Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 12 de 12
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
Raquel Viana; Sikhulile Moyo; Daniel Gyamfi Amoako; Houriiyah Tegally; Cathrine Scheepers; Richard J Lessells; Jennifer Giandhari; Nicole Wolter; Josie Everatt; Andrew Rambaut; Christian Althaus; Eduan Wilkinson; Adriano Mendes; Amy Strydom; Michaela Davids; Simnikiwe Mayaphi; Simani Gaseitsiwe; Wonderful T Choga; Dorcas Maruapula; Boitumelo Zuze; Botshelo Radibe; Legodile Koopile; Roger Shapiro; Shahin Lockman; Mpaphi B. Mbulawa; Thongbotho Mphoyakgosi; Pamela Smith-Lawrence; Mosepele Mosepele; Mogomotsi Matshaba; Kereng Masupu; Mohammed Chand; Charity Joseph; Lesego Kuate-Lere; Onalethatha Lesetedi-Mafoko; Kgomotso Moruisi; Lesley Scott; Wendy Stevens; Constantinos Kurt Wibmer; Anele Mnguni; Arshad Ismail; Boitshoko Mahlangu; Darren P. Martin; Verity Hill; Rachel Colquhoun; Modisa S. Motswaledi; James Emmanuel San; Noxolo Ntuli; Gerald Motsatsi; Sureshnee Pillay; Thabo Mohale; Upasana Ramphal; Yeshnee Naidoo; Naume Tebeila; Marta Giovanetti; Koleka Mlisana; Carolyn Williamson; Nei-yuan Hsiao; Nokukhanya Msomi; Kamela Mahlakwane; Susan Engelbrecht; Tongai Maponga; Wolfgang Preiser; Zinhle Makatini; Oluwakemi Laguda-Akingba; Lavanya Singh; Ugochukwu J. Anyaneji; Monika Moir; Stephanie van Wyk; Derek Tshiabuila; Yajna Ramphal; Arisha Maharaj; Sergei Pond; Alexander G Lucaci; Steven Weaver; Maciej F Boni; Koen Deforche; Kathleen Subramoney; Diana Hardie; Gert Marais; Deelan Doolabh; Rageema Joseph; Nokuzola Mbhele; Luicer Olubayo; Arash Iranzadeh; Alexander E Zarebski; Joseph Tsui; Moritz UG Kraemer; Oliver G Pybus; Dominique Goedhals; Phillip Armand Bester; Martin M Nyaga; Peter N Mwangi; Allison Glass; Florette Treurnicht; Marietjie Venter; Jinal N. Bhiman; Anne von Gottberg; Tulio de Oliveira.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21268028

Résumé

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in southern Africa has been characterised by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, whilst the second and third waves were driven by the Beta and Delta variants respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng Province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, predicted to influence antibody neutralization and spike function4. Here, we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.

2.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21266298

Résumé

Outbreaks of COVID at university campuses can spread rapidly and threaten the broader community. We describe the management of an outbreak at a Malawian university in April-May 2021 during Malawis second wave. Classes were suspended following detection of infections by routine testing and campus-wide PCR mass testing was conducted. Fifty seven cases were recorded, 55 among students, two among staff. Classes resumed 28 days after suspension following two weeks without cases. Just 6.3% of full-time staff and 87.4% of outsourced staff tested while 65% of students at the main campus and 74% at the extension campus were tested. Final year students had significantly higher positivity and lower testing coverage compared to freshmen. All viruses sequenced were beta variant and at least four separate virus introductions onto campus were observed. These findings are useful for development of campus outbreak responses and indicate the need to emphasize staff, males and senior students in testing. Article Summary LineSuccessful management of a campus outbreak using test trace and isolate approach with resumption within a month following suspension of all in-person classes. Trends in voluntary testing by gender, age and year of study that can help in formation of future management approaches.

3.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21262342

Résumé

Global genomic surveillance of SARS-CoV-2 has identified variants associated with increased transmissibility, neutralization resistance and disease severity. Here we report the emergence of the PANGO lineage C.1.2, detected at low prevalence in South Africa and eleven other countries. The emergence of C.1.2, associated with a high substitution rate, includes changes within the spike protein that have been associated with increased transmissibility or reduced neutralization sensitivity in SARS-CoV-2 VOC/VOIs. Like Beta and Delta, C.1.2 shows significantly reduced neutralization sensitivity to plasma from vaccinees and individuals infected with the ancestral D614G virus. In contrast, convalescent donors infected with either Beta or Delta showed high plasma neutralization against C.1.2. These functional data suggest that vaccine efficacy against C.1.2 will be equivalent to Beta and Delta, and that prior infection with either Beta or Delta will likely offer protection against C.1.2.

