Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Les sujets
Type de document
Gamme d'année
1.
EuropePMC; 2021.
Preprint Dans Anglais | EuropePMC | ID: ppcovidwho-296938

Résumé

Background Genetic loci associated with risk of severe COVID-19 infection have been identified and individuals with complicated COVID-19 infections often have multiple comorbidities. Objective Identify known and unidentified comorbidities associated with genetic loci linked to risk of severe COVID-19 infection. Methods A Phenome Wide Association Study (PheWAS) was conducted in 247,448 unrelated, white individuals from the UK Biobank to test the association of 1,402 unique phenotypes with ten genome-wide significant severe-COVID risk single nucleotide polymorphisms (SNP) identified from prior studies. A validation PheWAS was conducted in 2,247 white individuals from the CATHGEN. Results Four of the ten tested genetic loci showed significant phenotypic associations in UK Biobank after FDR adjustment. Vascular dementia significantly associated with rs7271165 near TMEM65 on 8q24.13 in individuals with the C risk allele (OR 5.66 [95% CI 2.21-11.85], q=0.049). We identified 40 novel phenotype associations with rs657152 on 9q34.2 coinciding with the ABO gene with individuals with the A COVID risk allele having higher odds of heart failure (OR 1.09 [95% CI 1.03-1.14], q=0.004), diabetes mellitus (OR 1.05 [95% CI 1.02-1.07], q=0.004) and hypercholesterolemia (OR 1.04 [95% CI 1.02-1.06], q=6.3×10 −5 ). Eight phenotypes associated with rs1819040 near KANSL1 on 17q21.31 in individuals with the A risk allele including atrial fibrillation and flutter (OR 1.07 [95% CI 1.04-1.10], q=0.0084) and pulmonary fibrosis (OR 0.80 [95% CI 0.71-0.89], q=0.035). Ten novel phenotypic associations were identified in association with rs74956615 on 19p13.2 near the TYK2 gene including individuals with the A COVID risk allele having lower odds of psoriatic arthropathy (OR 0.31 [95% CI 0.20-0.47], q=4.5×10 −5 ), rheumatoid arthritis (OR 0.83 [95% CI 0.64-0.83], p=1.4×10 −6 ) and thyrotoxicosis with or without goiter (OR 0.77 [95% CI 0.68-0.87], p-6.9×10 −5 ). Two associations for rs1819040 ( KANSL1 ) and seven associations for rs74956615 ( TYK2 ) validated in CATHGEN. Conclusions Using a broad PheWAS approach in a large discovery and validation cohort, we have identified novel phenotypic associations with risk alleles for severe COVID-19 infection. Interestingly, the ABO locus was associated with comorbidities that are also risk factors for severe COVID-19 infection, suggesting that this locus has pleiotropic effects and provides a potential mechanism for this association. The 19p13 locus was associated with lower risk of autoimmune disease, these findings may have broad implications for the importance of multiple comorbidities across both infectious and non-infectious diseases and may provide insight in the molecular function of the genes near these genetic risk loci.

2.
Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-028712

Résumé

Using a Systems Biology approach, we integrated genomic, transcriptomic, proteomic, and molecular structure information to provide a holistic understanding of the COVID-19 pandemic. The expression data analysis of the Renin Angiotensin System indicates mild nasal, oral or throat infections are likely and that the gastrointestinal tissues are a common primary target of SARS-CoV-2. Extreme symptoms in the lower respiratory system likely result from a secondary-infection possibly by a comorbidity-driven upregulation of ACE2 in the lung. The remarkable differences in expression of other RAS elements, the elimination of macrophages and the activation of cytokines in COVID-19 bronchoalveolar samples suggest that a functional immune deficiency is a critical outcome of COVID-19. We posit that using a non-respiratory system as a major pathway of infection is likely determining the unprecedented global spread of this coronavirus. One Sentence SummaryA Systems Approach Indicates Non-respiratory Pathways of Infection as Key for the COVID-19 Pandemic

SÉLECTION CITATIONS
Détails de la recherche