Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 540
Filtre
Ajouter des filtres

Gamme d'année
1.
Journal of Environmental and Occupational Medicine ; 38(5):494-499, 2021.
Article Dans Chinois | EMBASE | ID: covidwho-2322258

Résumé

[Background] The coronavirus disease 2019 (COVID-19) was first detected in December 2019. To combat the disease, a series of strict measures were adopted across the country, which led of improved air quality. This provides an opportunity to discuss the impact of human activities on air quality. [Objective] This study investigates the air quality changes in Shijiazhuang, and analyzes the impacts of epidemic prevention and control measures on air quality, so as to provide reference and ideas for further improving air quality and prevention and control measures. [Methods] The air quality data were collected online from https://www.zq12369.com/ and https://aqicn.org/city/shijiazhuang/cn/. Comparisons in air quality index (AQI) and the concentrations of air pollutants (PM2.5, PM10, SO2, CO, NO2, and O3) were made between the period from December 2019 to June 2020 (reference) and the same period from 2016 to 2019 by t-test and chi-square test. [Results] The daily average AQI dropped by 25.38% in Shijiazhuang during the COVID-19 prevention and control compared with the some period from 2016 to 2019 (t=6.28, P < 0.05). The proportions of pollution days during the COVID-19 outbreak in Shijiazhuang were PM2.5 (44.56%), O3 (31.09%), PM10 (23.83%), and NO2 (2.59%) successively, the pollution days of PM10 decreased significantly (chi2=3.86, P < 0.05) compared with 2016-2019, but during traffic lockdown the numbers of pollution days of PM2.5 and in the mid stage of prevention the number of pollution days of O3 increased (P < 0.05). Compared with the control period, the concentrations of the six air pollutants decreased to varying degrees (P < 0.05), especially SO2 dropped by 55.36%. [Conclusion] The measures taken for COVID-19 control and prevention have reduced the pollution sources and emissions, which resulted in better general air quality of Shijiazhuang City, but have aggravated the pollution of O3 and other pollutants. It is necessary to further explore the causes for the aggravation of O3 pollution in order to formulate reasonable air quality control strategies.Copyright © 2021, Shanghai Municipal Center for Disease Control and Prevention. All rights reserved.

2.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2326263

Résumé

The COVID-19 pandemic has highlighted the importance of indoor air quality (IAQ) since SARS-CoV-2 may be transmitted through virus-laden aerosols in poorly ventilated spaces. Multiple air cleaning technologies have been developed to mitigate airborne transmission risk and improve IAQ. In-duct bipolar ionization technology is an air cleaning technology that can generate ions for inactivating airborne pathogens and increasing particle deposition and removal while without significant byproducts generated. Many commercial in-duct ionization systems have been developed but their practical performance on pollutant removal and potential formation of byproducts have not been investigated comprehensively. The results in this study showed that the in-duct bipolar ionization technology can significantly improve the particle removal efficiency of the regular filter, while no significant ozone and ion were released to the indoor air. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

