Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.03.31.22273257

Résumé

Purpose : In young adults (18 to 49 years old), investigation of the acute respiratory distress syndrome (ARDS) after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been limited. We evaluated the risk factors and outcomes of ARDS following infection with SARS-CoV-2 in a young adult population. Methods : A retrospective cohort study was conducted between January 1st, 2020 and February 28th, 2021 using patient-level electronic health records (EHR), across 241 United States hospitals and 43 European hospitals participating in the Consortium for Clinical Characterization of COVID-19 by EHR (4CE). To identify the risk factors associated with ARDS, we compared young patients with and without ARDS through a federated analysis. We further compared the outcomes between young and old patients with ARDS. Results : Among the 75,377 hospitalized patients with positive SARS-CoV-2 PCR, 1001 young adults presented with ARDS ( 7.8% of young hospitalized adults). Their mortality rate at 90 days was 16.2% and they presented with a similar complication rate for infection than older adults with ARDS. Peptic ulcer disease, paralysis, obesity, congestive heart failure, valvular disease, diabetes, chronic pulmonary disease and liver disease were associated with a higher risk of ARDS. We described a high prevalence of obesity (53%), hypertension (38%- although not significantly associated with ARDS), and diabetes (32%). Conclusion : Trough an innovative method, a large international cohort study of young adults developing ARDS after SARS-CoV-2 infection has been gather. It demonstrated the poor outcomes of this population and associated risk factor.

2.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.02.03.22270410

Résumé

ObjectiveFor multi-center heterogeneous Real-World Data (RWD) with time-to-event outcomes and high-dimensional features, we propose the SurvMaximin algorithm to estimate Cox model feature coefficients for a target population by borrowing summary information from a set of health care centers without sharing patient-level information. Materials and MethodsFor each of the centers from which we want to borrow information to improve the prediction performance for the target population, a penalized Cox model is fitted to estimate feature coefficients for the center. Using estimated feature coefficients and the covariance matrix of the target population, we then obtain a SurvMaximin estimated set of feature coefficients for the target population. The target population can be an entire cohort comprised of all centers, corresponding to federated learning, or can be a single center, corresponding to transfer learning. ResultsSimulation studies and a real-world international electronic health records application study, with 15 participating health care centers across three countries (France, Germany, and the U.S.), show that the proposed SurvMaximin algorithm achieves comparable or higher accuracy compared with the estimator using only the information of the target site and other existing methods. The SurvMaximin estimator is robust to variations in sample sizes and estimated feature coefficients between centers, which amounts to significantly improved estimates for target sites with fewer observations. ConclusionsThe SurvMaximin method is well suited for both federated and transfer learning in the high-dimensional survival analysis setting. SurvMaximin only requires a one-time summary information exchange from participating centers. Estimated regression vectors can be very heterogeneous. SurvMaximin provides robust Cox feature coefficient estimates without outcome information in the target population and is privacy-preserving.

3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.01.29.22270094

Résumé

Genetic predisposition to venous thrombosis may impact COVID-19 infection and its sequelae. Participants in the ongoing prospective cohort study, Million Veteran Program (MVP), who were tested for COVID-19, with European ancestry, were evaluated for associations with polygenic venous thromboembolic risk, Factor V Leiden mutation (FVL) (rs6025) and prothrombin gene 3 -UTR mutation (F2 G20210A)(rs1799963), and their interactions. Logistic regression models assessed genetic associations with VTE diagnosis, COVID-19 (positive) testing rates and outcome severity (modified WHO criteria), and post-test conditions, adjusting for outpatient anticoagulation medication usage, age, sex, and genetic principal components. 108,437 out of 464,961 European American MVP participants were tested for COVID-19 with 9786 (9%) positive. PRS(VTE), FVL, F2 G20210A were not significantly associated with the propensity of being tested for COVID-19. PRS(VTE) was significantly associated with a positive COVID-19 test in F5 wild type (WT) individuals (OR 1.05; 95% CI [1.02-1.07]), but not in FVL carriers (0.97, [0.91-1.94]). There was no association with severe outcome for FVL, F2 G20210A or PRS(VTE). Outpatient anticoagulation usage in the two years prior to testing was associated with worse clinical outcomes. PRS(VTE) was associated with prevalent VTE diagnosis among both FVL carriers or F5 wild type individuals as well as incident VTE in the two years prior to testing. Increased genetic propensity for VTE in the MVP was associated with increased COVID-19 positive testing rates, suggesting a role of coagulation in the initial steps of COVID-19 infection. Key PointsO_LIIncreased genetic predisposition to venous thrombosis is associated with increased COVID-19 positive testing rates. C_LIO_LIPRS for VTE further risk stratifies factor V Leiden carriers regarding their VTE risk. C_LI

