Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Ajouter des filtres

Sujet Principal
Les sujets
Type de document
Gamme d'année
Infect Dis Model ; 8(1): 183-191, 2023 Mar.
Article Dans Anglais | MEDLINE | ID: covidwho-2165359


Recently some of us used a random-walk Monte Carlo simulation approach to study the spread of COVID-19. The calculations were reasonably successful in describing secondary and tertiary waves of infection, in countries such as the USA, India, South Africa and Serbia. However, they failed to predict the observed third wave for India. In this work we present a more complete set of simulations for India, that take into consideration two aspects that were not incorporated previously. These include the stochastic movement of an erstwhile protected fraction of the population, and the reinfection of some recovered individuals because of their exposure to a new variant of the SARS-CoV-2 virus. The extended simulations now show the third COVID-19 wave for India that was missing in the earlier calculations. They also suggest an additional fourth wave, which was indeed observed during approximately the same time period as the model prediction.

Chaos, solitons, and fractals ; 2022.
Article Dans Anglais | EuropePMC | ID: covidwho-1615251


Phenomenological and deterministic models are often used for the estimation of transmission parameters in an epidemic and for the prediction of its growth trajectory. Such analyses are usually based on single peak outbreak dynamics. In light of the present COVID-19 pandemic, there is a pressing need to better understand observed epidemic growth with multiple peak structures, preferably using first-principles methods. Along the lines of our previous work  [Physica A 574, 126014 (2021)], here we apply 2D random-walk Monte Carlo calculations to better understand COVID-19 spread through contact interactions. Lockdown scenarios and all other control interventions are imposed through mobility restrictions and a regulation of the infection rate within the stochastically interacting population. The susceptible, infected and recovered populations are tracked over time, with daily infection rates obtained without recourse to the solution of differential equations. The simulations were carried out for population densities corresponding to four countries, India, Serbia, South Africa and USA. In all cases our results capture the observed infection growth rates. More importantly, the simulation model is shown to predict secondary and tertiary waves of infections with reasonable accuracy. This predictive nature of multiple wave structures provides a simple and effective tool that may be useful in planning mitigation strategies during the present pandemic.

Epidemics ; 37: 100515, 2021 12.
Article Dans Anglais | MEDLINE | ID: covidwho-1487715


BACKGROUND: Recent work showed that the temporal growth of the novel coronavirus disease (COVID-19) follows a sub-exponential power-law scaling whenever effective control interventions are in place. Taking this into consideration, we present a new phenomenological logistic model that is well-suited for such power-law epidemic growth. METHODS: We empirically develop the logistic growth model using simple scaling arguments, known boundary conditions and a comparison with available data from four countries, Belgium, China, Denmark and Germany, where (arguably) effective containment measures were put in place during the first wave of the pandemic. A non-linear least-squares minimization algorithm is used to map the parameter space and make optimal predictions. RESULTS: Unlike other logistic growth models, our presented model is shown to consistently make accurate predictions of peak heights, peak locations and cumulative saturation values for incomplete epidemic growth curves. We further show that the power-law growth model also works reasonably well when containment and lock down strategies are not as stringent as they were during the first wave of infections in 2020. On the basis of this agreement, the model was used to forecast COVID-19 fatalities for the third wave in South Africa, which was in progress during the time of this work. CONCLUSION: We anticipate that our presented model will be useful for a similar forecasting of COVID-19 induced infections/deaths in other regions as well as other cases of infectious disease outbreaks, particularly when power-law scaling is observed.

COVID-19 , Belgique , Contrôle des maladies transmissibles , Humains , SARS-CoV-2 , République d'Afrique du Sud
Physica A ; 574: 126014, 2021 Jul 15.
Article Dans Anglais | MEDLINE | ID: covidwho-1185210


Recent analysis of early COVID-19 data from China showed that the number of confirmed cases followed a subexponential power-law increase, with a growth exponent of around 2.2 (Maier and Brockmann, 2020). The power-law behavior was attributed to a combination of effective containment and mitigation measures employed as well as behavioral changes by the population. In this work, we report a random walk Monte Carlo simulation study of proximity-based infection spread. Control interventions such as lockdown measures and mobility restrictions are incorporated in the simulations through a single parameter, the size of each step in the random walk process. The step size l is taken to be a multiple of 〈 r 〉 , which is the average separation between individuals. Three temporal growth regimes (quadratic, intermediate power-law and exponential) are shown to emerge naturally from our simulations. For l = 〈 r 〉 , we get intermediate power-law growth exponents that are in general agreement with available data from China. On the other hand, we obtain a quadratic growth for smaller step sizes l ≲ 〈 r 〉 ∕ 2 , while for large l the growth is found to be exponential. We further performed a comparative case study of early fatality data (under varying levels of lockdown conditions) from three other countries, India, Brazil and South Africa. We show that reasonable agreement with these data can be obtained by incorporating small-world-like connections in our simulations.

Détails de la recherche