Liposomes , Petit ARN interférent , SARS-CoV-2
Détails de la recherche