4.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.28.21263911

Résumé

RationaleA common MUC5B gene polymorphism, rs35705950-T, is associated with idiopathic pulmonary fibrosis, but its role in the SARS-CoV-2 infection and disease severity is unclear. ObjectivesTo assess whether rs35705950-T confers differential risk for clinical outcomes associated with COVID-19 infection among participants in the Million Veteran Program (MVP) and COVID-19 Host Genetics Initiative (HGI). MethodsMVP participants were examined for an association between the incidence or severity of COVID-19 and the presence of a MUC5B rs35705950-T allele. Comorbidities and clinical events were extracted from the electronic health records (EHR). The analysis was performed within each ancestry group in the MVP, adjusting for sex, age, age2, and first twenty principal components followed by a trans-ethnic meta-analysis. We then pursued replication and performed a meta-analysis with the trans-ethnic summary statistics from the HGI. A phenome-wide association study (PheWAS) of the rs35705950-T was conducted to explore associated pathophysiologic conditions. Measurements and Main ResultsA COVID-19 severity scale was modified from the World Health Organization criteria, and phenotypes derived from the International Classification of Disease-9/10 were extracted from EHR. Presence of rs35705950-T was associated with fewer hospitalizations (Ncases=25353, Ncontrols=631,024; OR=0.86 [0.80-0.93], p=7.4 x 10-5) in trans-ethnic meta-analysis within MVP and joint meta-analyses with the HGI (N=1641311; OR=0.89 [0.85-0.93], p =1.9 x 10-6). Moreover, individuals of European Ancestry with at least one copy of rs35705950-T had fewer post-COVID-19 pneumonia events (OR=0.85 [0.76-0.96], p =0.008). PheWAS exclusively revealed pulmonary involvement. ConclusionsThe MUC5B variant rs35705950-T is protective in COVID-19 infection.

5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.18.21257396

Résumé

The study aims to determine the shared genetic architecture between COVID-19 severity with existing medical conditions using electronic health record (EHR) data. We conducted a Phenome-Wide Association Study (PheWAS) of genetic variants associated with critical illness (n=35) or hospitalization (n=42) due to severe COVID-19 using genome-wide association summary from the Host Genetics Initiative. PheWAS analysis was performed using genotype-phenotype data from the Veterans Affairs Million Veteran Program (MVP). Phenotypes were defined by International Classification of Diseases (ICD) codes mapped to clinically relevant groups using published PheWAS methods. Among 658,582 Veterans, variants associated with severe COVID-19 were tested for association across 1,559 phenotypes. Variants at the ABO locus (rs495828, rs505922) associated with the largest number of phenotypes (nrs495828= 53 and nrs505922=59); strongest association with venous embolism, odds ratio (ORrs495828 1.33 (p=1.32 x 10-199), and thrombosis ORrs505922 1.33, p=2.2 x10-265. Among 67 respiratory conditions tested, 11 had significant associations including MUC5B locus (rs35705950) with increased risk of idiopathic fibrosing alveolitis OR 2.83, p=4.12 x 10-191; CRHR1 (rs61667602) associated with reduced risk of pulmonary fibrosis, OR 0.84, p=2.26x 10-12. The TYK2 locus (rs11085727) associated with reduced risk for autoimmune conditions, e.g., psoriasis OR 0.88, p=6.48 x10-23, lupus OR 0.84, p=3.97 x 10-06. PheWAS stratified by genetic ancestry demonstrated differences in genotype-phenotype associations across ancestry. LMNA (rs581342) associated with neutropenia OR 1.29 p=4.1 x 10-13 among Veterans of African ancestry but not European. Overall, we observed a shared genetic architecture between COVID-19 severity and conditions related to underlying risk factors for severe and poor COVID-19 outcomes. Differing associations between genotype-phenotype across ancestries may inform heterogenous outcomes observed with COVID-19. Divergent associations between risk for severe COVID-19 with autoimmune inflammatory conditions both respiratory and non-respiratory highlights the shared pathways and fine balance of immune host response and autoimmunity and caution required when considering treatment targets.