4.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21258228

Résumé

While most people effectively clear SARS-CoV-2, there are several reports of prolonged infection in immunosuppressed individuals. Here we present a case of prolonged infection of greater than 6 months with shedding of high titter SARS-CoV-2 in an individual with advanced HIV and antiretroviral treatment failure. Through whole genome sequencing at multiple time-points, we demonstrate the early emergence of the E484K substitution associated with escape from neutralizing antibodies, followed by other escape mutations and the N501Y substitution found in most variants of concern. This provides support to the hypothesis of intra-host evolution as one mechanism for the emergence of SARS-CoV-2 variants with immune evasion properties.

5.
Eduan Wilkinson; Marta Giovanetti; Houriiyah Tegally; James E San; Richard Lessels; Diego Cuadros; Darren P Martin; Abdel-Rahman N Zekri; Abdoul Sangare; Abdoul Salam Ouedraogo; Abdul K Sesay; Adnene Hammami; Adrienne A Amuri; Ahmad Sayed; Ahmed Rebai; Aida Elargoubi; Alpha K Keita; Amadou A Sall; Amadou Kone; Amal Souissi; Ana V Gutierrez; Andrew Page; Arnold Lambisia; Arash Iranzadeh; Augustina Sylverken; Azeddine Ibrahimi; Bourema Kouriba; Bronwyn Kleinhans; Beatrice Dhaala; Cara Brook; Carolyn Williamson; Catherine B Pratt; Chantal G Akoua-Koffi; Charles Agoti; Collins M Moranga; James D Nokes; Daniel J Bridges; Daniel L Bugembe; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Dorcas Maruapula; Edith N Ngabana; Eddy Lusamaki; Edidah Moraa; Elmostafa El Fahime; Emerald Jacob; Emmanuel Lokilo; Enatha Mukantwari; Essia Belarbi; Etienne Simon-Loriere; Etile A Anoh; Fabian Leendertz; Faida Ajili; Fares Wasfi; Faustinos T Takawira; Fawzi Derrar; Feriel Bouzid; Francisca M Muyembe; Frank Tanser; Gabriel Mbunsu; Gaetan Thilliez; Gert van Zyl; Grit Schubert; George Githinji; Gordon A Awandare; Haruka Abe; Hela H Karray; Hellen Nansumba; Hesham A Elgahzaly; Hlanai Gumbo; Ibtihel Smeti; Ikhlass B Ayed; Imed Gaaloul; Ilhem B.B. Boubaker; Inbal Gazy; Isaac Ssewanyana; Jean B Lekana-Douk; Jean-Claude C Makangara; Jean-Jacques M Tamfum; Jean M Heraud; Jeffrey G Shaffer; Jennifer Giandhari; Jingjing Li; Jiro Yasuda; Joana Q Mends; Jocelyn Kiconco; Jonathan A Edwards; John Morobe; John N Nkengasong; John Gyapong; John T Kayiwa; Jones Gyamfi; Jouali Farah; Joyce M Ngoi; Joyce Namulondo; Julia C Andeko; Julius J Lutwama; Justin O Grady; Kefenstse A Tumedi; Khadija Said; Kim Hae-Young; Kwabena O Duedu; Lahcen Belyamani; Lavanya Singh; Leonardo de O. Martins; Madisa Mine; Mahmoud el Hefnawi; Mahjoub Aouni; Maha Mastouri; Maitshwarelo I Matsheka; Malebogo Kebabonye; Manel Turki; Martin Nyaga; Matoke Damaris; Matthew Cotten; Maureen W Mburu; Maximillian Mpina; Michael R Wiley; Mohamed A Ali; Mohamed K Khalifa; Mohamed G Seadawy; Mouna Ouadghiri; Mulenga Mwenda; Mushal Allam; My V.T. Phan; Nabil Abid; Nadia Touil; Najla Kharrat; Nalia Ismael; Nedio Mabunda; Nei-yuan Hsiao; Nelson Silochi; Ngonda Saasa; Nicola Mulder; Patrice Combe; Patrick Semanda; Paul E Oluniyi; Paulo Arnaldo; Peter K Quashie; Reuben Ayivor-Djanie; Philip A Bester; Philippe Dussart; Placide K Mbala; Pontiano Kaleebu; Richard Njouom; Richmond Gorman; Robert A Kingsley; Rosina A.A. Carr; Saba Gargouri; Saber Masmoudi; Samar Kassim; Sameh Trabelsi; Sami Kammoun; Sanaa Lemriss; Sara H Agwa; Sebastien Calvignac-Spencer; Seydou Doumbia; Sheila M Madinda; Sherihane Aryeetey; Shymaa S Ahmed; Sikhulile Moyo; Simani Gaseitsiwe; Edgar Simulundu; Sonia Lekana-Douki; Soumeya Ouangraoua; Steve A Mundeke; Sumir Panji; Sureshnee Pillay; Susan Engelbrecht; Susan Nabadda; Sylvie Behillil; Sylvie van der Werf; Tarik Aanniz; Tapfumanei Mashe; Thabo Mohale; Thanh Le-Viet; Tobias Schindler; Upasana Ramphal; Magalutcheemee Ramuth; Vagner Fonseca; Vincent Enouf; Wael H Roshdy; William Ampofo; Wolfgang Preiser; Wonderful T Choga; Yaw Bediako; Yenew K. Tebeje; Yeshnee Naidoo; Zaydah de Laurent; Sofonias K Tessema; Tulio de Oliveira.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21257080