3.
Free Radical Biology and Medicine ; 201(Supplement 1):43, 2023.
Article Dans Anglais | EMBASE | ID: covidwho-2324269

Résumé

Worldwide, up to 8.8 million excess deaths/year have been attributed to air pollution, mainly due to the exposure to fine particulate matter (PM). Traffic-related noise is an additional contributor to global mortality and morbidity. Both health risk factors substantially contribute to cardiovascular, metabolic and neuropsychiatric sequelae. Studies on the combined exposure are rare and urgently needed because of frequent co-occurrence of both risk factors in urban and industrial settings. To study the synergistic effects of PM and noise, we used an exposure system equipped with aerosol generator and loud-speakers, where C57BL/6 mice were acutely exposed for 3d to either ambient PM (NIST particles) and/or noise (aircraft landing and take-off events). The combination of both stressors caused endothelial dysfunction, increased blood pressure, oxidative stress and inflammation. An additive impairment of endothelial function was observed in isolated aortic rings and even more pronounced in cerebral and retinal arterioles. The increase in oxidative stress and inflammation markers together with RNA sequencing data indicate that noise particularly affects the brain and PM particularly affects the lungs. Noise also increased levels of circulating stress hormones adrenaline and noradrenaline, while PM increased levels of circulating cytokines CD68 and MCP-1. The combination of both stressors has additive adverse effects on the cardiovascular system that are based on PM-induced systemic inflammation and noise-triggered stress hormone signaling. We demonstrate an additive upregulation of ACE-2 in the lung, suggesting that there may be an increased vulnerability to COVID-19 infection. The data warrant further mechanistic studies to characterize the propagation of primary target tissue damage (lung, brain) to remote organs such as aorta and heart by combined noise and PM exposure.Copyright © 2023

4.
6.
Journal of Balkan Ecology ; 25(2):177-185, 2022.
Article Dans Anglais | CAB Abstracts | ID: covidwho-2317696
7.
Atmospheric Environment ; 306 (no pagination), 2023.
Article Dans Anglais | EMBASE | ID: covidwho-2316713
8.
Respirology ; 28(Supplement 2):189, 2023.
Article Dans Anglais | EMBASE | ID: covidwho-2316373
9.
International Journal of Pharmaceutical Research and Allied Sciences ; 12(2):23-32, 2023.
Article Dans Anglais | EMBASE | ID: covidwho-2316298
10.
11.
Indian Journal of Occupational and Environmental Medicine Conference: 73rd Annual National Conference Indian Association of Occupational Health, OCCUCON ; 27(1), 2023.
Article Dans Anglais | EMBASE | ID: covidwho-2312593
12.
Ekológia ; 42(1):1-9, 2023.
Article Dans Anglais | ProQuest Central | ID: covidwho-2312483
13.
Front Immunol ; 14: 1161135, 2023.
Article Dans Anglais | MEDLINE | ID: covidwho-2316970

Résumé

Introduction: In the last decades, a decrease in air quality has been observed, mainly associated with anthropogenic activities. Air pollutants, including particulate matter (PM), have been associated with adverse effects on human health, such as exacerbation of respiratory diseases and infections. High levels of PM in the air have recently been associated with increased morbidity and mortality of COVID-19 in some regions of the world. Objective: To evaluate the effect of coarse particulate matter (PM10) on the inflammatory response and viral replication triggered by SARS-CoV-2 using in vitro models. Methods: Peripheral blood mononuclear cells (PBMC) from healthy donors were treated with PM10 and subsequently exposed to SARS-CoV-2 (D614G strain, MOI 0.1). The production of pro-inflammatory cytokines and antiviral factors was quantified by qPCR and ELISA. In addition, using the A549 cell line, previously exposed to PM, the viral replication was evaluated by qPCR and plaque assay. Results: SARS-CoV-2 stimulation increased the production of pro-inflammatory cytokines in PBMC, such as IL-1ß, IL-6 and IL-8, but not antiviral factors. Likewise, PM10 induced significant production of IL-6 in PBMCs stimulated with SARS-CoV-2 and decreased the expression of OAS and PKR. Additionally, PM10 induces the release of IL-1ß in PBMC exposed to SARS-CoV-2 as well as in a co-culture of epithelial cells and PBMCs. Finally, increased viral replication of SARS-CoV-2 was shown in response to PM10. Conclusion: Exposure to coarse particulate matter increases the production of pro-inflammatory cytokines, such as IL-1ß and IL-6, and may alter the expression of antiviral factors, which are relevant for the immune response to SARS-CoV-2. These results suggest that pre-exposure to air particulate matter could have a modest role in the higher production of cytokines and viral replication during COVID-19, which eventually could contribute to severe clinical outcomes.


