Your browser doesn't support javascript.
The detection and stability of the SARS-CoV-2 RNA biomarkers in wastewater influent in Helsinki, Finland.
Hokajärvi, Anna-Maria; Rytkönen, Annastiina; Tiwari, Ananda; Kauppinen, Ari; Oikarinen, Sami; Lehto, Kirsi-Maarit; Kankaanpää, Aino; Gunnar, Teemu; Al-Hello, Haider; Blomqvist, Soile; Miettinen, Ilkka T; Savolainen-Kopra, Carita; Pitkänen, Tarja.
  • Hokajärvi AM; Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland.
  • Rytkönen A; Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland.
  • Tiwari A; Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland.
  • Kauppinen A; Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland.
  • Oikarinen S; Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
  • Lehto KM; Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
  • Kankaanpää A; Finnish Institute for Health and Welfare, Forensic Toxicology Unit, Helsinki, Finland.
  • Gunnar T; Finnish Institute for Health and Welfare, Forensic Toxicology Unit, Helsinki, Finland.
  • Al-Hello H; Finnish Institute for Health and Welfare, Expert Microbiology Unit, Helsinki, Finland.
  • Blomqvist S; Finnish Institute for Health and Welfare, Expert Microbiology Unit, Helsinki, Finland.
  • Miettinen IT; Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland.
  • Savolainen-Kopra C; Finnish Institute for Health and Welfare, Expert Microbiology Unit, Helsinki, Finland.
  • Pitkänen T; Finnish Institute for Health and Welfare, Expert Microbiology Unit, Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Dept. Food Hygiene and Environmental Health, Finland. Electronic address: tarja.pitkanen@thl.fi.
Sci Total Environ ; 770: 145274, 2021 May 20.
Article in English | MEDLINE | ID: covidwho-1039563
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT
Wastewater-based surveillance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is used to monitor the population-level prevalence of the COVID-19 disease. In many cases, due to lockdowns or analytical delays, the analysis of wastewater samples might only be possible after prolonged storage. In this study, the effect of storage conditions on the RNA copy numbers of the SARS-CoV-2 virus in wastewater influent was studied and compared to the persistence of norovirus over time at 4 °C, -20 °C, and -75 °C using the reverse-transcription quantitative PCR (RT-qPCR) assays E-Sarbeco, N2, and norovirus GII. For the first time in Finland, the presence of SARS-CoV-2 RNA was tested in 24 h composite influent wastewater samples collected from Viikinmäki wastewater treatment plant, Helsinki, Finland. The detected and quantified SARS-CoV-2 RNA copy numbers of the wastewater sample aliquots taken during 19-20 April 2020 and stored for 29, 64, and 84 days remained surprisingly stable. In the stored samples, the SARS betacoronavirus and SARS-CoV-2 copy numbers, but not the norovirus GII copy numbers, seemed slightly higher when analyzed from the pre-centrifuged pellet-that is, the particulate matter of the influent-as compared with the supernatant (i.e., water fraction) used for ultrafiltration, although the difference was not statistically significant. Furthermore, when wastewater was spiked with SARS-CoV-2, linear decay at 4 °C was observed on the first 28 days, while no decay was visible within 58 days at -20 °C or -75 °C. In conclusion, freezing temperatures should be used for storage when immediate SARS-CoV-2 RNA analysis from the wastewater influent is not possible. Analysis of the particulate matter of the sample, in addition to the water fraction, can improve the detection frequency.
Subject(s)
Keywords

Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Observational study / Prognostic study Limits: Humans Country/Region as subject: Europa Language: English Journal: Sci Total Environ Year: 2021 Document Type: Article Affiliation country: J.scitotenv.2021.145274

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: SARS-CoV-2 / COVID-19 Type of study: Observational study / Prognostic study Limits: Humans Country/Region as subject: Europa Language: English Journal: Sci Total Environ Year: 2021 Document Type: Article Affiliation country: J.scitotenv.2021.145274