Your browser doesn't support javascript.
Extended Lifetime of Respiratory Droplets in a Turbulent Vapor Puff and Its Implications on Airborne Disease Transmission.
Chong, Kai Leong; Ng, Chong Shen; Hori, Naoki; Yang, Rui; Verzicco, Roberto; Lohse, Detlef.
  • Chong KL; Physics of Fluids Group and Max Planck Center for Complex Fluid Dynamics, MESA+ Institute and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500AE Enschede, Netherlands.
  • Ng CS; Physics of Fluids Group and Max Planck Center for Complex Fluid Dynamics, MESA+ Institute and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500AE Enschede, Netherlands.
  • Hori N; Physics of Fluids Group and Max Planck Center for Complex Fluid Dynamics, MESA+ Institute and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500AE Enschede, Netherlands.
  • Yang R; Physics of Fluids Group and Max Planck Center for Complex Fluid Dynamics, MESA+ Institute and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500AE Enschede, Netherlands.
  • Verzicco R; Physics of Fluids Group and Max Planck Center for Complex Fluid Dynamics, MESA+ Institute and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500AE Enschede, Netherlands.
  • Lohse D; Dipartimento di Ingegneria Industriale, University of Rome 'Tor Vergata', Roma 00133, Italy.
Phys Rev Lett ; 126(3): 034502, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1060608
Preprint
This scientific journal article is probably based on a previously available preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See preprint
ABSTRACT
To quantify the fate of respiratory droplets under different ambient relative humidities, direct numerical simulations of a typical respiratory event are performed. We found that, because small droplets (with initial diameter of 10 µm) are swept by turbulent eddies in the expelled humid puff, their lifetime gets extended by a factor of more than 30 times as compared to what is suggested by the classical picture by Wells, for 50% relative humidity. With increasing ambient relative humidity the extension of the lifetimes of the small droplets further increases and goes up to around 150 times for 90% relative humidity, implying more than 2 m advection range of the respiratory droplets within 1 sec. Employing Lagrangian statistics, we demonstrate that the turbulent humid respiratory puff engulfs the small droplets, leading to many orders of magnitude increase in their lifetimes, implying that they can be transported much further during the respiratory events than the large ones. Our findings provide the starting points for larger parameter studies and may be instructive for developing strategies on optimizing ventilation and indoor humidity control. Such strategies are key in mitigating the COVID-19 pandemic in the present autumn and upcoming winter.
Subject(s)

Full text: Available Collection: International databases Database: MEDLINE Main subject: Body Fluids / COVID-19 / Models, Biological Limits: Humans Language: English Journal: Phys Rev Lett Year: 2021 Document Type: Article Affiliation country: PhysRevLett.126.034502

Similar

MEDLINE

...
LILACS

LIS


Full text: Available Collection: International databases Database: MEDLINE Main subject: Body Fluids / COVID-19 / Models, Biological Limits: Humans Language: English Journal: Phys Rev Lett Year: 2021 Document Type: Article Affiliation country: PhysRevLett.126.034502