Résumé

The progression of the SARS-CoV-2 pandemic in Africa has so far been heterogeneous and the full impact is not yet well understood. Here, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations, predominantly from Europe, which diminished following the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1 and C.1.1. Although distorted by low sampling numbers and blind-spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a breeding ground for new variants.

6.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21254323

Résumé

At the end of 2020, the Network for Genomic Surveillance in South Africa (NGS-SA) detected a SARS-CoV-2 variant of concern (VOC) in South Africa (501Y.V2 or PANGO lineage B.1.351)1. 501Y.V2 is associated with increased transmissibility and resistance to neutralizing antibodies elicited by natural infection and vaccination2,3. 501Y.V2 has since spread to over 50 countries around the world and has contributed to a significant resurgence of the epidemic in southern Africa. In order to rapidly characterize the spread of this and other emerging VOCs and variants of interest (VOIs), NGS-SA partnered with the Africa Centres for Disease Control and Prevention and the African Society of Laboratory Medicine through the Africa Pathogen Genomics Initiative to strengthen SARS-CoV-2 genomic surveillance across the region.

7.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21250224

Résumé

SARS-CoV-2 variants of concern (VOC) have arisen independently at multiple locations and may reduce efficacy of current vaccines targeted at the spike glycoprotein. We re-cently described the emergence of VOC in South Africa (501Y.V2 or PANGO lineage B.1.351) with mutations in the spike receptor-binding domain (RBD) and N-terminal domain (NTD). Here, using a live virus neutralization assay (LVNA), we compared neutralization of a first wave virus (B.1.1.117) versus the 501Y.V2 variant using plasma collected from adults hospitalized with COVID-19 from two South African infection waves, with the second wave dominated by 501Y.V2 infections. Sequencing demonstrated that infections in first wave plasma donors were with viruses harbouring none of the 501Y.V2-defining RBD or NTD mutations, except for one with E484K. 501Y.V2 virus was effectively neutralized by plasma from second wave infections and first wave virus was effectively neutralized by first wave plasma. In cross-neutralization, 501Y.V2 virus was poorly neutralized by first wave plasma, with an 8.4-fold drop in neutralization relative to first wave virus and a 15.1-fold drop relative to 501Y.V2 neutralization by second wave plasma. In contrast, second wave plasma neutralization of first wave virus was more effective, showing 4.1-fold decline relative to 501Y.V2 virus neutralization and 2.3-fold decline relative to first wave plasma neutralization. While we only tested one plasma elicited by E484K alone, this potently neutralized both variants. The observed effective neutralization of first wave virus by 501Y.V2 infection elicited plasma provides preliminary evidence that vaccines based on VOC sequences could retain activity against other circulating SARS-CoV-2 lineages.