Sujets)
COVID-19 , Cytokines , Humains , Cytokines/métabolisme , SARS-CoV-2/métabolisme , Agranulocytes/métabolisme , Interleukine-6 , Matière particulaire/effets indésirables , Antiviraux
14.
Biosens Bioelectron ; 234: 115356, 2023 Aug 15.
Article Dans Anglais | MEDLINE | ID: covidwho-2310195

Résumé

The COVID-19 pandemic ignited massive research into the rapid detection of bioaerosols. In particular, nanotechnology-based detection strategies are proposed as alternatives because of issues in bioaerosol enrichment and lead time for molecular diagnostics; however, the practical implementation of such techniques is still unclear due to obstacles regarding the large research and development effort and investment for the validation. The use of adenosine triphosphate (ATP) bioluminescence (expressed as relative luminescence unit (RLU) per unit volume of air) of airborne particulate matter (PM) to determine the bacterial population as a representative of the total bioaerosols (viruses, bacteria, and fungi) has been raised frequently because of the high reponse speed, resolution, and compatibility with culture-based bioaerosol monitoring. On the other hand, additional engineering attempts are required to confer significance because of the size-classified (bioluminescence for different PM sizes) and specific (bioluminescence per unit PM mass) biological risks of air for providing proper interventions in the case of airborne transmission. In this study, disc-type impactors to cut-off aerosols larger than 1 µm, 2.5 µm, and 10 µm were designed and constructed to collect PM1, PM2.5, and PM10 on sampling swabs. This engineering enabled reliable size-classified bioluminescence signals using a commercial ATP luminometer after just 5 min of air intake. The simultaneous operations of a six-stage Andersen impactor and optical PM spectrometers were conducted to determine the correlations between the resulting RLU and colony forming unit (CFU; from the Andersen impactor) or PM mass concentration (deriving specific bioluminescence).


Sujets)
Techniques de biocapteur , COVID-19 , Humains , Adénosine triphosphate/analyse , Pandémies , Microbiologie de l'air , Techniques de biocapteur/méthodes , COVID-19/diagnostic , Gouttelettes et aérosols respiratoires , Bactéries , Champignons , Surveillance de l'environnement/méthodes , Taille de particule
15.
Life (Basel) ; 13(2)2023 Feb 15.
Article Dans Anglais | MEDLINE | ID: covidwho-2289836

Résumé

BACKGROUND: Particulate matter (PM) exposure is responsible for seven million deaths annually and has been implicated in the pathogenesis of respiratory infections such as severe acute respiratory syndrome (SARS). Understanding modifiable risk factors of high mortality, resource burdensome C19 and exposure risks such as PM is key to mitigating their devastating effects. This systematic review focuses on the literature available, identifying the spatial and temporal variation in the role of quantified PM exposure in SARS disease outcome and planning our future experimental studies. METHODS: The systematic review utilized keywords adhered to the PRISMA guidelines. We included original human research studies in English. RESULTS: Initial search yielded N = 906, application of eligibility criteria yielded N = 46. Upon analysis of risk of bias N = 41 demonstrated high risk. Studies found a positive association between elevated PM2.5, PM10 and SARS-related outcomes. A geographic and temporal variation in both PM and C19's role was observed. CONCLUSION: C19 is a high mortality and resource intensive disease which devastated the globe. PM exposure is also a global health crisis. Our systematic review focuses on the intersection of this impactful disease-exposure dyad and understanding the role of PM is important in the development of interventions to prevent future spread of viral infections.

17.
Atmosphere ; 14(4):630, 2023.
Article Dans Anglais | ProQuest Central | ID: covidwho-2306097
18.
Environmental Forensics ; 24(1-2):9-20, 2023.
Article Dans Anglais | ProQuest Central | ID: covidwho-2303474
19.
Macromolecular Materials and Engineering ; 2023.
Article Dans Anglais | Scopus | ID: covidwho-2303201
SÉLECTION CITATIONS
Détails de la recherche