6.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.09.20246579

Résumé

ImportanceDeaths among patients with coronavirus disease 2019 (COVID-19) are partially attributed to venous thromboembolism and arterial thromboses. Anticoagulants prevent thrombosis formation, possess anti-inflammatory and anti-viral properties, and may be particularly effective for treating patients with COVID-19. ObjectiveTo evaluate whether initiation of prophylactic anticoagulation within 24 hours of admission is associated with decreased risk of death among patients hospitalized with COVID-19. DesignObservational cohort study. SettingNationwide cohort of patients receiving care in the Department of Veterans Affairs, the largest integrated healthcare system in the United States. ParticipantsAll patients hospitalized with laboratory-confirmed SARS-CoV-2 infection March 1 to July 31, 2020, without a history of therapeutic anticoagulation. ExposuresProphylactic doses of subcutaneous heparin, low-molecular-weight heparin, or direct oral anticoagulants. Main Outcomes and Measures30-day mortality. Secondary outcomes: inpatient mortality and initiating therapeutic anticoagulation. ResultsOf 4,297 patients hospitalized with COVID-19, 3,627 (84.4%) received prophylactic anticoagulation within 24 hours of admission. More than 99% (n=3,600) received subcutaneous heparin or enoxaparin. We observed 622 deaths within 30 days of admission, 513 among those who received prophylactic anticoagulation. Most deaths (510/622, 82%) occurred during hospitalization. In inverse probability of treatment weighted analyses, cumulative adjusted incidence of mortality at 30 days was 14.3% (95% CI 13.1-15.5) among those receiving prophylactic anticoagulation and 18.7% (95% CI 15.1-22.9) among those who did not. Compared to patients who did not receive prophylactic anticoagulation, those who did had a 27% decreased risk for 30-day mortality (HR 0.73, 95% CI 0.66-0.81). Similar associations were found for inpatient mortality and initiating therapeutic anticoagulation. Quantitative bias analysis demonstrated that results were robust to unmeasured confounding (e-value lower 95% CI 1.77). Results persisted in a number of sensitivity analyses. Conclusions and RelevanceEarly initiation of prophylactic anticoagulation among patients hospitalized with COVID-19 was associated with a decreased risk of mortality. These findings provide strong real-world evidence to support guidelines recommending the use of prophylactic anticoagulation as initial therapy for COVID-19 patients upon hospital admission.

7.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.11.19.20234120

Résumé

Drug repurposing provides a rapid approach to meet the urgent need for therapeutics to address COVID-19. To identify therapeutic targets relevant to COVID-19, we conducted Mendelian randomization (MR) analyses, deriving genetic instruments based on transcriptomic and proteomic data for 1,263 actionable proteins that are targeted by approved drugs or in clinical phase of drug development. Using summary statistics from the Host Genetics Initiative and the Million Veteran Program, we studied 7,554 patients hospitalized with COVID-19 and >1 million controls. We found significant Mendelian randomization results for three proteins (ACE2: P=1.6x10^-6, IFNAR2: P=9.8x10^-11, and IL-10RB: P=1.9x10^-14) using cis-eQTL genetic instruments that also had strong evidence for colocalization with COVID-19 hospitalization. To disentangle the shared eQTL signal for IL10RB and IFNAR2, we conducted phenome-wide association scans and pathway enrichment analysis, which suggested that IFNAR2 is more likely to play a role in COVID-19 hospitalization. Our findings prioritize trials of drugs targeting IFNAR2 and ACE2 for early management of COVID-19.

SÉLECTION CITATIONS
Détails de la recherche