Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Ajouter des filtres

Type de document
Gamme d'année
Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-453027


Domestic cats are susceptible to SARS-CoV-2 virus infection and given that they are in close contact with people, assessing the potential risk cats represent for the transmission and maintenance of SARS-CoV-2 is important. Assessing this risk implies quantifying transmission from humans-to-cats, from cats-to-cats and from cats-to-humans. Here we quantified the risk of cat-to-cat transmission by reviewing published literature describing transmission either experimentally or under natural conditions in infected households. Data from these studies were collated to quantify the SARS-CoV-2 reproduction number R0 among cats. The estimated R0 was significantly higher than 1, hence cats could play a role in the transmission and maintenance of SARS-CoV-2. Questions that remain to be addressed are the risk of transmission from humans-to-cats and cats-to-humans. Further data on household transmission and data on virus levels in both the environment around infected cats and their exhaled air could be a step towards assessing these risks.

Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-452160


In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and related humans on farms. High number of farm infections (68/126) in minks and farm related personnel (>50% of farms) were detected, with limited spread to the general human population. Three of five initial introductions of SARS-CoV-2 lead to subsequent spread between mink farms until November 2020. The largest cluster acquired a mutation in the receptor binding domain of the Spike protein (position 486), evolved faster and spread more widely and longer. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combing genetic information with epidemiological information at the animal-human interface.

Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20248760


Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding human health which initiated intensive environmental investigations. Air sampling was performed in infected mink farms, at farm premises and at residential sites. A range of other environmental samples were collected from minks housing units including bedding material. Inside the farms, high levels of SARS-CoV-2 RNA were found in airborne dust, on surfaces, and on various other environmental matrices. This warns for occupational exposure which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible environmental exposure risk for nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequences analyses showing mink-to-human transmission in farm workers, but no indications for direct zoonotic transmission events to nearby communities.

Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-277152


The zoonotic origin of the SARS-CoV-2 pandemic is still unknown. Animal experiments have shown that non-human primates, cats, ferrets, hamsters, rabbits and bats can be infected by SARS-CoV-2. In addition, SARS-CoV-2 RNA has been detected in felids, mink and dogs in the field. Here, we describe an in-depth investigation of outbreaks on 16 mink farms and humans living or working on these farms, using whole genome sequencing. We conclude that the virus was initially introduced from humans and has evolved, most likely reflecting widespread circulation among mink in the beginning of the infection period several weeks prior to detection. At the moment, despite enhanced biosecurity, early warning surveillance and immediate culling of infected farms, there is ongoing transmission between mink farms with three big transmission clusters with unknown modes of transmission. We also describe the first animal to human transmissions of SARS-CoV-2 in mink farms. One sentence summarySARS-CoV-2 transmission on mink farms.

Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-224576


The transcriptional response in Vero cells (ATCC(R) CCL-81) infected with the coronavirus Porcine Epidemic Diarrhea Virus (PEDV) was measured by RNAseq analysis 4 and 6 hours after infection. Differential expressed genes (DEGs) in PEDV infected cells were compared to DEGs responding in Vero cells infected with Mammalian Orthoreovirus (MRV). Functional analysis of MRV and PEDV DEGs showed that MRV increased the expression level of several cytokines and chemokines (e.g. IL6, CXCL10, IL1A, CXCL8 [alias IL8]) and antiviral genes (e.g. IFI44, IFIT1, MX1, OASL), whereas for PEDV no enhanced expression was observed for these "hallmark" antiviral and immune effector genes. Pathway and Gene Ontology "enrichment analysis" revealed that PEDV infection did not stimulate expression of genes able to activate an acquired immune response, whereas MRV did so within 6h. Instead, PEDV down-regulated the expression of a set of zinc finger proteins with putative antiviral activity and enhanced the expression of the transmembrane serine protease gene TMPRSS13 (alias MSPL) to support its own infection by virus-cell membrane fusion (Shi et al, 2017, Viruses, 9(5):114). PEDV also down-regulated expression of Ectodysplasin A, a cytokine of the TNF-family able to activate the canonical NFKB-pathway responsible for transcription of inflammatory genes like IL1B, TNF, CXCL8 and PTGS2. The only 2 cytokine genes found up-regulated by PEDV were Cardiotrophin-1, an IL6-type cytokine with pleiotropic functions on different tissues and types of cells, and Endothelin 2, a neuroactive peptide with vasoconstrictive properties. Furthermore, by comprehensive datamining in biological and chemical databases and consulting related literature we identified sets of PEDV-response genes with potential to influence i) the metabolism of biogenic amines (e.g. histamine), ii) the formation of cilia and "synaptic clefts" between cells, iii) epithelial mucus production, iv) platelets activation, and v) physiological processes in the body regulated by androgenic hormones (like blood pressure, salt/water balance and energy homeostasis). The information in this study describing a "very early" response of epithelial cells to an infection with a coronavirus may provide pharmacologists, immunological and medical specialists additional insights in the underlying mechanisms of coronavirus associated severe clinical symptoms including those induced by SARS-CoV-2. This may help them to fine-tune therapeutic treatments and apply specific approved drugs to treat COVID-19 patients.

Preprint Dans Anglais | bioRxiv | ID: ppbiorxiv-101493


In April 2020, respiratory disease and increased mortality were observed in farmed mink on two farms in the Netherlands. In both farms, at least one worker had been found positive for SARS-CoV-2. Necropsies of the mink revealed interstitial pneumonia, and organ and swab samples tested positive for SARS-CoV-2 RNA by qPCR. Variations in viral genomes point at between-mink transmission on the farms and lack of infection link between the farms. Inhalable dust in the mink houses contained viral RNA, indicating possible exposure of workers.

Détails de la recherche