Your browser doesn't support javascript.
A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images.
Joshi, Rakesh Chandra; Yadav, Saumya; Pathak, Vinay Kumar; Malhotra, Hardeep Singh; Khokhar, Harsh Vardhan Singh; Parihar, Anit; Kohli, Neera; Himanshu, D; Garg, Ravindra K; Bhatt, Madan Lal Brahma; Kumar, Raj; Singh, Naresh Pal; Sardana, Vijay; Burget, Radim; Alippi, Cesare; Travieso-Gonzalez, Carlos M; Dutta, Malay Kishore.
  • Joshi RC; Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, U.P., India.
  • Yadav S; Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, U.P., India.
  • Pathak VK; Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, U.P., India.
  • Malhotra HS; King George's Medical University, Lucknow, U.P., India.
  • Khokhar HVS; Government Medical College Kota, Rajasthan, India.
  • Parihar A; King George's Medical University, Lucknow, U.P., India.
  • Kohli N; King George's Medical University, Lucknow, U.P., India.
  • Himanshu D; King George's Medical University, Lucknow, U.P., India.
  • Garg RK; King George's Medical University, Lucknow, U.P., India.
  • Bhatt MLB; King George's Medical University, Lucknow, U.P., India.
  • Kumar R; Uttar Pradesh University of Medical Sciences, Saifai, Etawah, U.P., India.
  • Singh NP; Uttar Pradesh University of Medical Sciences, Saifai, Etawah, U.P., India.
  • Sardana V; Government Medical College Kota, Rajasthan, India.
  • Burget R; Brno University of Technology, Brno, Czech Republic.
  • Alippi C; Politecnico di Milano, Milano, Italy.
  • Travieso-Gonzalez CM; Università della Svizzera Italiana, Lugano, Switzerland.
  • Dutta MK; University of Las Palmas de Gran Canaria (ULPGC), Spain.
Biocybern Biomed Eng ; 41(1): 239-254, 2021.
Article in English | MEDLINE | ID: covidwho-1033562
ABSTRACT
The lethal novel coronavirus disease 2019 (COVID-19) pandemic is affecting the health of the global population severely, and a huge number of people may have to be screened in the future. There is a need for effective and reliable systems that perform automatic detection and mass screening of COVID-19 as a quick alternative diagnostic option to control its spread. A robust deep learning-based system is proposed to detect the COVID-19 using chest X-ray images. Infected patient's chest X-ray images reveal numerous opacities (denser, confluent, and more profuse) in comparison to healthy lungs images which are used by a deep learning algorithm to generate a model to facilitate an accurate diagnostics for multi-class classification (COVID vs. normal vs. bacterial pneumonia vs. viral pneumonia) and binary classification (COVID-19 vs. non-COVID). COVID-19 positive images have been used for training and model performance assessment from several hospitals of India and also from countries like Australia, Belgium, Canada, China, Egypt, Germany, Iran, Israel, Italy, Korea, Spain, Taiwan, USA, and Vietnam. The data were divided into training, validation and test sets. The average test accuracy of 97.11 ± 2.71% was achieved for multi-class (COVID vs. normal vs. pneumonia) and 99.81% for binary classification (COVID-19 vs. non-COVID). The proposed model performs rapid disease detection in 0.137 s per image in a system equipped with a GPU and can reduce the workload of radiologists by classifying thousands of images on a single click to generate a probabilistic report in real-time.
Keywords

Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Prognostic study Language: English Journal: Biocybern Biomed Eng Year: 2021 Document Type: Article Affiliation country: J.bbe.2021.01.002

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Type of study: Diagnostic study / Prognostic study Language: English Journal: Biocybern Biomed Eng Year: 2021 Document Type: Article Affiliation country: J.bbe.2021.01.002