8.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20248640

Résumé

Continued uncontrolled transmission of the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in many parts of the world is creating the conditions for significant virus evolution. Here, we describe a new SARS-CoV-2 lineage (501Y.V2) characterised by eight lineage-defining mutations in the spike protein, including three at important residues in the receptor-binding domain (K417N, E484K and N501Y) that may have functional significance. This lineage emerged in South Africa after the first epidemic wave in a severely affected metropolitan area, Nelson Mandela Bay, located on the coast of the Eastern Cape Province. This lineage spread rapidly, becoming within weeks the dominant lineage in the Eastern Cape and Western Cape Provinces. Whilst the full significance of the mutations is yet to be determined, the genomic data, showing the rapid displacement of other lineages, suggest that this lineage may be associated with increased transmissibility.

9.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20231993

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes acute, highly transmissible respiratory infection in both humans and wide range of animal species. Its rapid spread globally and devasting effects have resulted into a major public health emergency prompting the need for methodological interventions to understand and control its spread. In particular, The ability to effectively retrace its transmission pathways in outbreaks remains a major challenge. This is further exacerbated by our limited understanding of its underlying evolutionary mechanism. Using NGS whole-genome data, we determined whether inter- and intra-host diversity coupled with bottleneck analysis can retrace the pathway of viral transmission in two epidemiologically well characterised nosocomial outbreaks in healthcare settings supported by phylogenetic analysis. Additionally, we assessed the mutational landscape, selection pressure and diversity of the identified variants. Our findings showed evidence of intrahost variant transmission and evolution of SARS-CoV-2 after infection These observations were consistent with the results from the bottleneck analysis suggesting that certain intrahost variants in this study could have been transmitted to recipients. In both outbreaks, we observed iSNVs and SNVs shared by putative source-recipients pairs. Majority of the observed iSNVs were positioned in the S and ORF1ab region. AG, CT and TC nucleotide changes were enriched across SARS-COV-2 genome. Moreover, SARS-COV-2 genome had limited diversity in some loci while being highly conserved in others. Overall, Our findings show that the synergistic effect of combining withinhost diversity and bottleneck estimations greatly enhances resolution of transmission events in Sars-Cov-2 outbreaks. They also provide insight into the genome diversity suggesting purifying selection may be involved in the transmission. Together these results will help in developing strategies to elucidate transmission events and curtail the spread of Sars-Cov-2

10.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20221143

Résumé

In March 2020, the first cases of COVID-19 were reported in South Africa. The epidemic spread very fast despite an early and extreme lockdown and infected over 600,000 people, by far the highest number of infections in an African country. To rapidly understand the spread of SARS-CoV-2 in South Africa, we formed the Network for Genomics Surveillance in South Africa (NGS-SA). Here, we analyze 1,365 high quality whole genomes and identify 16 new lineages of SARS-CoV-2. Most of these unique lineages have mutations that are found hardly anywhere else in the world. We also show that three lineages spread widely in South Africa and contributed to [~]42% of all of the infections in the country. This included the first identified C lineage of SARS-CoV-2, C.1, which has 16 mutations as compared with the original Wuhan sequence. C.1 was the most geographically widespread lineage in South Africa, causing infections in multiple provinces and in all of the eleven districts in KwaZulu-Natal (KZN), the most sampled province. Interestingly, the first South-African specific lineage, B.1.106, which was identified in April 2020, became extinct after nosocomial outbreaks were controlled. Our findings show that genomic surveillance can be implemented on a large scale in Africa to identify and control the spread of SARS-CoV-2.

11.
Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-144212

Résumé

The COVID-19 pandemic spread very fast around the world. A few days after the first detected case in South Africa, an infection started a large hospital outbreak in Durban, KwaZulu-Natal. Phylogenetic analysis of SARS-CoV-2 genomes can be used to trace the path of transmission within a hospital. It can also identify the source of the outbreak and provide lessons to improve infection prevention and control strategies. In this manuscript, we outline the obstacles we encountered in order to genotype SARS-CoV-2 in real-time during an urgent outbreak investigation. In this process, we encountered problems with the length of the original genotyping protocol, reagent stockout and sample degradation and storage. However, we managed to set up three different library preparation methods for sequencing in Illumina. We also managed to decrease the hands on library preparation time from twelve to three hours, which allowed us to complete the outbreak investigation in just a few weeks. We also fine-tuned a simple bioinformatics workflow for the assembly of high-quality genomes in real-time. In order to allow other laboratories to learn from our experience, we released all of the library preparation and bioinformatics protocols publicly and distributed them to other laboratories of the South African Network for Genomics Surveillance (SANGS) consortium.

