Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Base de données
Année
Type de document
Gamme d'année
1.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21266109

Résumé

The rapid spread of the SARS-CoV-2 Variant of Concern (VOC) Gamma during late 2020 and early 2021 in Brazilian settings with high seroprevalence raised some concern about the potential role of reinfections in driving the epidemic. Very few cases of reinfection associated with the VOC Gamma, however, have been reported. Here we describe 25 cases of SARS-CoV-2 reinfection confirmed by real-time RT-PCR twice within months apart in Brazil. SARS-CoV-2 genomic analysis confirmed that individuals were primo-infected between March and December 2020 with distinct viral lineages, including B.1.1, B.1.1.28, B.1.1.33, B.1.195 and P.2, and then reinfected with the VOC Gamma between 3 to 12 months after primo-infection. The overall mean cycle threshold (Ct) value of the first (25.7) and second (24.5) episodes were roughly similar for the whole group and 14 individuals displayed mean Ct values < 25.0 at reinfection. Sera of 14 patients tested by plaque reduction neutralization test after reinfection displayed detectable neutralizing antibodies against Gamma and other SARS-CoV-2 variants (B.1.33, B.1.1.28 and Delta). All individuals have milder or no symptoms after reinfection and none required hospitalization. The present study demonstrates that the VOC Gamma was associated with reinfections during the second Brazilian epidemic wave in 2021 and raised concern about the potential infectiousness of reinfected subjects. Although individuals here analyzed failed to mount a long-term sterilizing immunity, they developed a high anti-Gamma neutralizing antibody response after reinfection that may provide some protection against severe disease.

2.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21266251

Résumé

The SARS-CoV-2 Variant of Concern (VOC) Delta was first detected in India in October 2020. The first imported cases of the Delta variant in Brazil were identified in April 2021 in the Southern region, followed by more cases in different country regions during the following months. By early September 2021, Delta was already the dominant variant in the Southeastern (87%), Southern (73%), and Northeastern (52%) Brazilian regions. This work aimed to understand the spatiotemporal dissemination dynamics of Delta in Brazil. To this end, we employed a combination of Maximum Likelihood (ML) and Bayesian methods to reconstruct the evolutionary relationship of 2,264 of VOC Delta complete genomes (482 from this study) recovered across 21 out of 27 Brazilian federal units. Our phylogeographic analyses identified three major transmission clusters of Delta in Brazil. The clade BR-I (n = 1,560) arose in Rio de Janeiro in late April 2021 and was the major cluster behind the dissemination of the VOC Delta in the Southeastern, Northeastern, Northern, and Central-Western regions. The clade BR-II (n = 207) arose in the Parana state in late April 2021 and aggregated the largest fraction of sampled genomes from the Southern region. Lastly, the clade BR-III emerged in the Sao Paulo state in early June 2021 and remained mostly restricted to this state. In the rapid turnover of viral variants characteristic of the SARS-CoV-2 pandemic, Brazilian regions seem to occupy different stages of an increasing prevalence of the VOC Delta in their epidemic profiles. This process demands continuous genomic and epidemiological surveillance toward identifying and mitigating new introductions, limiting their dissemination, and preventing the establishment of more significant outbreaks in a population already heavily affected by the COVID-19 pandemic.

3.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21263755

Résumé

The SARS-CoV-2 has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well characterized but two main factors have precluded major coinfection/codetection analysis thus far: i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic which limited the identification of lineage defining mutations necessary to distinguish coinfecting viral lineages; and the ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we have put together a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. It enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming their plausibility with the co-circulating lineages at the timeframe investigated. These coinfections represent around 0.61% of all samples investigated. Although our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, it is likely an underestimation and coinfection rates warrants further investigation. DATA SUMMARYThe raw fastq data of codetection cases are deposited on gisaid.org and correlated to gisaid codes: EPI_ISL_1068258, EPI_ISL_2491769, EPI_ISL_2491781, EPI_ISL_2645599, EPI_ISL_2661789, EPI_ISL_2661931, EPI_ISL_2677092, EPI_ISL_2777552, EPI_ISL_3869215. Supplementary data are available on https://doi.org/10.6084/m9.figshare.16570602.v1. The workflow code used in this study is publicly available on: https://github.com/dezordi/IAM_SARSCOV2.

4.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21253946

Résumé

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the SARS-CoV-2 Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil is generating new viral lineages that might be more resistant to neutralization than parental variants of concern.

SÉLECTION CITATIONS
Détails de la recherche