Your browser doesn't support javascript.
Antibody response to SARS-CoV-2 infection in humans: A systematic review.
Post, Nathan; Eddy, Danielle; Huntley, Catherine; van Schalkwyk, May C I; Shrotri, Madhumita; Leeman, David; Rigby, Samuel; Williams, Sarah V; Bermingham, William H; Kellam, Paul; Maher, John; Shields, Adrian M; Amirthalingam, Gayatri; Peacock, Sharon J; Ismail, Sharif A.
  • Post N; Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom.
  • Eddy D; National Infection Service, Public Health England, London, United Kingdom.
  • Huntley C; Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom.
  • van Schalkwyk MCI; Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, United Kingdom.
  • Shrotri M; Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom.
  • Leeman D; Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, United Kingdom.
  • Rigby S; National Infection Service, Public Health England, London, United Kingdom.
  • Williams SV; Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom.
  • Bermingham WH; Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom.
  • Kellam P; Department of Clinical Immunology, University Hospitals Birmingham, Birmingham, United Kingdom.
  • Maher J; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom.
  • Shields AM; School of Cancer and Pharmaceutical Studies, King's College London, London, United Kingdom.
  • Amirthalingam G; Department of Immunology, Eastbourne Hospital, Eastbourne, United Kingdom.
  • Peacock SJ; Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.
  • Ismail SA; National Infection Service, Public Health England, London, United Kingdom.
PLoS One ; 15(12): e0244126, 2020.
Article in English | MEDLINE | ID: covidwho-1004459
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT

BACKGROUND:

Progress in characterising the humoral immune response to Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) has been rapid but areas of uncertainty persist. Assessment of the full range of evidence generated to date to understand the characteristics of the antibody response, its dynamics over time, its determinants and the immunity it confers will have a range of clinical and policy implications for this novel pathogen. This review comprehensively evaluated evidence describing the antibody response to SARS-CoV-2 published from 01/01/2020-26/06/2020.

METHODS:

Systematic review. Keyword-structured searches were carried out in MEDLINE, Embase and COVID-19 Primer. Articles were independently screened on title, abstract and full text by two researchers, with arbitration of disagreements. Data were double-extracted into a pre-designed template, and studies critically appraised using a modified version of the Public Health Ontario Meta-tool for Quality Appraisal of Public Health Evidence (MetaQAT) tool, with resolution of disagreements by consensus. Findings were narratively synthesised.

RESULTS:

150 papers were included. Most studies (113 or 75%) were observational in design, were based wholly or primarily on data from hospitalised patients (108, 72%) and had important methodological limitations. Few considered mild or asymptomatic infection. Antibody dynamics were well described in the acute phase, up to around three months from disease onset, but the picture regarding correlates of the antibody response was inconsistent. IgM was consistently detected before IgG in included studies, peaking at weeks two to five and declining over a further three to five weeks post-symptom onset depending on the patient group; IgG peaked around weeks three to seven post-symptom onset then plateaued, generally persisting for at least eight weeks. Neutralising antibodies were detectable within seven to 15 days following disease onset, with levels increasing until days 14-22 before levelling and then decreasing, but titres were lower in those with asymptomatic or clinically mild disease. Specific and potent neutralising antibodies have been isolated from convalescent plasma. Cross-reactivity but limited cross-neutralisation with other human coronaviridae was reported. Evidence for protective immunity in vivo was limited to small, short-term animal studies, showing promising initial results in the immediate recovery phase.

CONCLUSIONS:

Literature on antibody responses to SARS-CoV-2 is of variable quality with considerable heterogeneity of methods, study participants, outcomes measured and assays used. Although acute phase antibody dynamics are well described, longer-term patterns are much less well evidenced. Comprehensive assessment of the role of demographic characteristics and disease severity on antibody responses is needed. Initial findings of low neutralising antibody titres and possible waning of titres over time may have implications for sero-surveillance and disease control policy, although further evidence is needed. The detection of potent neutralising antibodies in convalescent plasma is important in the context of development of therapeutics and vaccines. Due to limitations with the existing evidence base, large, cross-national cohort studies using appropriate statistical analysis and standardised serological assays and clinical classifications should be prioritised.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Antibodies, Neutralizing / SARS-CoV-2 / COVID-19 / Antibodies, Viral / Antibody Formation Type of study: Cohort study / Experimental Studies / Observational study / Prognostic study / Randomized controlled trials / Reviews / Systematic review/Meta Analysis Topics: Long Covid / Vaccines Limits: Female / Humans / Male Language: English Journal: PLoS One Journal subject: Science / Medicine Year: 2020 Document Type: Article Affiliation country: Journal.pone.0244126

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Antibodies, Neutralizing / SARS-CoV-2 / COVID-19 / Antibodies, Viral / Antibody Formation Type of study: Cohort study / Experimental Studies / Observational study / Prognostic study / Randomized controlled trials / Reviews / Systematic review/Meta Analysis Topics: Long Covid / Vaccines Limits: Female / Humans / Male Language: English Journal: PLoS One Journal subject: Science / Medicine Year: 2020 Document Type: Article Affiliation country: Journal.pone.0244126