12.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20116376

Résumé

BackgroundThe emergence of a novel coronavirus, SARS-CoV-2, in December 2019, progressed to become a world pandemic in a few months and reached South Africa at the beginning of March. To investigate introduction and understand the early transmission dynamics of the virus, we formed the South African Network for Genomics Surveillance of COVID (SANGS_COVID), a network of ten government and university laboratories. Here, we present the first results of this effort, which is a molecular epidemiological study of the first twenty-one SARS-CoV-2 whole genomes sampled in the first port of entry, KwaZulu-Natal (KZN), during the first month of the epidemic. By combining this with calculations of the effective reproduction number (R), we aim to shed light on the patterns of infections that define the epidemic in South Africa. MethodsR was calculated using positive cases and deaths from reports provided by the four major provinces. Molecular epidemiology investigation involved sequencing viral genomes from patients in KZN using ARCTIC protocols and assembling whole genomes using meticulous alignment methods. Phylogenetic analysis was performed using maximum likelihood (ML) and Bayesian trees, lineage classification and molecular clock calculations. FindingsThe epidemic in South Africa has been very heterogeneous. Two of the largest provinces, Gauteng, home of the two large metropolis Johannesburg and Pretoria, and KwaZulu-Natal, home of the third largest city in the country Durban, had a slow growth rate on the number of detected cases. Whereas, Western Cape, home of Cape Town, and the Eastern Cape provinces the epidemic is spreading fast. Our estimates of transmission potential for South Africa suggest a decreasing transmission potential towards R=1 since the first cases and deaths have been reported. However, between 06 May and 18 May 2020, we estimate that R was on average 1.39 (1.04-2.15, 95% CI). We also demonstrate that early transmission in KZN, and most probably in all main regions of SA, was associated with multiple international introductions and dominated by lineages B1 and B. The study also provides evidence for locally acquired infections in a hospital in Durban within the first month of the epidemic, which inflated early mortality in KZN. InterpretationThis first report of SANGS_COVID consortium focuses on understanding the epidemic heterogeneity and introduction of SARS-CoV-2 strains in the first month of the epidemic in South Africa. The early introduction of SARS-CoV-2 in KZN included caused a localized outbreak in a hospital, provides potential explanations for the initially high death rates in the province. The current high rate of transmission of COVID-19 in the Western Cape and Eastern Cape highlights the crucial need to strength local genomic surveillance in South Africa. FundingUKZN Flagship Program entitled: Afrocentric Precision Approach to Control Health Epidemic, by a research Flagship grant from the South African Medical Research Council (MRC-RFA-UFSP-01- 2013/UKZN HIVEPI, by the the Technology Innovation Agency and the the Department of Science and Innovation and by National Human Genome Re- search Institute of the National Institutes of Health under Award Number U24HG006941. H3ABioNet is an initiative of the Human Health and Heredity in Africa Consortium (H3Africa). Research in context Evidence before this studyWe searched PubMed, BioRxiv and MedRxiv for reports on epidemiology and phylogenetic analysis using whole genome sequencing (WGS) of SARS-CoV-2. We used the following keywords: SARS-CoV-2, COVID-19, 2019-nCoV or novel coronavirus and transmission genomics, epidemiology, phylogenetic or reproduction number. Our search identified an important lack of molecular epidemiology studies in the southern hemisphere, with only a few reports from Latin America and one in Africa. In other early transmission reports on SARS-CoV-2 infections in Africa, authors focused on transmission dynamics, but molecular and phylogenetic methods were missing. Added value of this studyWith a growing sampling bias in the study of transmission genomics of the SARS-CoV-2 pandemic, it is important for us to report high-quality whole genome sequencing (WGS) of local SARS-CoV-2 samples and in-depth phylogenetic analyses of the first month of infection in South-Africa. In our molecular epidemiological investigation, we identify the early transmission routes of the infection in the KZN and report thirteen distinct introductions from many locations and a cluster of localized transmission linked to a healthcare setting that caused most of the initial deaths in South Africa. Furthermore, we formed a national consortium in South Africa, funded by the Department of Science and Innovation and the South African Medical Research Council, to capacitate ten local laboratories to produce and analyse SARS-CoV-2 data in near real time. Implications of all the available evidenceThe COVID-19 pandemic is progressing around the world and in Africa. Early transmission genomics and dynamics of SARS-CoV-2 throw light on the early stages of the epidemic in a given region. This facilitates the investigation of localized outbreaks and serves to inform public health responses in South Africa.

SÉLECTION CITATIONS
Détails de la recherche
...